
Grid-to-Ports Clock Routing for High Performance
Microprocessor Designs

Haitong Tian, Wai-Chung Tang,
Evangeline F. Y. Young

Department of Computer Science and
Engineering

The Chinese University of Hong Kong
{httian,wctang,fyyoung}@cse.cuhk.edu.hk

C. N. Sze
IBM Austin Research Laboratory

csze@us.ibm.com

ABSTRACT
Clock distribution in VLSI designs is of crucial importance
and it is also a major source of power dissipation of a sys-
tem. For today’s high performance microprocessors, clock
signals are usually distributed by a global clock grid covering
the whole chip, followed by post-grid routing that connects
clock loads to the clock grid. Early study [7] shows that
about 18.1% of the total clock capacitance dissipation was
due to this post-grid clock routing (i.e., lower mesh wires
plus clock twig wires). This post-grid clock routing problem
is thus an important one but not many previous works have
addressed it. In this paper, we try to solve this problem
of connecting clock ports to the clock grid through reserved
tracks on multiple metal layers, with delay and slew con-
straints. Note that a set of routing tracks are reserved for
this grid-to-ports clock wires in practice because of the con-
ventional modular design style of high-performance micro-
processors. We propose a new expansion algorithm based
on the heap data structure to solve the problem effectively.
Experimental results on industrial test cases show that our
algorithm can improve over the latest work on this prob-
lem [10] significantly by reducing the capacitance by 24.6%
and the wire length by 23.6%. We also validate our results
using hspice simulation. Finally, our approach is very effi-
cient and for larger test cases with about 2000 ports, the
runtime is in seconds.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Placement and Routing

General Terms
Algorithm, Design

Keywords
Clock Routing, Grid, Non-tree, Microprocessor Designs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the firs page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.
ISPD’11, March 27–30, 2011, Santa Barbara, California, USA.
Copyright 2011 ACM 978-1-4503-0550-1/11/03...$10.00.

1. INTRODUCTION
In today’s high performance systems, clock signals are dis-

tributed through a global clock grid [6–10], followed by post-
grid routing that connects clock loads to the grid. Early
studies showed that most of the clock power dissipation was
due to three major categories of capacitances – clock load,
clock twig and clock mesh wires, and clock grid buffers.
The post-grid clock routing wires (i.e., lower mesh wires and
clock twig wires) comprises 18.1% of the total capacitance
dissipation [7]. This post-grid clock routing problem is thus
a very important one, although not many previous works
have addressed it.

Due to the high complexity of microprocessor design, the
clock distribution network is usually synthesized and tuned
at the same time when different design teams are working on
their logic modules. In this case, the clock distribution be-
tween the clock grid and the block-level clock ports is subject
to conflict of routing resources for data signals. To resolve
this conflict and to facilitate simultaneous work between dif-
ferent design teams, a subset of routing tracks have to be re-
served for this post-grid clock routing. As a result, this post-
grid clock routing problem assumes a given set of reserved
tracks, forming a virtual grid structure. The quality of this
routing step is of significant importance as it will affect di-
rectly the total power consumption, the clock skews and
slews at the input of the ports and finally the quality of the
chip. These provide motivations to solve this multi-source
multi-port post-grid clock routing problem with an objec-
tive to minimize the interconnect capacitance while meeting
given delay and slew constraints. Traditionally, this step is
done manually and iteratively to satisfy the constraints, re-
sulting in a long time to market, especially when the problem
size has increased to thousands of clock ports in the layout
region. This also motivates the research of a fast algorithm
to resolve this clock routing problem effectively.

This post-grid clock routing problem bears a fundamental
difference with those previous works on clock tree construc-
tion, since the available routing tracks on different metal
layers are given and can be very scarce. Besides, in our
problem, there are multiple ports and multiple sources in
the layout region. There is one very recent work addressing
the same problem by Shelar [9, 10] and he proposed a tree
growing algorithm to solve the problem with delay and slew
constraints. In his algorithm, the clock network is generated
by expanding from the sources step by step, and the frontier
edge (detailed in Section 5.1) with the smallest wire capaci-

21

s 1 s 2

c2c1 p1 p3p2

20

1015

20

1630
(a)

s 1 s 2

c2c1 p1 p3p2

20

1015

20

30 (b)
s 1 s 2

c2p1 p3p2
1015

20

16
(c)

Figure 1: (a) Routing graph with sources s1 and
s2, ports p1, p2 and p3, and via nodes c1 and c2.
The numbers near the edges denote the wire capac-
itances. (b) Routing solution of [10]. (c) Routing
solution of our approach, with a 36% reduction in
wire capacitance.

tance is chosen every time. Checking against delay and slew
constraints is done when a port is reached. However, the
routing method in [10] has a couple of intrinsic problems. It
uses a top-down tree growing heuristic in which the down-
stream capacitance information is not available when the
trees are being constructed, and it thus can hardly optimize
the delay value. In addition, its slew calculation is based on
the lumped-RC model instead of the distributed RC model,
and this may lead to accuracy and fidelity problems. In
Fig. 1, we show a simple example to illustrate the differ-
ences between Shelar’s appraoch and ours. In this example,
three ports p1, p2 and p3 are to be connected to the two
sources s1 and s2. Fig. 1(b) and Fig. 1(c) show the routing
topology obtained by the tree growing approach in [10] and
by our approach respectively. In this example, our approach
can achieve a 36% reduction in wire capacitance compared
with the tree growing approach.

