Efficient Turing Machines

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong

Undecidability of PCP (optional) $PCP = \{ \langle T \rangle \mid T \text{ is a collection of tiles} \\ contains a top-bottom match} \}$

The language PCP is undecidable

We will show that

If PCP can be decided, so can $A_{\rm TM}$

We will only discuss the main idea, omitting details

 $\langle M, w \rangle \longmapsto T$ (collection of tiles) M accepts $w \iff T$ contains a match

Idea: Matches represent accepting history

 $#q_0ab\%ab\#xq_1b\%ab\#...\#xx\%xq_ax#$ $#q_0ab\%ab\#xq_1b\%ab\#...\#xx\%xq_ax#$

ε	# <i>q</i> ₀ a	b	a	%	a	b	#	x <i>q</i> ₁ %	
$#q_0ab%ab$	$\# x q_1$	b	a	%	a	b	#	x% q ₂	

Undecidability of PCP

 $\langle M \rangle \longmapsto T$ (collection of tiles) M accepts $w \iff T$ contains a match

We will assume that the following tile is forced to be the starting tile:

On input $\langle M, w \rangle$, we construct these tiles for PCP

Undecidability of PCP

tile type	purpose
	represents initial configuration
$\begin{bmatrix} x_1 q_i x_2 \\ x_3 x_4 x_5 \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix}$	represents valid transitions between configurations
$ \begin{array}{ c c c } \# q_i x_1 & \# \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	adds blank spaces before # if neces- sary
$\begin{bmatrix} xq_{a} & q_{a}x & q_{a}## \\ q_{a} & q_{a} & # \end{bmatrix}$	matching completes if computation accepts

Once the accepting state symbol occurs, the last two tiles can "eat up" the rest of the symbols

#xx%x*q*_a**x#xx%x***q*_a**#**...#*q*_a**#**#

 $#xx\%xq_ax#xx\%xq_a#...#q_a##$

x	xq_{a}	$q_{a}x$	qa ##
$\left x \right $	$q_{\rm a}$	q_{a}	#

If M rejects on input w, then $q_{\rm rej}$ appears on the bottom at some point, but it cannot be matched on top

If M loops on w, then matching goes on forever

We assumed that one tile is marked as the starting tile

We can simulate this assumption by changing tiles a bit

Getting rid of the starting tile

Polynomial time

We don't want to just solve a problem, we want to solve it quickly

Undecidable problems: We cannot find solutions in any finite amount of time

Decidable problems: We can solve them, but it may take a very long time

The running time depends on the input

For longer inputs, we should allow more time

Efficiency is measured as a function of input size

Running time

The running time of a Turing machine M is the function $t_M(n)$:

$t_M(n) =$ maximum number of steps that M takes on any input of length n

Example:
$$L = \{w \# w \mid w \in \{a, b\}^*\}$$

<i>M</i> : On input <i>x</i> , until you reach #	O(n) times
Read and cross of first a or b before #)
Read and cross off first a or b after #	O(n) steps
If mismatch, reject	J
If all symbols except # are crossed off, accept	O(n) steps
running time:	$O(n^2)$

$$L = \{\mathbf{0}^n \mathbf{1}^n \mid n \ge 0\}$$

M: On input x,	
Check that the input is of the form 0^*1^*	O(n) steps
Until everything is crossed off:	O(n) times
Cross off the leftmost 0	
Cross off the following 1	O(n) steps
If everything is crossed off, accept	O(n) steps
running time:	$O(n^2)$

$$L = \{\mathbf{0}^n \mathbf{1}^n \mid n \ge 0\}$$

M: On input x,	
Check that the input is of the form 0^*1^*	O(n) steps
Until everything is crossed off:	$O(\log n)$ times
Find parity of number of 0 s)
Find parity of number of 1 s	O() at a part of the second
If the parities don't match, reject	O(n) steps
Cross off every other 0 and every other 1	J
If everything is crossed off, accept	O(n) steps
running time:	$O(n \log n)$

What if we have a two-tape Turing machine?

