Efficient Turing Machines
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/29

Undecidability of PCP
(optional)

Undecidability of PCP

PCP = {(T) | T is a collection of tiles
contains a top-bottom match}

The language PCP is undecidable

We will show that

If PCP can be decided, so can A

We will only discuss the main idea, omitting details

2/29

Undecidability of PCP

(M, w) —— T (collection of tiles)
M accepts w <= T contains a match

Idea: Matches represent accepting history

#goab%ab#x g b%ab#.. HXX%X gy X #
#goab%ab#x g b%ab#.. HXX%X gy X #

IS #(Z()a % qu%
#qoab%ab || #xq1 % X% qo

3/29

Undecidability of PCP

(M) — T (collection of tiles)
M accepts w <= T contains a match

We will assume that the following tile €
is forced to be the starting tile: #qgoab%ab

On input (M, w), we construct these tiles for PCP
forall z in T U {#}
—_——~
S
e ||mam || #gm || # ||z||2¢a|| qam || GaWtH
Hoow || wzxgxs || O zoxs || TH || 2 || ¢a a #

N——
for each valid window
with state ¢; in top middle

429

Undecidability of PCP

tile type purpose

- represents initial configuration
iighjlu
g || 7 represents valid transitions between
w3141s || 2 configurations

Hom || # adds blank spaces before # if neces-
D#:L’gl’g O# Sary

matching completes if computation
accepts

ZGa || Ga || qaHtH
qa da #

5/29

Undecidability of PCP

Once the accepting state symbol occurs, the last two tiles can “eat
up” the rest of the symbols

HXXBX ga XHXXBX g H.. . H g
HXXBX ga XEXXBX g H.. . H g #HH#

T|| Tqa || a7 || qaltH
Tl qa qa #

6/29

Undecidability of PCP

If M rejects on input w, then ¢,; appears on the bottom at some
point, but it cannot be matched on top

If M loops on w, then matching goes on forever

7129

Getting rid of the starting tile

We assumed that one tile is marked as the starting tile

a ba b cca
aba bb C a

We can simulate this assumption by changing tiles a bit

a b*a* b* c*c*a* O
*a*b*a *b*b *C *a *D
“starting tile” “middle tiles” “ending tiles”
begins with *

8/29

Getting rid of the starting tile

a ||bal|b||b]|lcca
abal|lbb||c|lc]|l a
a b*a* || b* || b* || c*c*a* || O

*a*b*a || *b*b || *c || *c *a *0

only possible only possible
starting tile ending tile

9/29

Polynomial time

Google cunk n

Web Maps Apps Images News More ¥ Search tools

About 3,700,000 results (0.63 seconds)

We don’t want to just solve a problem, we want to solve it quickly

10/29

oPCP oAy Undecidable problems:
decidable We cannot find solutions in
any finite amount of time

Decidable problems:

We can solve them, but it may
take a very long time

11/29

oPCP oAy The running time depends on
decidable the input

For longer inputs, we should
allow more time

Efficiency is measured as a
function of input size

12/29

The running time of a Turing machine M is the function ty;(n):

typ(n) = maximum number of steps that M takes

on any input of length n

Example: L={whw|we{ab}*}

M: On input z, until you reach # O(n) times
Read and cross of first a or b before #
Read and cross off first a or b after # } O(n) steps
If mismatch, reject

If all symbols except # are crossed off, accept O(n) steps
running time: O(n?)

13/29

Another example

L={0"1"|n> 0}

M: On input z,
Check that the input is of the form 0*1* O(n) steps
Until everything is crossed off: O(n) times

Cross off the leftmost 0

Cross off the following 1

If everything is crossed off, accept O(n) steps
running time: O(n?)

14/29

A faster way

L={0"1"|n>0}

M: On input z,
Check that the input is of the form 0*1* O(n) steps
Until everything is crossed off: O(log n) times

Find parity of number of 0s
Find parity of number of 1s
If the parities don’t match, reject
Cross off every other 0 and every other 1
If everything is crossed off, accept O(n) steps
running time: O(nlogn)

O(n) steps

15/29

Running time vs model

What if we have a two-tape Turing machine?