In this paper, we devised an efficient algorithm for this
post-grid clock routing problem that can satisfy user given
delay and slew bounds while minimizing the total wire ca-
pacitance. Note that similar to the formulation in [10], clock
skew is optimized in the context of minimizing the maxi-
mum delay1. We compared our approach with the previous
work [10] and can show that with the same delay and slew
constraints, our approach can improve over [10] by 24.6% in
wire capacitance and by 23.6% in wire length. To further
verify the quality of our results, we simulate the constructed
clock network using hspice and the simulation results con-
firm the effectiveness of our approach.

In the following, we will first give a preliminary overview
in Section 2 of this hybrid clock network, which motivates
this multi-source multi-port post-grid clock routing prob-
lem. Problem definition will be given in Section 3 while our
approach will be presented in Section 4. Finally, experi-
mental results, comparisons and discussions will be shown
in Section 5, followed by a conclusion in Section 6.

1Notice that clock skew is upper bounded by the maximum
delay. In our problem, this delay bound is set to be very
stringent, e.g, within 5ps, which is in reality the limit for
the clock skew.

Grid Buffer

Global Grid

Bloc ks

Local Clock
Buffer

Layou t
Reg ion

Res e rved
Tracks

S equen tia l

P o rt

Figure 2: Post-grid Clock Network Distribution

2. POST-GRID CLOCK ROUTING
Clock signals are generated by a phase locked loop (PLL)

and reach the global grid through grid buffers. The grid,
typically lying on the topmost metal layer, is usually im-
plemented using spines and will distribute clock signals to
different regions of the chip. The grid and PLL are usu-
ally designed manually. The signals will further be routed
through a set of reserved tracks on the lower metal layers
to the clock ports of different blocks, and this step is called
post-grid clock routing. The block-level ports will be created
in such a way to align with the reserved tracks and the clock
signals will be further sent to different sequentials inside the
blocks. There can be thousands of ports in each layout re-
gion in a real post-grid clock routing problem. As shown
in Fig. 2, the global grid wires are driven by multiple grid
buffers and deliver the clock signals to block-level ports by
routing along the reserved tracks on the lower metal layers.

A simple example of this post-grid clock routing problem
is shown in Fig. 3(a). In this example, there are five metal
layers (from layer 3 to layer 7) with six ports lying on metal
layer 3 and the source grid is on metal layer 7. Routing can
only be done on those reserved tracks (dashed lines). A sam-
ple routing solution is shown in Fig. 3(b). The target is to
connect all the ports to the sources without exceeding a very
stringent delay bound (which is also an upper bound of the
skew), a slew bound and to minimize the total wire capaci-
tance. Note that for this particular instance, our algorithm
gets the optimal solution as shown in Fig. 3(b).

3. PROBLEM DEFINITION
In this post-grid clock routing problem, we are given (1)

a set of reserved tracks (including the source grid which is
always on the topmost metal layer) on different metal layers
which have alternate routing directions, (2) the locations
and capacitances of n ports P = {P1, P2, ..., Pn} on some
lower metal layers, and (3) the types of wires (with differ-
ent capacitance/resistance tradeoffs) available on each metal
layer. We assume that the clock grid on the topmost layer
provides zero-skew clock signals. The objective of this post-
grid clock routing problem is to connect all the ports to the
sources2 by making use of the reserved tracks and different
wire types so as to satisfy the constraints on maximum de-
lay bound D and maximum slew S, and to minimize the
total wire capacitance. The delay here is computed accord-

2These sources are vias to the source grid on the topmost
matal layer.

22

0

500

1000

1500 0
200

400
600

800
1000

1200
1400

1600
1800

3

4

5

6

7

La
ye
r

(a) Initial Routing Problem

0

500

1000

1500 0
200

400
600

800
1000

1200
1400

1600
1800

3

4

5

6

7

La
ye
r

(b) Sample Routing Solution

Figure 3: Post-grid Clock Routing Problem

ing to the Elmore delay model due to its simplicity and high
fidelity, and the slew is estimated by

√
(2.2RC)2 + (Si)2

according to [5], where R and C denote the resistance and
capacitance of the wire segment respectively, and Si denotes
the input slew.

Similar to the previous work [10], we do not optimize the
skew directly. This is because the grid-to-ports delay bound
(also upper bound the skew) is very stringent and is set
to be within 5ps for all the data sets, which is very small
compared with the overall circuit skew budget. Therefore,
it is not necessary to put the skew as another optimizing
objective specifically. In addition, similar to [10], we do not
consider buffer insertion in this post-grid clock routing. A
very detailed explanation is provided in [10]. In fact, the
well-defined grid and reserved tracks make buffer insertion
unnecessary for this post-grid clock routing problem.

