
LR(0) Parsers
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2018

Chinese University of Hong Kong

1/31

Parsing computer programs

if (n == 0) { return x; }

First phase of javac compiler: lexical analysis

if (ID == INT_LIT) { return ID ; }

The alphabet of Java CFG consists of tokens like

Σ = {if,return,(,),{,},;,==,ID,INT_LIT, . . . }

2/31

Parsing computer programs

Statement

if ParExpression

(Expression

Expression

Primary

Identifier

ID

ExpressionRest

Infixop

==

Expression

Primary

Literal

INT_LIT

)

Statement

Block

{ BlockStatements

BlockStatement

Statement

return Expression

Primary

Identifier

ID

;

}

if (n == 0) { return x; }

Parse tree of a Java statement
3/31

CFG of the java programming language

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or

NullLiteral
Literal:

IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

Expression:
LambdaExpression
AssignmentExpression

AssignmentOperator:
(one of) = *= /= %= += -= <<= >>= >>>= &= ^= |=

from http://java.sun.com/docs/books/jls/second_edition/
html/syntax.doc.html#52996 4/31

http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996
http://java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#52996

Parsing Java programs

class Point2d {
/* The X and Y coordinates of the point--instance variables */
private double x;
private double y;
private boolean debug; // A trick to help with debugging

public Point2d (double px, double py) { // Constructor
x = px;
y = py;

debug = false; // turn off debugging
}

public Point2d () { // Default constructor
this (0.0, 0.0); // Invokes 2 parameter Point2D constructor

}
// Note that a this() invocation must be the BEGINNING of
// statement body of constructor

public Point2d (Point2d pt) { // Another consructor
x = pt.getX();
y = pt.getY();

}
...

}

Simple Java program: about 1000 tokens

5/31

Parsing algorithms

How long would it take to parse this program?

try all parse trees > 1080 years
CYK algorithm hours

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing
algorithm!

6/31

Hierarchy of context-free grammars

LR(0) grammars

LR(1) grammars

LR(∞) grammars

context-free grammars

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm

A grammar is LR(0) if LR(0) parser works correctly for it

7/31

LR(0) parser: overview

S → SA | A
A → (S) | ()

input: ()()

1 •()() 2 (•)() 3 ()•()

4 A

()

•() 5 S

A

()

•() 6 S

A

()

(•)

7 S

A

()

()• 8 S

A

()

A

()

• 9 S

S

A

()

A

()

•

8/31

LR(0) parser: overview

S → SA | A
A → (S) | ()

input: ()()

Features of LR(0) parser:

• Greedily reduce the recently completed rule into a variable
• Unique choice of reduction at any time

3 ()•() ⇒ 4 A

()

•() ⇒ 5 S

A

()

•()

9/31

LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA
P

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule B → β has just been completed

and the PDA will reduce β to B

…⇒ 2 (•)() ⇒ 3 ()•()
3⇒ 4 A

()

•()
3⇒ 5 S

A

()

•() ⇒ …

3: NFA N accepts

10/31

NFA acceptance condition

S → SA | A
A → (S) | ()

A rule B → β has just been completed if

Case 1 input/buffer so far is exactly β
Examples: 3 ()•() and 4 A

()

•()

Case 2 Or buffer so far is αβ and there is another rule C → αBγ

Example: 7 S

A

()

()•

This case can be chained

11/31

Designing NFA for Case 1

S → SA | A
A → (S) | ()

Design an NFA N ′ to accept the right hand side of some rule B → β

q0

S → •SA S → S • A S → SA•

S → •A S → A•

A → •(S) A → (• S) A → (S •) A → (S)•

A → •() A → (•) A → ()•

ε

ε

ε

ε

S A

A

(S)

()

12/31

Designing NFA for Case 1

S → SA | A
A → (S) | ()

Design an NFA N ′ to accept the right hand side of some rule B → β

q0

S → •SA S → S • A S → SA•

S → •A S → A•

A → •(S) A → (• S) A → (S •) A → (S)•

A → •() A → (•) A → ()•

ε

ε

ε

ε

S A

A

(S)

