LR(0) Parsers
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/31

Parsing computer programs

if (n == 0) { return x; }

First phase of javac compiler: lexical analysis

if

ID

INT_LIT

The alphabet of Java CFG consists of tokens like

return

ID

Bin

¥ = {if,return,(,),{,},;,==,ID,INT_LIT,...}

2/31

Parsing computer programs

Statement
if /ParExp‘ression\Statement
(— Expréssion T) e Block
Expression/ E;)ressionRest { ﬂkSta‘tem% }
Prin‘wary |I’1ﬁXOE) ExE)ression BlockSt‘atement
Iden‘tiﬁer =‘= PrirT‘1ary State‘ment
\ s —
ID Literal return Expression 8
INTLLIT Prirr‘wary
Idenhﬁer

if (n == 0) { return x; } \
ID

Parse tree of a Java statement
3/31

CFG of the java programming language

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or

NullLiteral

Literal:
IntegerlLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringlLiteral
NullLiteral

Expression:
LambdaExpression
AssignmentExpression

AssignmentOperator:
(one of) = *= /= %= += -= <<= >>= >>>= §= "= |

from http://java.sun.com/docs/books/jls/second_edition/
html/syntax.doc.html#52996 4/31

http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996

Parsing Java programs

class Point2d {
/* The X and Y coordinates of the point--instance variables =/
private double x;
private double y;
private boolean debug; // A trick to help with debugging

public Point2d (double px, double py) { // Constructor

X = px;
y = py;
debug = false; // turn off debugging

}

public Point2d () { // Default constructor
this (0.0, 0.0); // Invokes 2 parameter Point2D constructor
}
// Note that a this() invocation must be the BEGINNING of
// statement body of constructor

public Point2d (Point2d pt) { // Another consructor
x = pt.getX();
y = pt.getY();

}

Simple Java program: about 1000 tokens

5/31

Parsing algorithms

How long would it take to parse this program?

try all parse trees > 108 years
CYK algorithm hours

Can we parse faster?
CYK is the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing
algorithm!

6/31

Hierarchy of context-free grammars

(7
context-free grammars

LR(co) grammars

LR(1) grammars

[LR(0) grammars]

&)

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm
A grammar is LR(0) if LR(0) parser works correctly for it

7131

LR(0) parser: overview

S— SA|A input: ()()
A= (90O
1e()() 2 (o)() 3 ()e()
4 Ae() 5 Se() 6 S(e)
/\ | |
¢) A A
¢) «)
7 S()e 8 S Ae 9 Ge
| VAR /N
A /A\() | /A\
¢) ¢) A C)

() 8/31

LR(0) parser: overview

S—SA|A input: ()()
A= (8)]0O)

Features of LR(0) parser:

- Greedily reduce the recently completed rule into a variable

- Unique choice of reduction at any time

3()e() = &4 /A\.() = 5 L‘q.()
¢) A

9/31

LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA
P

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule B — f has just been completed

and the PDA will reduce g to B

S EH)) =BOe() S B Ae() 2B Se() =..
/\ \
() ;4\
C)

v/ NFA N accepts

10/31

NFA acceptance condition

S—SA|A
A= (S0

Arule B — 3 has just been completed if

Case 1 input/buffer so far is exactly 8
Examples: 3 ()e() and 4 Ae()
/\
¢)

Case 2 Or buffer so far is @ and there is another rule ¢ — aBy
Example: 7 S()e
!

A

/\

¢)

This case can be chained

1/31

Designing NFA for Case 1

S—SA|A
A (8]0

Design an NFA N’ to accept the right hand side of some rule B — 8

12/31

Designing NFA for Case 1

S—SA|A
A (8]0

Design an NFA N’ to accept the right hand side of some rule B — 8

= .SA)—S»[S S Se A5 54s)

A— .(s)]L[A S (o8)) 34— (50)]—){[A = (5)e)
?—n())—({A—M.)j—){[A—M).}]

12/31

Designing NFA for Cases 1 & 2

Design an NFA N to accept a3 for some
S—S8A|A rules C — aBy, B—f
A—(8)| () and for longer chains

13/31

Designing NFA for Cases 1 & 2

Design an NFA N to accept a3 for some
S—S8A|A rules C — aBy, B—f
A—(8)| () and for longer chains

For every rule ¢ — aBv, B — (3, add [O — e ij—E{B — oﬁ]

(s %loSA]—S{S — Se A]i—[[s — SAe)

4 .
[S — oA S — Ae) All blue — are e-transitions

/1
(4 {—>o(S (A=)4 (5o)]l[[fm(s).j]
"N\ /S

[A—)o()j—'{/l—)()H[A—M)

13/31

Summary of the NFA

For every rule B — 3, add
—(w)—
For every rule B — a X (X may be terminal or variable), add

CEYCORSCEY)

Every completed rule B — /3 is accepting

For every rule C — aB~, B — (3, add

[C% aoB’y]—€>[B—> oﬂ]

The NFA N will accept whenever a rule has just been completed 14/31

Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

S — eSA S 3 SeA A @
S —eA A e(S)
A= o(8) A= () A
(
A—(e8) 5
A—=(e)

S — eSA
(C S —eA N
A/) A— e(S) ()
A e() (4= (5)e]

~——

Observation: every accepting state contains only one rule:

a completed rule B — Be, and such rules appear only in accepting
states

15/31

LR(0) grammars

A grammar G is LR(0) if its corresponding D¢ satisfies:

Every accepting state contains only one rule:
a completed rule of the form B — Se
and completed rules appear only in accepting states

Shift state: Reduce state:

no completed rule has (unique) completed
rule

16/31

Simulating DFA D

Our parser P simulates state transitions in DFA D

(()e) = (/A\-)
¢)

After reducing () to 4, what is the new state?