4. OUR APPROACH
This post-grid clock routing problem can be seen as a

multi-source multi-sink3 tree construction problem with a
delay bound, a slew bound, and an objective to minimize
the total wire capacitance. We first model the virtual grid
of reserved routing tracks by a graph G. The set of vertices
contains (1) the block-level clock ports (i.e., the sinks), (2)
the possible via positions between reserved tracks on adja-
cent metal layers, and (3) the clock sources (which are the
vias connecting to the source grid). The edges in G represent
the wire segments on the reserved tracks connecting ports,
vias or sources. Our approach includes a pre-processing step
that performs segment merging, finding segment intersec-
tions and construction of the graph G and uses some tech-
niques in [3,4] and it will not be detailed here.

To solve this clock routing problem, we devise a delay-
driven path expansion algorithm that will propagate from
each port in selected directions. A path is a routing be-
tween an intermediate node (a via node or a source node)
and a block-port along the reserved tracks. In the expansion
process, we will always select the path with the smallest El-
more delay (note that it is the total delay of the path) in
the current path pool to be further processed. A path p
will be taken when it reaches a source. Then, all the paths

3These“sinks”are block-level clock ports in our problem and
are different from the “sinks”, which are flip-flops or latches,
in traditional clock routing problems.

In put

Initia lize the s e t
of c ritic al po rts

as e mp ty

Path e xp an s io n o n
critic al ports

Path e xp an s io n o n
rem a inin g p orts

Any ports n ot
c on nec te d?

Add thos e
un co nne cte d ports

in to the s et of
critic al ports

Po s t-proc es s ing

Output

No

Yes

Figure 4: An Overall Flow of Our Approach

that intersects with p will also be considered and taken if
no delay nor slew violation occurs. This path expansion
step will be repeated until all the ports are connected, or
no more ports can be connected without violating the delay
and slew constraints. These are the basic steps of our delay-
driven path expansion algorithm. It will be invoked repeat-
edly with a pre-processing step that will connect up some
critical ports first. Finally, some post-processing techniques
are performed to further reduce the total wire capacitance.
A flow of our approach is illustrated in Fig. 4.

4.1 Delay-driven Path Expansion Algorithm
In this delay-driven path expansion algorithm, we will

propagate from all the ports simultaneously along the re-
served tracks to reach a source. A heap data structure H
is used to store all the currently expanding paths sorted ac-
cording to their Elmore delays. At the beginning, the heap
H is initialized with all the ports, which can be regarded as
zero length paths with zero delay.

23

In each step, we will pick a path p from the top of the
heap, which has the smallest Elmore delay among all the
paths in H . We will then check whether p has reached a
source. If not yet, we will expand p vertically up if a via 4

exists at the endpoint last(p) of p or will otherwise expand
sideways (horizontally or vertically, depending on the track
direction of the metal layer the last node of p is lying on)
along the reserved tracks. We will first compute the Elmore
delays of these new paths. Those new paths with Elmore
delay smaller than the delay limit D will be inserted into
the heap H . The path p will then be removed from H .

However, if the path p has reached a source, we will first
check against the delay and slew constraints. If no violation
occurs, we will take this path p into our routing solution.
Suppose that the path p is expanded from a port port(p),
all the paths originating from port(p) will be removed from
H . Furthermore, we will process every path q where q in-
tersects with p. All these paths will be considered in a non-
decreasing order of their Elmore delays. For each of these
paths q, we will check whether connecting q to p in the rout-
ing solution will violate any constraint at port(q) as well as
at any port in the current clock tree under construction. If
any violation occurs, we will just neglect q and consider the
next candidate. Otherwise, we will take q into the routing
solution and connect it to p. We call these paths which do
not come to the top of the heap but are processed chain
paths. Note that once a path is taken into the routing so-
lution, all the nodes on it will be regarded as “sources” for
later expansions, and all the paths originating from its port
will be removed from H .

Wire length reduction is not directly addressed in our al-
gorithm. But as we always choose a path with the minimum
delay to expand and delay is closely related to wire length,
paths with shorter wire lengths will have a higher chance
to be selected and processed. Therefore, we can expect a
reduction in wire length using our approach. A pseudo-code
of this path expansion algorithm is shown in Algorithm 1.

4.1.1 Processing of Chain Paths
In the above path expansion algorithm, after a path p is

taken into the routing solution, we will process all the paths
that intersect with p in the algorithm. First of all, we will
initialize a current routing tree Tp as the single path p and
initialize a set chain(p) with all the paths in H that intersect
with p. The paths in chain(p) are sorted according their El-
more delays in a non-decreasing order. We will then do the
following recursively until the set chain(p) becomes empty.
First, we will pick and remove a path p1 from chain(p) that
has the smallest Elmore delay. We will then check if con-
necting p1 to Tp will violate the delay or slew constraints
for port(p1) as well as for all the existing ports in Tp. If
yes, p1 will be neglected and the next path in chain(p) will
be considered. Otherwise, p1 will be added into Tp and all
the paths originating from port(p1) will be removed from H .
Furthermore, all the paths in H that intersect with p1 will
be added into chain(p) recursively.

