
Efficient Turing Machines
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/29

Undecidability of PCP
(optional)

Undecidability of PCP

PCP = {〈T〉 | T is a collection of tiles
contains a top-bottom match}

The language PCP is undecidable

We will show that

If PCP can be decided, so can ATM

We will only discuss the main idea, omitting details

2/29

Undecidability of PCP

〈M ,w〉 7−→ T (collection of tiles)
M accepts w ⇐⇒ T contains a match

Idea: Matches represent accepting history

#q0ab%ab#xq1b%ab#…#xx%xqax#

#q0ab%ab#xq1b%ab#…#xx%xqax#

ε

#q0ab%ab
#q0a
#xq1

b
b

a
a

%
%

a
a

b
b

#
#

xq1%
x%q2

…

3/29

Undecidability of PCP

〈M 〉 7−→ T (collection of tiles)
M accepts w ⇐⇒ T contains a match

We will assume that the following tile
is forced to be the starting tile:

ε

#q0ab%ab

S

On input 〈M ,w〉, we construct these tiles for PCP

ε

#q0w
x1qix2

x3x4x5

#qix1

�#x2x3

#
�#

x
x

xqa
qa

qax
qa

qa##
#

S

︸ ︷︷ ︸
for each valid window

with state qi in top middle

for all x in Γ ∪ {#}︷ ︸︸ ︷

4/29

Undecidability of PCP

tile type purpose

ε

#q0w

S represents initial configuration

x1qix2

x3x4x5

x
x

represents valid transitions between
configurations

#qix1

�#x2x3

#
�#

adds blank spaces before # if neces-
sary

xqa
qa

qax
qa

qa##
#

matching completes if computation
accepts

5/29

Undecidability of PCP

Once the accepting state symbol occurs, the last two tiles can “eat
up” the rest of the symbols

#xx%xqax#xx%xqa#…#qa##

#xx%xqax#xx%xqa#…#qa##

x
x

xqa
qa

qax
qa

qa##
#

6/29

Undecidability of PCP

If M rejects on input w, then qrej appears on the bottom at some
point, but it cannot be matched on top

If M loops on w, then matching goes on forever

7/29

Getting rid of the starting tile

We assumed that one tile is marked as the starting tile

a
aba

ba
bb

b
c

cca
a

S

We can simulate this assumption by changing tiles a bit

a
*a*b*a

b*a*
*b*b

b*
*c

c*c*a*
*a

�

*�

“starting tile”
begins with *

“middle tiles” “ending tiles”

8/29

Getting rid of the starting tile

a
aba

ba
bb

b
c

b
c

cca
a

S

a
*a*b*a

b*a*
*b*b

b*
*c

b*
*c

c*c*a*
*a

�

*�

only possible
starting tile

only possible
ending tile

9/29

Polynomial time

Running time

We don’t want to just solve a problem, we want to solve it quickly

10/29

Efficiency

decidable
•ATM•PCP Undecidable problems:

We cannot find solutions in
any finite amount of time

Decidable problems:
We can solve them, but it may
take a very long time

11/29

Efficiency

efficient

decidable
•ATM•PCP The running time depends on

the input

For longer inputs, we should
allow more time

Efficiency is measured as a
function of input size

12/29

Running time

The running time of a Turing machine M is the function tM(n):

tM(n) = maximum number of steps that M takes
on any input of length n

Example: L = {w#w | w ∈ {a,b}∗}

M : On input x , until you reach # O(n) times
Read and cross of first a or b before # O(n) stepsRead and cross off first a or b after #
If mismatch, reject

If all symbols except # are crossed off, accept O(n) steps
running time: O(n2)

13/29

Another example

L = {0n1n | n > 0}

M : On input x ,
Check that the input is of the form 0∗1∗ O(n) steps
Until everything is crossed off: O(n) times

Cross off the leftmost 0
}

O(n) stepsCross off the following 1
If everything is crossed off, accept O(n) steps

running time: O(n2)

14/29

A faster way

L = {0n1n | n > 0}

M : On input x ,
Check that the input is of the form 0∗1∗ O(n) steps
Until everything is crossed off: O(log n) times

Find parity of number of 0s O(n) steps
Find parity of number of 1s
If the parities don’t match, reject
Cross off every other 0 and every other 1

If everything is crossed off, accept O(n) steps
running time: O(n log n)

15/29

Running time vs model

What if we have a two-tape Turing machine?