Solution: keep track of previous states in a stack

go back to the correct state by looking at the stack

17/31

Let’s label D’s states

q2
S—SeA

5 A—e(S)
A—e()

((
0B
A A—(e8)

(=2 T
(C S — oA

) A— e(8)

@
(4~ O A5 e0)

~

18/31

LR(0) parser: a “PDA” P simulating DFA D

P's stack contains labels of D’s states to remember progress of
partially completed rules

At D's non-accepting state g;

1. P simulates D's transition upon reading terminal or variable X
. P pushes current state label ¢; onto its stack

No

At D's accepting state with completed rule B — X; ... X,

1. P pops k labels ¢, ..., ¢ from its stack

B
2. constructs part of the parse tree AN
X Xo o0 X

3. P goes to state ¢; (last label popped earlier), pretend next input
symbol is B

19/31

state stack

1 «()() & $
2 (o)) $1 state stack
3 (Oe() s $15 5 Se() $1
40 @ § A

() (/ \)
4 /A\.() o $1 6 S(e) ¢ $12
))

ok‘S‘() ¢ $)

A

¢)

20/31

state stack
7 S()e a8 $125
\
A
¢)
S e A a2 $1
\ /\
;4\ ()
¢)
8 S Ae qs $12
\ /\
;4\ ()
C)

state stack

S Q1 $
/ \
A
| /A
/A\ ¢
¢)
i Se 7P $1
/ \
A
| I
/A\ ¢
C)

parser's output is the parse
tree

21/31

Another LR(0) grammar

L= {whw? | we {a,b}*} C—aCal|bChb|#

NFA N:
a

[C - oaCa] [C —ae Ca}[C —~aCe aH[C — aCae)

fCT.@{C%#.

C—ebCb) (C—be Cb}[c —bCe bH[C — bChbe)
b

22/31

Another LR(0) grammar

C—aCa|bCb|#

1 input: ba#tab
C —eala
—> C — ebCb stack state action
C — ot $ 1 S
$1 4 S
A

(c>aecal, [C—becCb il 2 >
/E_ $143 2 R
aC C — ealCa C —ealCa b $143 5 S
C — eb(Chb C — ebChb $1435 7 R
O — off A1 0= et $14 6 S

. J
[c $146 8 R

C
[c—%c.a? [C%bCob?
a b
(c— aCanP [C alebojs) 23/31

Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as

L= {wwf| we {a,b}*}

What goes wrong when we do LR(0) parsing on L?

24/31

Example 2

L= {wwf|we{a,b}*} C—aCa|bCb|e

NFA N:
a

(c— oaC@ —ae Ca]é[C —~aCe a]i[[() — aCae)

< &)
C — ebCh [CaboCb)é[C%bCob}g[[Cabeo]]
b

25/31

Example 2

S EEEEEEEEE N

C — ealCa
—{ C — eb(Chb

C—e

. Jb

C —ae(a C —-be(Cb

C—aCa|bCb|e

C C —eala C — ealCa
a
C — ebCb C — ebCb
C—se C—s e shift-reduce conflicts
\C ic

[C’—>a0.aj [C’—>a0.a]
|2 Ib
(c—acas) (C — bChe)

26/31

Parser generator

(7

C — eaCa
C — ebCb
C — oft

C —aCa
parser . y
C N bcb C —becChb
generator . C — eaCa .
C—># : C — ebCb
| C — oft
CFG @ M

error

if G is not LR(0)

b

“PDA” for parsing G

Motivation: Fast parsing for programming languages
27/31

LR(1) Grammar: A few words

28/31

LR(0) grammar revisited

LR(1) grammars

E LR(0) grammars]

LR(0) parser: Left-to-right read, Rightmost derivation, 0 lookahead

symbol
Derivation
S = SA S A
S 54| A = S5A=50)=A40)=(0()
A= (810 Reduction (derivation in reverse)

OO —A() - 8() — 54— S

LR(0) parser looks for rightmost derivation

Rightmost derivation = Leftmost reduction

29/31

Parsing computer programs

if (n == 0) { return x; }

Statement

o

if ParExpression Statement

(//////é \ \\\\\\)

xpression

30/31

Parsing computer programs

if (n == 0) { return x; }
else { return x + 1; }

Statement

F)// \

if arExpression Statement else Statement

(//////é \ \\\\\\)

xpression

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

if ..then from if ..then ..else

30/31

LR(1) grammar

LR(1) grammars resolve such conflicts by one symbol lookahead

States in NFA N
LR(0): LR(1):
A= aef | [A— aef d

States in DFA D
LR(0): LR(1):
no shift-reduce conflicts some shift-reduce conflicts allowed
no reduce-reduce conflicts | some reduce-reduce conflicts allowed
as long as can be resolved with
lookahead symbol a

We won't cover LR(1) parser in this class; take CSCI 3180 for details

31/31