4Note that the capacitance and resistance of the vias are ne-
glected here for simplicity. The same assumption was made
in the previous work [10]. However, the via capacitance and
resistance can be easily incorporated into our framework by
considering them when computing the delay of a path.

Algorithm 1: Path Expansion Algorithm

1 begin
2 while H is not empty do
3 p = delete min(H);
4 if p connects to source and d(p) ≤ D and

s(p) ≤ S then
5 Tp ← p;
6 clean up H ;
7 //remove all paths in H that originate

//from port p
8 foreach p′ intersects with p do
9 chain(p)← p′;

10 end
11 while chain(p) is not empty do
12 q = delete min(chain(p));
13 if adding q to Tp does not violate D and

S constraints then
14 connect q to Tp;
15 foreach p′ intersects with q do
16 chain(p)← p′;
17 end
18 clean up H ;
19 // remove all paths in H that
20 // originate from port q
21 end
22 end
23 Store Tp as one clock tree in the solution;
24 else
25 H ← expansion of p in selected directions;
26 end
27 end
28 end

4.2 Pre-processing to Connect Critical ports
The path expansion algorithm does not guarantee con-

necting all the ports to the sources successfully especially
when the user specified constraints are too stringent. If there
are critical ports (far away from sources or with very large
port capacitance) which are harder to satisfy the require-
ments, it will be better to generate smaller trees for them
first before handling others. Therefore, our post-grid clock
routing algorithm involves iterations of the path expansion
algorithm and will identify critical ports that fail to be con-
nected to a source in a previous iteration. Those critical
ports will be given higher priority to be processed in the
next path expansion iteration such that smaller clock trees
are more likely to be generated to connect them.

The pseudo-code in Algorithm 2 summarizes the overall
flow of our approach. We create a set of critical ports Pc

which is initialized as φ. We then enter the path expansion
iterations in which we first execute the path expansion al-
gorithm on the set of ports in Pc. This gives the critical
ports a higher priority to be routed to the sources. We will
then execute the path expansion algorithm on the remaining
ports P − Pc. Notice that these remaining ports may also
be connected to the trees constructed for the critical ports.
After that, all the ports that cannot be routed to a source in
this round will be added to Pc. Priorities also exist in Pc in
which a higher priority is given to those most recently added

24

Algorithm 2: Main Program

1 begin
2 P ← all ports;
3 Pc ← φ; //critical ports
4 k=0;
5 repeat
6 Initialize H as Pc;
7 path expansion() with H initialized as Pc;
8 Initialize H as P − Pc;
9 path expansion() with H initialized as P − Pc;

10 Pc ←Pc + ports that fail to be connected to a
source;

11 k ← k + 1;
12 until all sinks are connected or k > K;
13 if all sinks are connected then
14 Post-process;
15 //wire replacement and topology refinement
16 else
17 No solutions under current constraints;
18 end
19 end

ports. We repeat these steps until all the ports are connected
or the number of iterations exceeds a user defined limit K.5

4.3 Post-processing to Reduce Capacitance
For all the data sets, there are two types of wires on each

layer with capacitance and resistance tradeoffs6. The first
type has higher capacitance but lower resistance per unit
length, while the second type has lower capacitance but
higher resistance per unit length. The per unit length delay
of type-one wire is less than that of type-two wire on all the
layers. In our path expansion algorithm, we will first just
use type-one wire on all layers to optimize delay as much
as possible. A post-processing step is then performed to
reduce the total wire capacitance as long as the delay and
slew constraints are maintained by changing the wire types.
Two techniques, wire replacement and topology refinement,
are invoked in this post-processing step.

4.3.1 Wire Replacement
This refinement process is done for the trees in the clock

network one after another with the following steps. First,
all the terminal ports in the current tree are stored in a port
pool Px in which they are sorted in a non-decreasing order
of their Elmore delays, and the port Pl with the largest de-
lay in the tree will be recorded. We will then sequentially
explore all the ports in Px. Without loss of generality, lets
assume that the currently processing port is Pi, and node
Pj is the parent node of Pi in the tree. We use e(Pi) to
denote the edge connecting Pi and Pj . We will then check
whether any violation occurs if e(Pi) is replaced by the sec-
ond type of wire. If not, we will replace it with the second
type of wire and set Pi = Pj . This step is repeated until
the delay or slew constraint is violated at any port in the
current tree, or when Pi becomes an ancestor of the node Pl

(since we do not want to increase the largest delay in this
tree). Port Pl will be finally explored after all other ports

5In this case, the algorithm fails to converge to a feasible
solution. Note that this may happen when the delay or slew
constraints are too stringent.
6Our algorithm can also handle the case that multiple types
of wire are available on each layer.