 $L = \{\mathbf{0}^n \mathbf{1}^n \mid n \ge 0\}$

<i>M</i> : On input <i>x</i> ,	
Check that the input is of the form 0^*1^*	O(n) steps
Copy 0^* part of input to second tape	O(n) steps
Until 🗆 is reached:)
Cross off next 1 from first tape	O(n) steps
Cross off next 0 from second tape	J
If both tapes reach \Box simultaneously, accept	O(n) steps
running time:	O(n)

Running time vs model

How about a Java program?

$$L = \{ \mathbf{0}^n \mathbf{1}^n \mid n \ge 0 \}$$

```
M(int[] x) {
    n = x.len;
    if (n % 2 != 0) reject();
    for (i = 0; i < n/2; i++) {
        if (x[i] != 0) reject();
        if (x[n-i+1] != 1) reject();
        }
        accept();
}</pre>
```

running time: O(n)

Running time can change depending on the model

1-tape TM	2-tape TM	Java
$O(n \log n)$	O(n)	O(n)

What does it mean when we say

This algorithm runs in time T

One "time unit" in

Java if (x > 0) y = 5*y + x; Random access machine write r3

Turing machine $\delta(q_3, \mathbf{a}) = (q_7, \mathbf{b}, R)$

all mean different things!

Church-Turing thesis says all these have the same computing power...

...without considering running time

An extension to Church–Turing thesis, stating

For any realistic models of computation M_1 and M_2 M_1 can be simulated on M_2 with at most polynomial slowdown

So any task that takes time t(n) on M_1 can be done in time (say) $O(t^3)$ on M_2

slow

The running time of a program depends on the model of computation 1-tape TM 2-tape TM RAM Java

But if you ignore polynomial overhead, the difference is irrelevant

Every reasonable model of computation can be simulated efficiently on any other

fast

Example of efficient simulation

Recall simulating two tapes on a single tape

$$\Gamma = \{\mathsf{a},\mathsf{b},\Box\}$$

 $\Gamma = \{a, b, \Box, \dot{a}, \dot{b}, \dot{\Box}, \#\}$

Each move of the multitape TM might require traversing the whole single tape

 $\begin{array}{rcl} 1 \text{ step of 2-tape TM} & \Rightarrow & O(s) \text{ steps of single tape TM} \\ & s = \text{right most cell ever visited} \\ after t \text{ steps} & \Rightarrow & s \leqslant 2t + O(1) \\ t \text{ steps of 2-tape} & \Rightarrow & O(ts) = O(t^2) \text{ single tape steps} \end{array}$

Simulation slowdown

Cobham-Edmonds thesis:

 M_1 can be simulated on M_2 with at most polynomial slowdown

P is the class of languages that can be decided on a TM with polynomial running time

By Cobham–Edmonds thesis, they can also be decided by any realistic model of computation e.g. Java, RAM, multitape TM P is the class of languages that are decidable in polynomial time (in the input length)

 $L_{01} = \{ \mathbf{0}^{n} \mathbf{1} \mid n \ge 0 \}$ $L_{G} = \{ w \mid \mathsf{CFG} \ G \text{ generates } w \}$ $\mathsf{PATH} = \{ \langle G, s, t \rangle \mid \mathsf{Graph} \ G \text{ has}$ $a \text{ path from node } s \text{ to node } t \}$

Context-free languages in polynomial time

Let L be a context-free language, and ${\it G}$ be a CFG for L in Chomsky Normal Form

On input x of length n, running time is $O(n^3)$

 $PATH = \{ \langle G, s, t \rangle \mid Graph G has \}$ a path from node s to node t} G has n vertices, m edges $M = \text{On input} \langle G, s, t \rangle$ where G is a graph with nodes s and tPlace a mark on node s Repeat until no additional nodes are marked: O(n)O(m)Scan the edges of GIf some edge has both marked and unmarked endpoints Mark the unmarked endpoint If t is marked, accept

O(mn)

running time:

A Hamiltonian path in G is a path that visits every node exactly once

 $\mathsf{HAMPATH} = \{ \langle G, s, t \rangle \mid \mathsf{Graph} \ G \text{ has a}$ Hamiltonian path from node s to node t }

We don't know if HAMPATH is in P, and we believe it is not