()

12/31

Designing NFA for Cases 1 & 2

S → SA | A
A → (S) | ()

Design an NFA N to accept αβ for some
rules C → αBγ, B → β

and for longer chains

For every rule C → αBγ, B → β, add C → α • Bγ B → •βε

q0

S → •SA S → S • A S → SA•

S → •A S → A•

A → •(S) A → (• S) A → (S •) A → (S)•

A → •() A → (•) A → ()•

ε

ε

ε

ε

S A

A

(S)

()

All blue −→ are ε-transitions

13/31

Designing NFA for Cases 1 & 2

S → SA | A
A → (S) | ()

Design an NFA N to accept αβ for some
rules C → αBγ, B → β

and for longer chains

For every rule C → αBγ, B → β, add C → α • Bγ B → •βε

q0

S → •SA S → S • A S → SA•

S → •A S → A•

A → •(S) A → (• S) A → (S •) A → (S)•

A → •() A → (•) A → ()•

ε

ε

ε

ε

S A

A

(S)

()

All blue −→ are ε-transitions

13/31

Summary of the NFA

For every rule B → β, add

q0 B → •βε

For every rule B → αXβ (X may be terminal or variable), add

B → α • Xβ B → αX • βX

Every completed rule B → β is accepting

B → β•

For every rule C → αBγ, B → β, add

C → α • Bγ B → •βε

The NFA N will accept whenever a rule has just been completed 14/31

Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity

S → •SA

S → •A

A → •(S)

A → •()

S → S • A

A → •(S)

A → •()

S → SA•

S → A•

A → (• S)

A → (•)

S → •SA

S → •A

A → •(S)

A → •() A → (S)•

A → (S •)

S → S • A

A → •(S)

A → •()

A → ()•

S
A

A
(S

)
)

A

(

(

A

(

Observation: every accepting state contains only one rule:

a completed rule B → β•, and such rules appear only in accepting
states

15/31

LR(0) grammars

A grammar G is LR(0) if its corresponding DG satisfies:

Every accepting state contains only one rule:
a completed rule of the form B → β•

and completed rules appear only in accepting states

Shift state:

no completed rule

S → S • A

A → •(S)

A → •()

Reduce state:

has (unique) completed
rule

A → (S)•

16/31

Simulating DFA D

Our parser P simulates state transitions in DFA D

(()•) ⇒ (A

()

•)

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack

go back to the correct state by looking at the stack

17/31

Let’s label D’s states

S → •SA

S → •A

A → •(S)

A → •()

S → S • A

A → •(S)

A → •()

S → SA•

S → A•

A → (• S)

A → (•)

S → •SA

S → •A

A → •(S)

A → •() A → (S)•

A → (S •)

S → S • A

A → •(S)

A → •()

A → ()•

S
A

A
(S

)
)

A

(

(

A

(

q1 q2 q3

q4

q5

q6

q7q8

18/31

LR(0) parser: a “PDA” P simulating DFA D

P ’s stack contains labels of D’s states to remember progress of
partially completed rules

At D’s non-accepting state qi

1. P simulates D’s transition upon reading terminal or variable X
2. P pushes current state label qi onto its stack

At D’s accepting state with completed rule B → X1 . . .Xk

1. P pops k labels qk, . . . , q1 from its stack

2. constructs part of the parse tree
B

X1 X2 . . . Xk

3. P goes to state q1 (last label popped earlier), pretend next input
symbol is B

19/31

Example

state stack
1 •()() q1 $

2 (•)() q5 $1

3 ()•() q8 $15

3 •A

()

() q1 $

4 A

()

•() q4 $1

4 • S

A

()

() q1 $

state stack
5 S

A

()

•() q2 $1

6 S

A

()

(•) q5 $12

20/31

Example

state stack
7 S

A

()

()• q8 $125

7 S

A

()