Algorithm 3: Wire Replacement

1 begin
2 Tr ← all trees;
3 while Tr is not empty do
4 Ti ←select one tree in Tr;
5 Pl ← port with the largest Elmore delay in Px;
6 Px ← all terminal ports in Ti except Pl;
7 while Px is not empty do
8 Pi ← port node in Px with the smallest

Elmore delay;
9 Pa ← lowest common ancestor of Pl and Pi;

10 repeat
11 Replace e(Pi) using the second type of

wire if no violation occurs;
12 Pi ← parent(Pi);
13 until ∃Pk ∈ Ti where d(Pk) > D or Pi = Pa;
14 Px ← Px − Pi;
15 end
16 Pi ← Pl, Pa ← tree root of Ti;
17 repeat steps 10-13;
18 Tr ← Tr − Ti;
19 end
20 end

Algorithm 4: Topology Refinement

1 begin
2 Py ← all terminal ports;
3 sort(Py) in a non-increasing order of their Elmore

delays;
4 while Py is not empty do
5 Pi ← a port in Py;
6 modified path expansion() on Pi;
7 // Paths expand toward all directions, and the
8 //path with smallest wire capacitance will be
9 //expanded first

10 Py ← Py − Pi;
11 end
12 end

in the tree have been processed. In our implementation,
the above process is repeated three times, as we find that
for most test cases, running more iterations of this wire re-
placement process brings little or no capacitance reduction.
The pseudo-code in Algorithm 3 details the flow of this wire
replacement process.

4.3.2 Topology Refinemen
In the path expansion algorithm, we will expand a path p

upwards as long as the end node of p is at a via connecting
to the upper layer. Besides, chain paths are greedily pro-
cessed as long as the delay and slew bounds are maintained.
Thus, there are still chances to bring down the capacitance
by changing the topology of the initially constructed trees.
To achieve this, we will employ a topology refinement step
on all the terminal ports as follows. First, we will sort all
the ports that are terminal nodes in the trees in a non-
increasing order of their Elmore delays in a port pool Py.
These ports will be processed sequentially in the algorithm.
For any port Pi being processed, we will first disconnect Pi

from the tree it is currently connecting to, and record the
total wire capacitance Cb of the removed path pi. A new
path expansion algorithm will then be invoked at Pi which

25

Table 1: Comparisons with TG

Test
Cases

No.
Sinks

Capacitance
(pf)

Wire Length
(mm)

Delay
(ps)

Runtime
(s)

TG
x1

Ours1
x2

Improvement
x1−x2

x1
%

Ours
TG
y1

Ours1
y2

Improvement
y1−y2

y1
%

Ours TG Ours1 Ours

test1 300 3.3 2.6 (2.8) 20.9 (16.0) 2.3 12.6 10.0 (10.6) 20.1 (15.6) 10.6 0.45 0.02 0.23 0.20
test2 1846 13.7 9.7 (10.6) 29.2 (22.4) 5.0 42.9 32.3 (34.9) 24.8 (18.6) 34.2 1.15 0.10 2.53 2.68
test3 836 8.1 5.2 (5.8) 36.3 (28.2) 4.2 32.2 20.5 (23.1) 36.3 (28.5) 22.6 0.80 1.35 2.37 2.20
test4 502 5.3 4.0 (4.5) 23.7 (14.6) 1.7 12.4 9.5 (11.0) 23.0 (11.0) 10.6 1.35 0.03 2.81 2.91
test5 137 1.4 1.1 (1.2) 21.1 (15.7) 0.5 3.4 2.7 (3.1) 19.6 (10.5) 3.0 1.10 0.01 0.07 0.09
test6 724 7.9 5.7 (6.2) 27.1 (21.7) 2.5 18.8 14.2 (15.5) 24.7 (17.4) 15.3 1.25 0.05 0.57 0.67
test7 981 9.9 7.5 (8.2) 23.8 (17.2) 3.1 23.2 17.9 (19.9) 23.0 (14.1) 19.5 1.45 0.05 0.87 1.02
test8 538 5.9 4.5 (4.8) 24.5 (18.0) 1.9 14.1 10.8 (12.2) 23.7 (13.3) 11.9 1.80 0.04 0.41 0.50
test9 1915 19.9 14.3 (15.6) 28.3 (21.5) 5.5 46.1 33.2 (37.0) 28.1 (19.7) 35.6 2.75 0.13 2.98 3.38
test10 1134 10.7 8.6 (9.4) 19.4 (12.4) 3.4 25.8 20.2 (22.0) 21.9 (14.8) 21.4 1.90 0.09 6.72 6.88
test11 724 6.6 4.9 (5.3) 24.8 (18.9) 1.9 13.5 10.4 (11.3) 23.1 (16.5) 11.2 1.05 0.04 2.84 3.00
test12 225 2.5 2.0 (2.1) 20.2 (13.8) 0.9 6.3 4.9 (5.4) 22.0 (13.7) 5.4 1.30 0.01 0.13 0.17
test13 859 9.5 7.2 (7.6) 24.0 (19.3) 3.3 24.1 18.8 (20.4) 22.0 (15.4) 20.1 1.10 0.06 0.81 0.95
test14 366 3.9 3.1 (3.3) 20.7 (15.9) 1.4 9.5 7.8 (8.5) 18.4 (10.8) 8.4 0.95 0.04 0.25 0.29
Ave. 792 7.7 5.7 (6.2) 24.6 (18.3) 2.7 20.4 15.2 (16.8) 23.6 (15.7) 16.4 0.14 1.69 1.79