L={0"1"|n>0}

M: On input z,
Check that the input is of the form 8*1* O(n) steps
Copy 0" part of input to second tape O(n) steps
Until O is reached:
Cross off next 1 from first tape } O(n) steps
Cross off next 0 from second tape

If both tapes reach O simultaneously, accept O(n) steps
running time: O(n)

16/29

Running time vs model

How about a Java program? L={0"1"|n >0}

M(int[] x) {
n = x.len;
if (n %2 '= 0) reject();
for (1 = 0; 1 < n/2; i++) {

if (x[i] '= 0) reject(); running time: O(n)
if (x[n-i+1] '= 1) reject();

}

accept();

Running time can change depending on the model

1-tape T™™M 2-tape TM Java
O(nlogn) O(n) O(n)

17/29

Measuring running time

What does it mean when we say

This algorithm runs in time T

One “time unit” in

Java Random access Turing machine

. machine

l'F (X > 0) ! (5((]3,a) - (Q'?ab?R)
y = 5xy + write r3

X;

all mean different things!

18/29

Efficiency and the Church-Turing thesis

Church-Turing thesis says all these have the same computing power...

Java [
Turing machine
Vad |\
RAM Multitape T™

..without considering running time

19/29

Cobham-Edmonds thesis

An extension to Church-Turing thesis, stating

For any realistic models of computation M; and My

M, can be simulated on M, with at most polynomial slowdown

So any task that takes time t(n) on M; can be done in time (say)
O(t%) on My

20/29

Efficient simulation

The running time of a program depends on the model of
computation

1-tape TM 2-tape TM RAM Java
slow — fast

But if you ignore polynomial overhead, the difference is irrelevant

Every reasonable model of computation can be simulated efficiently
on any other

21/29

Example of efficient simulation

Recall simulating two tapes on a single tape

M ol LI I ={a,b,0}
BRREE -

s |[PBLERREFE -

I ={a,b,0,a,b,01, #}

22/29

Running time of simulation

Each move of the multitape TM might require traversing the whole
single tape

1step of 2-tape TM = O(s) steps of single tape TM

s = right most cell ever visited
s<2t+ 0(1)

O(ts) = O(t?) single tape steps

after ¢ steps

=
t steps of 2-tape =

quadratic

- slowdow ,
multi-tape TM single tape TM

23/29

Simulation slowdown

Random access
machine

Cobham-Edmonds thesis:

M can be simulated on M, with at most polynomial slowdown

24/29

The class P

decidable
efficient
ontext-free

P is the class of languages that
can be decided on a TM with
polynomial running time

By Cobham-Edmonds thesis, they
can also be decided by any
realistic model of computation
e.g. Java, RAM, multitape TM

25/29

Examples of languages in P

P is the class of languages that are decidable in polynomial time (in
the input length)

decidable
(efficient

Lo1 ={0"1 | n >0}
Le = {w | CFG G generates w}
PATH = {(G, s, t) | Graph G has
a path from node s to node ¢}

26/29

Context-free languages in polynomial time

Let L be a context-free language, and G be a CFG for L in Chomsky

Normal Form
CYK algorithm: V4
If there is a production A4 — z; 2
Put A in table cell T, 1] 4
For cells T,] 3
If there is a production A — BC 2 |s14| B |sic]s)4
where Bis in cell T[i, 7]
o 1 | B |A|C|AlC| B |AlC
and Cis in cell

T[i + 7,0 — j] 1 2 3 4 5)
Put A in cell 17,/ b a a b a

On input z of length n, running time is O(n?)

27129

PATH in polynomial time

PATH = {(G, s, t) | Graph G has

a path from node s to node ¢}

G has n vertices, m edges

M = Oninput (G, s, t)

where G is a graph with nodes s and ¢

Place a mark on node s

Repeat until no additional nodes are marked: O(n)
Scan the edges of G O(m)
If some edge has both marked and unmarked endpoints

Mark the unmarked endpoint
If t is marked, accept

running time: O(mn)

28/29

Hamiltonian paths

A Hamiltonian path in G is a path that visits every node exactly once

HAMPATH = {(G, s, t) | Graph G has a
Hamiltonian path from node s to node ¢}

We don’t know if HAMPATH is in P, and we believe it is not

29/29

	Undecidability of PCP (optional)
	Polynomial time