• A

()

q2 $1

8 S

A

()

A

()

• q3 $12

state stack
8 • S

S

A

()

A

()

q1 $

9 S

S

A

()

A

()

• q2 $1

parser’s output is the parse
tree

21/31

Another LR(0) grammar

L = {w#wR | w ∈ {a,b}∗} C → aCa | bCb | #

NFA N :

q0 C → •# C → #•

C → •aCa C → a • Ca C → aC • a C → aCa•

C → •bCb C → b • Cb C → bC • b C → bCb•

ε

ε

ε

a

ε

A a

ε

ε
#

b

ε
A b

ε
ε

22/31

Another LR(0) grammar

C → aCa | bCb | #

C → •aCa

C → •bCb

C → •#
C → #•

C → a • Ca

C → •aCa

C → •bCb

C → •#

C → b • Cb

C → •aCa

C → •bCb

C → •#

C → aC • a C → bC • b

C → aCa• C → bCb•

a

#

b
#

#

a b

b

a

C C

a b

1

2

3 4

5 6

7 8

input: ba#ab

stack state action
$ 1 S
$1 4 S
$14 3 S
$143 2 R
$143 5 S
$1435 7 R
$14 6 S
$146 8 R

23/31

Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as

L = {wwR | w ∈ {a,b}∗}

What goes wrong when we do LR(0) parsing on L?

24/31

Example 2

L = {wwR | w ∈ {a,b}∗} C → aCa | bCb | ε

NFA N :

q0 C → •

C → •aCa C → a • Ca C → aC • a C → aCa•

C → •bCb C → b • Cb C → bC • b C → bCb•

ε

ε

ε

a

ε

A a

ε

ε

b

ε
A bε

ε

25/31

Example 2

C → •aCa

C → •bCb

C → •

C → a • Ca

C → •aCa

C → •bCb

C → •

C → b • Cb

C → •aCa

C → •bCb

C → •

C → aC • a C → aC • a

C → aCa• C → bCb•

a
b

a b

b

a

C C

a b

C → aCa | bCb | ε

shift-reduce conflicts

26/31

Parser generator

C → aCa

C → bCb

C → #

CFG G

parser
generator

error

if G is not LR(0)

C → •aCa

C → •bCb

C → •#

C → #•

C → a • Ca

C → •aCa

C → •bCb

C → •#

C → b • Cb

C → •aCa

C → •bCb

C → •#

C → aC • a C → bC • b

C → aCa• C → bCb•

a

#

b

#
#

a b

b

a

C C

a b

“PDA” for parsing G

Motivation: Fast parsing for programming languages
27/31

LR(1) Grammar: A few words

28/31

LR(0) grammar revisited

LR(0) grammars

LR(1) grammars

LR(0) parser: Left-to-right read, Rightmost derivation, 0 lookahead
symbol

S → SA | A
A → (S) | ()

Derivation
S ⇒ SA ⇒ S() ⇒ A() ⇒ ()()

Reduction (derivation in reverse)
()() � A() � S() � SA � S

LR(0) parser looks for rightmost derivation

Rightmost derivation = Leftmost reduction

29/31

Parsing computer programs

if (n == 0) { return x; }

else { return x + 1; }

Statement

if ParExpression

(Expression...
)

Statement else Statement...

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

if …then from if …then …else

30/31

Parsing computer programs

if (n == 0) { return x; }
else { return x + 1; }

Statement

if ParExpression

(Expression...
)

Statement else Statement...

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

if …then from if …then …else

30/31

LR(1) grammar

LR(1) grammars resolve such conflicts by one symbol lookahead

States in NFA N
LR(0): LR(1):

A → α • β [A → α • β, a]

States in DFA D
LR(0): LR(1):

no shift-reduce conflicts some shift-reduce conflicts allowed
no reduce-reduce conflicts some reduce-reduce conflicts allowed

as long as can be resolved with
lookahead symbol a

We won’t cover LR(1) parser in this class; take CSCI 3180 for details

31/31