Note 1: Both TG and Ours1 use just type one wire on every layer.
Note 2: “Ours” represents our regular approach of using both types of wire on each layer
Note 3: The figures inside brackets denote the results before the post-processing techniques.

is different from the previous path expansion algorithm that
(1) only the second type of wire will be used during the path
expansion process, (2) paths will be expanded in all possible
directions and (3) the path with the minimum wire capaci-
tance (instead of the minimum wire delay) will be selected
and processed first in the expansion process. New paths
with wire capacitance less than Cb will be inserted into the
heap. Once a path reaches a source or a tree (note that all
trees are connected to sources now), we will check whether
any violation occurs if the new path is taken. This new path
will be taken if no violation occurs. Otherwise, we will con-
tinue the modified path expansion algorithm until another
path reaches a source or a tree, or when all the paths are
exhausted. If all the paths are explored but no path is suc-
cessfully connected, we will simply restore the original path
pi. The above steps are repeated twice in our implementa-
tion. Algorithm 4 shows the flow of this topology refinement
process.

4.4 Extension to Handle Large Load Capaci-
tances

In practice, there are cases in which a small number of
ports have exceptionally large capacitances that even its
shortest direct connection to the nearest source will have a
delay exceeding the limit D. To handle these special cases,
we have extended our algorithm to first connect those prob-
lematic ports by a non-tree structure to several sources to
bring down the delay to within the limit D. The non-tree
structure is constructed by connecting the problematic port
to more than one sources by several paths and by adding
cross links between those paths.

Consider a particular problematic port Pe, After a path
p1 is taken into the routing solution, we will do the following
steps to create a non-tree structure. First, we will expand
from node nl in the opposite direction of the path p1 to
find a nearest source. Let p2 be the new path. p2 will
be taken into the routing solution if it helps in reducing
the delay of Pe. Then, all the crosslinks between p1 and p2

(note that crosslinks can only exist at locations with reserved
tracks) will be recorded and examined. The computational
model in [2] is used to calculate the delays at the ports when
crosslinks exist. All the crosslinks that can reduce the delay
of Pe will be taken into the routing solution one by one
until the delay and slew constraints are met, or when all the
crosslinks are exhausted. If the delay and slew constraints
are still not met with p2 and all the crosslinks added, we will
set nl = parent(nl) and repeat the above steps recursively
with one edge up the original path p1 to find more sources
and crosslinks.

After handling all the problematic ports, other ports will
be handled as usual according to Algorithm 2. Note that we
also allow other ports to connect to the non-tree structures,
as long as the delay and slew constraints are not violated.

5. EXPERIMENT RESULTS
The path expansion algorithm proposed in this paper is

implemented in C++ and all the experiments are carried
out on a Linux machine with 4GB RAM and a Pentium
4 microprocessor running at 3.2GHz. We have also imple-
mented the tree growing approach (TG) in [10] using C++
for comparisons. In the experiments, we assume that the
slew of the source signals is 10ps, and the slew bound of the
output signals is set to be 15ps. The first three test cases
(test1-3) are provided by industry. The remaining eleven
test cases are obtained from the circuits used in the ISPD
2010 Clock Network Synthesis Contest [1]. For the ISPD
test cases which have no layer information given, five layers
of reserved tracks are added according to the track conven-
tions used in test 1-3.

5.1 Comparisons with the Tree Grow (TG) Ap-
proach

In the paper [10], Shelar proposed a tree growing algo-
rithm to construct a clock network on reserved tracks in the
context of post-grid clock routing . A pool F of frontier

26

nodes, which is initialized to be all source nodes, is used
to store all the current nodes to be expanded. The follow-
ing steps are performed recursively until all the ports are
connected to the sources. First, all unexplored edges adja-
cent to a frontier node in F are stored in an edge pool Ef

and sorted in an ascending order of their edge capacitances.
Then, the clock network is built by a greedy edge expansion
process, in which all the edges in Ef are sequentially added
into the clock network. Furthermore, the frontier node pool
F will be updated with the end nodes of the newly added
edges. After all the ports are connected to the sources, the
final clock network is obtained by deleting redundant edges
in the trees. Delay and slew constraints are considered in
the algorithm.

Since the approach in [10] considers only one type of wire
on each layer, for fair comparison, we compare the result
of our approach using just the first type of wire on every
layer (i.e., without the wire replacement step and use only
type one wire in all the other steps) with the result of [10]
using the first type of wire on every layer. In these exper-
iments, we first get the lowest achievable delays obtained
by TG empirically on all the test cases and use these de-
lays as our delay bounds. The same slew limit is applied to
both methods. The results are shown in Table 1. Column 3
and 7 show the total wire capacitance and the total wire
length generated by TG. The results of our approach are
shown in column 4 and 8. On average, our approach pro-
vides a 24.6% improvement in the total wire capacitance and
a 23.6% improvement in the total wire length compared with
TG respectively. The running times of both algorithm are
shown in the last two columns. As we can see that though
our approach is slower, the runtimes are still very practical.
For all the test cases, the running times of our approach are
within seconds. On average, the major path expansion al-
gorithm, the topology refinement step and the wire replace-
ment step take 74%, 17% and 9% of the total running time
respectively. Note that in some cases, the running time of
“Ours1” is even larger than that of “Ours” although “Ours1”
does not perform the wire replacement step. This is because
the inputs to the topology refinement procedure in “Ours”
and “Ours1” are different as “Ours1” does not perform wire
replacement. There are thus variations in the running times
of the topology refinement step.

