CSCI4230 Computational Learning Theory Lecturer: Siu On Chan Spring 2021 Based on Maria-Florina Balcan's notes

Notes 18: Random Classification Noise model

1. STATISTICAL QUERY AND RANDOM CLASSIFICATION NOISE

If \mathcal{C} is efficiently learnable from SQ's, then \mathcal{C} is efficiently PAC-learnable with RCN

Theorem 1. If some efficient algorithm A learns C to error ε from M statistical queries of tolerance τ , then some efficient algorithm PAC-learns C with Random Classification Noise of rate η using

$$O\left(\frac{M}{\tau^2(1-2\eta)^2}\ln\frac{M}{\delta}\right)$$
 samples

Proof. Suppose A makes a statistical query with predicate $\varphi : X \times \{+1, -1\} \to \{0, 1\}$ Any such φ can be decomposed (uniquely) as $\varphi(x, y) = \underbrace{f(x)}_{\text{indep. of } y} + \underbrace{g(x) \cdot y}_{\text{linear in } y}$

since
$$\varphi(x,y) = \varphi(x,1)\mathbb{1}(y=1) + \varphi(x,-1)\mathbb{1}(y=-1) = \varphi(x,1)\frac{1+y}{2} + \varphi(x,-1)\frac{1-y}{2}$$

= $\frac{\varphi(x,1) + \varphi(x,-1)}{2} + \frac{\varphi(x,1) - \varphi(x,-1)}{2} \cdot y$

Estimating $\mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[\varphi(x,y)]$ within τ amounts to estimating expectations of both terms within $\tau/2$

1st term (independent of y) has the same expectation under $\text{EX}(c, \mathcal{D})$ and under $\text{EX}^{\eta}(c, \mathcal{D})$ Since $f(x) = (\varphi(x, 1) + \varphi(x, -1))/2$ takes a value between 0 and 1 With prob $\ge 1 - \delta/2M$, can estimate $\mathbb{E}_{\text{EX}(c,\mathcal{D})}[f(x)]$ within $\frac{\tau}{2}$ using $O\left(\frac{1}{\tau^2} \ln \frac{M}{\delta}\right)$ samples

2nd term (linear in y) has expectation

$$\mathbb{E}_{\mathrm{EX}^{\eta}(c,\mathcal{D})}[g(x)\cdot y] = (1-\eta) \mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[g(x)\cdot y] + \eta \mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[g(x)\cdot -y] = (1-2\eta) \mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[g(x)\cdot y]$$

i.e. expectation under $\text{EX}^{\eta}(c, \mathcal{D}) = (1 - 2\eta)$ times expectation under $\text{EX}(c, \mathcal{D})$ To estimate expectation of 2nd term under $\text{EX}(c, \mathcal{D})$ within $\frac{\tau}{2}$

Suffices to estimate its expectation under $EX^{\eta}(c, D)$ within $\frac{\tau}{2}(1-2\eta)$ and dividing this latter estimate by $1-2\eta$

Since $g(x)y = (\varphi(x, 1) - \varphi(x, -1))y/2$ takes a value between -1/2 and 1/2With prob $\ge 1 - \delta/2M$, can estimate $\mathbb{E}_{\mathrm{EX}^{\eta}(c, \mathcal{D})}[g(x)y]$ within $\frac{\tau}{2}(1 - 2\eta)$

using
$$O\left(\frac{1}{\tau^2(1-2\eta)^2}\ln\frac{M}{\delta}\right)$$
 samples (Hoeffding)

A makes M queries, by union bound, with prob $\geq 1 - \delta$, all estimates \hat{P}_{φ} are within $\pm \tau$ of P_{φ}

2. Guessing noise rate

So far we assumed learning algorithm knows true noise rate η exactly (unrealistic assumption) Above proof suggests that knowing an approximate value η' of η is enough

Algorithm pretends noise rate is η' (and suppose $1 - \frac{\tau}{2} \leq \frac{1-2\eta}{1-2\eta'} \leq 1 + \frac{\tau}{2}$) It wants to estimate $\mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[g(x)y]$, but cannot do so directly It will first estimate $\mathbb{E}_{\mathrm{EX}^{\eta}(c,\mathcal{D})}[g(x)y]$ (call this expectation P_{η}) within $\frac{\tau}{4}(1-2\eta')$ Denote algorithm's estimate by \hat{P}_{η}

Algorithm then divides \hat{P}_{η} by $1 - 2\eta'$ to get an estimate for $\mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[g(x)y] = \frac{1}{1-2\eta}P_{\eta}$

$$\left| \frac{1}{1 - 2\eta'} \hat{P}_{\eta} - \mathop{\mathbb{E}}_{\mathrm{EX}(c,\mathcal{D})} [g(x)y] \right| = \left| \frac{1}{1 - 2\eta'} \hat{P}_{\eta} - \frac{1}{1 - 2\eta'} P_{\eta} + \frac{1}{1 - 2\eta'} P_{\eta} - \frac{1}{1 - 2\eta} P_{\eta} \right|$$
$$\leqslant \frac{1}{1 - 2\eta'} \left| \hat{P}_{\eta} - P_{\eta} \right| + \left| P_{\eta} \right| \left| \frac{1}{1 - 2\eta'} - \frac{1}{1 - 2\eta} \right|$$