L = {0n1n | n > 0}

M : On input x ,
Check that the input is of the form 0∗1∗ O(n) steps
Copy 0∗ part of input to second tape O(n) steps
Until � is reached: O(n) stepsCross off next 1 from first tape

Cross off next 0 from second tape
If both tapes reach � simultaneously, accept O(n) steps

running time: O(n)

16/29

Running time vs model

How about a Java program? L = {0n1n | n > 0}

M(int[] x) {
n = x.len;
if (n % 2 != 0) reject();
for (i = 0; i < n/2; i++) {
if (x[i] != 0) reject();
if (x[n-i+1] != 1) reject();

}
accept();

}

running time: O(n)

Running time can change depending on the model

1-tape TM 2-tape TM Java
O(n log n) O(n) O(n)

17/29

Measuring running time

What does it mean when we say

This algorithm runs in time T

One “time unit” in

Java

if (x > 0)
y = 5*y +

x;

Random access
machine

write r3

Turing machine

δ(q3,a) = (q7,b,R)

all mean different things!

18/29

Efficiency and the Church–Turing thesis

Church–Turing thesis says all these have the same computing power…

Turing machine

Java

RAM Multitape TM

…without considering running time

19/29

Cobham–Edmonds thesis

An extension to Church–Turing thesis, stating

For any realistic models of computation M1 and M2

M1 can be simulated on M2 with at most polynomial slowdown

So any task that takes time t(n) on M1 can be done in time (say)
O(t3) on M2

20/29

Efficient simulation

The running time of a program depends on the model of
computation

1-tape TM 2-tape TM RAM Java

slow fast

But if you ignore polynomial overhead, the difference is irrelevant

Every reasonable model of computation can be simulated efficiently
on any other

21/29

Example of efficient simulation

Recall simulating two tapes on a single tape

M
b a � � …

a b b � …
Γ = {a,b,�}

S # b ȧ # a b b �̇ # � …

Γ = {a,b,�, ȧ, ḃ, �̇,#}

22/29

Running time of simulation

Each move of the multitape TM might require traversing the whole
single tape

1 step of 2-tape TM ⇒ O(s) steps of single tape TM
s = right most cell ever visited

after t steps ⇒ s 6 2t + O(1)
t steps of 2-tape ⇒ O(ts) = O(t2) single tape steps

multi-tape TM single tape TM

quadratic
slowdown

23/29

Simulation slowdown

Java

Random access
machine

2-tape TM

1-tape TM

O(t)

O(t)

O(t2)

O(t)

O(t2)

O(t)

Cobham–Edmonds thesis:

M1 can be simulated on M2 with at most polynomial slowdown

24/29

The class P

regular

context-free
efficient
decidable P is the class of languages that

can be decided on a TM with
polynomial running time

By Cobham–Edmonds thesis, they
can also be decided by any
realistic model of computation
e.g. Java, RAM, multitape TM

25/29

Examples of languages in P

P is the class of languages that are decidable in polynomial time (in
the input length)

L01 = {0n1 | n > 0}
LG = {w | CFG G generates w}

PATH = {〈G, s, t〉 | Graph G has
a path from node s to node t}

context-free

P (efficient)
decidable

•L01
•LG

•PATH

26/29

Context-free languages in polynomial time

Let L be a context-free language, and G be a CFG for L in Chomsky
Normal Form

CYK algorithm:

If there is a production A → xi

Put A in table cell T [i, 1]
For cells T [i, `]

If there is a production A → BC
where B is in cell T [i, j]
and C is in cell

T [i + j, `− j]
Put A in cell T [i, `] b a a b a

i

`

1 2 3 4 5
1
2

3
4

5

B A|C A|C B A|C

S |A B S |C S |A

On input x of length n, running time is O(n3)

27/29

PATH in polynomial time

PATH = {〈G, s, t〉 | Graph G has
a path from node s to node t}

G has n vertices, m edges

M = On input 〈G, s, t〉
where G is a graph with nodes s and t
Place a mark on node s
Repeat until no additional nodes are marked: O(n)
Scan the edges of G O(m)

If some edge has both marked and unmarked endpoints
Mark the unmarked endpoint

If t is marked, accept
running time: O(mn)

28/29

Hamiltonian paths

A Hamiltonian path in G is a path that visits every node exactly once

HAMPATH = {〈G, s, t〉 | Graph G has a
Hamiltonian path from node s to node t}

s t

We don’t know if HAMPATH is in P, and we believe it is not

29/29

	Undecidability of PCP (optional)
	Polynomial time