If we allow both types of wires on each layer, further re-
duction in wire capacitance can be obtained and the results
are shown in column 6, 10 and 14 of Table 1. As we can
see from the result, our approach can make good use of the
availability of different wire types to further reduce the ca-
pacitance. For example, in test2, the wire capacitance can
be reduced significantly by 49% (from 9.68pf to 4.92pf) with
the wire replacement step.

5.2 Lowest Achievable Delay
Our approach can actually produce solution with better

delay than the TG approach. We have run our algorithm
on all the test cases to get the smallest achievable delays.
The results are shown in Table 3. For almost all the test
cases, we can further reduce the delays generated by TG.
Take test3 as an example, we can significantly reduce the
delay from 0.80ps to 0.55ps, which shows an advantage of
using our method in satisfying stringent user specified delay
limits. In practice, designers may not know whether a delay
limit is achievable for a circuit. Our approach can help in

Table 2: Non-tree Algorithm

Test
Cases

C
(pf)

WL
(mm)

D
(x ps)

T(s)
No.
P.P.

Dmin

(y ps)

Imp.

(y−x
y

%)

ntest1 2.7 10.5 0.45 0.3 3 0.68 33.8
ntest2 10.1 33.6 0.45 4.7 3 0.71 36.6
ntest3 5.6 22.3 0.60 8.7 3 0.51 -18.5
ntest4 4.2 10.0 1.00 2.1 3 1.26 20.8
ntest5 1.2 2.9 1.03 0.1 3 1.29 20.3
ntest6 6.3 16.3 0.66 1.4 3 1.25 47.0
ntest7 7.6 18.1 1.35 1.6 3 2.02 33.3
ntest8 4.6 11.2 1.30 0.5 3 1.98 34.4
ntest9 14.5 33.9 2.00 25.0 3 2.42 17.4
ntest10 8.7 20.4 1.80 15.9 3 2.33 22.6
ntest11 5.1 11.1 0.80 6.8 3 1.24 35.4
ntest12 2.0 4.9 1.70 0.2 3 1.65 -3.0
ntest13 7.3 19.0 1.25 1.0 3 1.35 7.2
ntest14 3.4 8.8 0.58 0.8 3 0.98 40.8
Ave. 5.94 15.9 4.92 3 23.4

Table 3: Lowest Achievable Delays
Test
Cases

Capacitance
(pf)

Wire Length
(mm)

Delay
(ps)

Runtime
(s)

test1 2.27 10.6 0.45 0.20
test2 6.08 34.6 0.47 4.69
test3 5.06 24.6 0.55 4.56
test4 1.75 10.2 1.00 2.12
test5 0.55 3.0 0.86 0.12
test6 2.83 15.5 0.83 1.01
test7 3.02 18.0 1.35 1.60
test8 1.86 11.2 1.32 0.50
test9 5.45 33.7 1.95 28.22
test10 3.28 20.1 1.67 22.27
test11 1.92 10.7 0.89 2.87
test12 0.91 5.1 1.12 0.22
test13 3.43 19.9 0.90 1.47
test14 1.48 8.4 0.67 0.40

determining the lowest achievable delay by embedding the
algorithm in a binary search loop. This is possible since our
approach will take the delay limit as an input constraint.

5.3 Results of the Non-tree Extension
To validate the effectiveness of our proposed non-tree al-

gorithm, we further generate 14 test cases from the original
ones (the new test cases have their names starting with an
“n”). These new test cases are generated as follows. We first
sort the ports according to their minimum Elmore delays,
which is the delay when a port is connected to its nearest
source directly. Then we increase the capacitances of the
first three ports in the list so that their minimum delays in-
crease by at least 50%. Detailed results on these new test
cases are shown in Table 2.

Total capacitance, total wire length, delay limits, running
time and number of problematic ports are shown in column
2-5 respectively. The delay limits D is got empirically for all
test cases. The second last column Dmin in Table 2 shows
the minimum delay of the problematic ports when they are
connected to the nearest source directly. Therefore, these
are the lower bound delays achievable using a tree structure.
We can see from the comparsion in the last column that our
non-tree approach can reduce further the delay by 23.4%
on average. For ntest3 and ntest12, our non-tree algorithm
does not help much and it automatically degenerates into the

27

original path expansion algorithm (the result is thus a set of
trees) because of the high density of the ports especially in
the surroundings of the problematic ports. For all the other
test cases, our proposed non-tree approach can successfully
generate a solution in which the maximum port delay is less
than the lower bound delay shown in the second last column.
This clearly demonstrates the effectiveness of our proposed
non-tree algorithm.