1st term is at most $\frac{1}{1-2\eta'}\frac{\tau}{4}(1-2\eta') = \frac{\tau}{4}$

2nd term is at most

$$|P_{\eta}| \left| \frac{1}{1 - 2\eta'} - \frac{1}{1 - 2\eta} \right| = \left| \frac{1}{1 - 2\eta} P_{\eta} \right| \left| \frac{1 - 2\eta}{1 - 2\eta'} - 1 \right| \leq \left| \underset{\mathrm{EX}(c, \mathcal{D})}{\mathbb{E}} [g(x)y] \right| \frac{\tau}{2} \leq \frac{1}{2} \frac{\tau}{2} = \frac{\tau}{4}$$

Last inequality due to $g(x)y = (\varphi(x, 1) - \varphi(x, -1))y/2$ taking a value between -1/2 and 1/2So algorithm's actual estimate will be within $\frac{\tau}{2}$ of $\mathbb{E}_{\mathrm{EX}(c,\mathcal{D})}[g(x)y]$ with high prob

What if only an upper bound η_* to the true noise rate η is known? $(0 \le \eta \le \eta_* < 1/2)$ Algorithm can try noise rates $\eta_1, \eta_2, \ldots, \eta_k$ such that $1 - 2\eta_j = \left(1 - \frac{\tau}{2}\right)^{j-1} \left(1 + \frac{\tau}{2}\right)^{-j}$ for $1 \le j < k$ and $\eta_k \ge \eta_*$ One of these noise rates, say η_ℓ , will satisfy $1 - \frac{\tau}{2} \le \frac{1 - 2\eta_\ell}{1 - 2\eta_\ell} \le 1 + \frac{\tau}{2}$ (Exercise)

Algorithm gets hypotheses h_1, \ldots, h_k from different noise rates η_1, \ldots, η_k Hypothesis h_ℓ corresponding to η_ℓ (that is close to η) will have $\operatorname{err}_{\mathcal{D}}(h_\ell, c) \leq \varepsilon$ with high prob

How can algorithm find out which h_j is good? Ideally, feed samples to h_j and estimate $\operatorname{err}_{\mathcal{D}}(h_j, c)$ But algorithm can only access noisy samples from $\operatorname{EX}^{\eta}(c, \mathcal{D})$, not clean samples from $\operatorname{EX}(c, \mathcal{D})$ **Observation:** $\mathbb{P}_{\operatorname{EX}^{\eta}(c,\mathcal{D})}[h(x) \neq y] = \operatorname{err}_{\mathcal{D}}(h,c)(1-2\eta) + \eta$ Reason: If $\varepsilon = \operatorname{err}_{\mathcal{D}}(h,c) = \mathbb{P}_{\operatorname{EX}(c,\mathcal{D})}[h(x) \neq y]$, then

 $\mathbb{P}_{\mathrm{EX}^{\eta}(c,\mathcal{D})}[h(x) \neq y] = (1-\eta)\varepsilon + \eta(1-\varepsilon) = \varepsilon(1-2\eta) + \eta$ Transformation $\varepsilon \mapsto \varepsilon(1-2\eta) + \eta$ mapping $\mathrm{err}_{\mathcal{D}}(h,c)$ to $\mathbb{P}_{\mathrm{EX}^{\eta}(c,\mathcal{D})}[h(x) \neq y]$ is monotone Thus hypothesis h_j minimizing $\mathbb{P}_{\mathrm{EX}^{\eta}(c,\mathcal{D})}[h(x) \neq y]$ will also minimize $\mathrm{err}_{\mathcal{D}}(h_j,c)$

How many noise rates (and hypotheses) to try?
Since
$$1 - 2\eta_k = \left(1 - \frac{\tau}{2}\right)^{k-1} \left(1 + \frac{\tau}{2}\right)^{-k}$$
, we want $\left(1 - \frac{\tau}{2}\right)^k \left(1 + \frac{\tau}{2}\right)^{-k} \leqslant \left(1 - \frac{\tau}{2}\right) (1 - 2\eta_*)$
so $k = \left(\ln \frac{1}{1 - 2\eta_*} - \ln \left(1 - \frac{\tau}{2}\right)\right) / \ln \left(\left(1 + \frac{\tau}{2}\right) / \left(1 - \frac{\tau}{2}\right)\right) = O\left(\frac{1}{\tau} \ln \frac{1}{1 - 2\eta_*}\right)$
because $\left(1 + \frac{\tau}{2}\right) / \left(1 - \frac{\tau}{2}\right) = 1 + \Theta(\tau)$ for small $\tau > 0$ and $\ln(1 + y) = \Theta(y)$ for small $y > 0$