5.4 Simulation Results
We further validate our results using hspice simulation.

The slew of the input signals are set to be 10ps. Detailed
results are shown in Table 4 and Table 5. As we can see from
the simulation results, The delay and slew we calculated is
very close to the simulation results. For both tables, the cor-
relation coefficient is over 99% between the simulated delay
and calculated delay while it is over 94% between the simu-
lated slew and calculated slew. This verifies the effectiveness
of our method.

Table 4: Simulation Results for Tree
Test
Cases

Calculated Results Simulation Results

Delay (ps) Slew (ps) Delay (ps) Slew (ps)
test1 0.45 10.05 0.45 10.07
test2 1.14 10.32 1.14 10.24
test3 0.80 10.15 0.80 10.15
test4 1.35 10.43 1.34 10.33
test5 1.09 10.29 1.09 10.25
test6 1.25 10.37 1.25 10.32
test7 1.43 10.50 1.43 10.52
test8 1.78 10.76 1.78 10.90
test9 2.75 11.69 2.70 11.43
test10 1.90 10.84 1.90 11.07
test11 1.05 10.26 1.05 10.23
test12 1.28 10.40 1.28 10.31
test13 1.08 10.29 1.08 10.24
test14 0.95 10.22 0.95 10.20

Table 5: Simulation Results for Non-Tree
Test
Cases

Calculated Results Simulation Results

Delay (ps) Slew (ps) Delay (ps) Slew (ps)
ntest1 0.45 10.05 0.45 10.07
ntest2 0.45 10.05 0.45 10.07
ntest3 0.60 10.09 0.60 10.11
ntest4 1.00 10.24 1.00 10.21
ntest5 1.03 10.25 1.03 10.22
ntest6 0.66 10.10 0.66 10.13
ntest7 1.35 10.43 1.35 10.39
ntest8 1.29 10.40 1.29 10.33
ntest9 2.00 10.93 2.00 10.70
ntest10 1.80 10.76 1.80 10.97
ntest11 0.80 10.15 0.80 10.16
ntest12 1.70 10.68 1.70 10.81
ntest13 1.25 10.37 1.25 10.30
ntest14 0.58 10.08 0.58 10.10

6. CONCLUSION
In this paper, we present an efficient algorithm using the

heap data structure to construct a post-grid clock network
on reserved multi-layer metal tracks. We have compared our

approach with the state-of-the-art algorithm and show that
our algorithm can significantly improve over the previous
work with a 24.6% reduction in wire capacitance and 23.6%
reduction in wire length on average while maintaining very
practical runtimes. We have also extended the algorithm to
allow non-tree structures in order to handle the existence of
ports with exceptionally large load capacitances and verified
our results using hspice simulation. Our algorithm is ex-
pected to bring reduced energy consumption, improve grid-
to-port delay in real post-grid clock networks.

7. REFERENCES
[1] ISPD 2010 High Performance Clock Network

Synthesis Contest.
http://www.sigda.org/ispd/contests/10/ispd10cns.html.

[2] P. Chan and K. Karplus. Computing signal delay in
general rc networks by tree link partitioning. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 9(8):898–902, Aug 1990.

[3] B. Chazelle. Filtering search: A new approach to
query-answering. In 24th Annual Symposium on
Foundations of Computer Science, pages 122–132,
1983.

[4] B. Chazelle and H. Edelsbrunner. An optimal
algorithm for intersecting line segments in the plane.
In 29th Annual Symposium on Foundations of
Computer Science, pages 590–600, 1988.

[5] C. Kashyap, C. Alpert, F. Liu, and A. Devgan.
Closed-form expressions for extending step delay and
slew metrics to ramp inputs for rc trees. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(4):509–516, April 2004.

[6] M. Mori, H. Chen, B. Yao, and C.-K. Cheng. A
mulitple level network approach for clock skew
minimization with process variations. In Proceedings
of Asia and South Pacific Design Automation
Conference, pages 184–187, 2000.

[7] D. Pham, T. Aipperspach, D. Boerstler, M. Bolliger,
R. Chaudhry, D. Cox, P. Harvey, P. Harvey,
H. Hofstee, C. Johns, et al. Overview of the
architecture, circuit design, and physical
implementation of a first-generation cell processor.
IEEE Journal of Solid-State Circuits, 41(1):179–196,
Jan. 2006.

[8] P. Restle, T. McNamara, D. Webber, P. Camporese,
K. Eng, K. Jenkins, D. Allen, M. Rohn, M. Quaranta,
D. Boerstler, et al. A clock distribution network for
microprocessors. In IEEE Journal of Solid-State
Circuits, pages 184–187, 2000.

[9] R. Shelar. An algorithm for routing with
capacitance/distance constraints for clock distribution
in microprocessors. In Proceedings of the 2009
international symposium on Physical design, pages
141–148, 2009.

[10] R. Shelar. Routing with constraints for post-grid clock
distribution in microprocessors. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 29(2):245–249, Feb. 2010.

28

