LR(0) Parsers

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2018

Chinese University of Hong Kong

if (n == 0) { return x; }

First phase of javac compiler: lexical analysis

The alphabet of Java CFG consists of tokens like $\Sigma = \{if, return, (,), \{, \}, ;, ==, ID, INT_LIT, ... \}$

Parsing computer programs

Parse tree of a Java statement

Identifier. IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral Literal: IntegerLiteral FloatingPointLiteral Boolean iteral CharacterLiteral StringLiteral NullLiteral Expression: LambdaExpression AssignmentExpression AssignmentOperator:

(one of) = *= /= %= += -= <<= >>= &= ^= |=

Parsing Java programs

```
class Point2d {
   /* The X and Y coordinates of the point--instance variables */
   private double x:
   private double y;
   private boolean debug; // A trick to help with debugging
   public Point2d (double px, double pv) { // Constructor
       x = px:
       v = pv:
       debug = false; // turn off debugging
   public Point2d () { // Default constructor
       this (0.0, 0.0);
                                          // Invokes 2 parameter Point2D constructor
   // Note that a this() invocation must be the BEGINNING of
   // statement body of constructor
   public Point2d (Point2d pt) { // Another consructor
       x = pt.getX();
       v = pt.getY();
```

Simple Java program: about 1000 tokens

How long would it take to parse this program?

try all parse trees	$\geqslant 10^{80} {\rm \ years}$
CYK algorithm	hours

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!

Hierarchy of context-free grammars

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm A grammar is LR(0) if LR(0) parser works correctly for it

LR(0) parser: overview

 $S \rightarrow SA \mid A$ input: ()() $A \rightarrow (S) \mid$ ()

1•()()	2(•)()	3 ()•()
4 A●() / `` (`)	5 S•() 	6 S(•) A /`` (`)
7 S()•	$\begin{array}{c} 8 S A \bullet \\ & \downarrow / \\ A () \\ & / \\ & () \end{array}$	9 S• / \ S A / \ A () / \ ()

LR(0) parser: overview

 $S \rightarrow SA \mid A$ $A \rightarrow (S) \mid ()$

input: ()()

Features of LR(0) parser:

- Greedily reduce the recently completed rule into a variable
- Unique choice of reduction at any time

$$3()\bullet() \Rightarrow 4 A\bullet() \Rightarrow 5 S\bullet()$$

$$() A$$

$$() A$$

$$() A$$

To speed up parsing, keep track of partially completed rules in a PDA \$P\$

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule $B\to\beta$ has just been completed and the PDA will reduce β to B

$$\begin{array}{c} \dots \Rightarrow 2 (\bullet)() \Rightarrow 3 () \bullet () \stackrel{\checkmark}{\Rightarrow} 4 \quad A \bullet () \stackrel{\checkmark}{\Rightarrow} 5 \quad S \bullet () \Rightarrow \dots \\ () \quad A \\ () \quad A \\ () \quad () \end{array}$$

 \checkmark : NFA N accepts

NFA acceptance condition

 $S \rightarrow SA \mid A$ $A \rightarrow (S) \mid ()$

A rule $B \to \beta$ has just been completed if

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid$ ()

Design an NFA N' to accept the right hand side of some rule $B \to \beta$

 $S \rightarrow SA \mid A$ $A \rightarrow (S) \mid ()$

Design an NFA N' to accept the right hand side of some rule $B \to \beta$

Designing NFA for Cases 1 & 2

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

Design an NFA N to accept $\alpha\beta$ for some rules $C \rightarrow \alpha B\gamma$, $B \rightarrow \beta$ and for longer chains

Designing NFA for Cases 1 & 2

 $S \rightarrow SA \mid A$ $A \rightarrow (S) \mid ()$ Design an NFA N to accept $\alpha\beta$ for some rules $C \rightarrow \alpha B\gamma$, $B \rightarrow \beta$ and for longer chains

For every rule
$$C \to \alpha B \gamma$$
, $B \to \beta$, add $C \to \alpha \bullet B \gamma \xrightarrow{\varepsilon} B \to \bullet \beta$

Summary of the NFA

For every rule $B \rightarrow \beta$, add

$$\longrightarrow q_0 \xrightarrow{\varepsilon} B \to \bullet \beta$$

For every rule $B \rightarrow \alpha X \beta$ (X may be terminal or variable), add

$$\underbrace{B \to \alpha \bullet X\beta}_{X} \underbrace{X}_{B \to \alpha X \bullet \beta}$$

Every completed rule $B \rightarrow \beta$ is accepting

For every rule $C \rightarrow \alpha B \gamma$, $B \rightarrow \beta$, add

$$\underbrace{C \to \alpha \bullet B\gamma} \xrightarrow{\varepsilon} B \to \bullet\beta$$

The NFA N will accept whenever a rule has just been completed 14/31

Equivalent DFA D for the NFA N

Observation: every accepting state contains only one rule: a completed rule $B \rightarrow \beta \bullet$, and such rules appear only in accepting states A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state contains only one rule: a completed rule of the form $B \rightarrow \beta \bullet$ and completed rules appear only in accepting states

Shift state:

no completed rule

$$\begin{array}{c}
S \to S \bullet A \\
A \to \bullet(S) \\
A \to \bullet()
\end{array}$$

Reduce state:

has (unique) completed rule

$$A \rightarrow (S) \bullet$$

Our parser ${\it P}$ simulates state transitions in DFA ${\it D}$

$$(()\bullet) \Rightarrow (A\bullet)$$

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack go back to the correct state by looking at the stack

Let's label *D*'s states

LR(0) parser: a "PDA" *P* simulating DFA *D*

P's stack contains labels of *D*'s states to remember progress of partially completed rules

At D's non-accepting state q_i

- 1. P simulates D's transition upon reading terminal or variable X
- 2. P pushes current state label q_i onto its stack

At *D*'s accepting state with completed rule $B \rightarrow X_1 \dots X_k$

- 1. *P* pops *k* labels q_k, \ldots, q_1 from its stack
- 2. constructs part of the parse tree

3. *P* goes to state *q*₁ (last label popped earlier), pretend next input symbol is *B*

Example

	state	stack			
1 •()()	q_1	\$			
2 (•)()	q_5	\$1		state	stack
3 ()•()	q_8	\$15	5 S•()	q_2	\$1
•A()	q_1	\$	A		
()			()		
4 A ●()	q_4	\$1	6 S(•)	q_5	\$12
()			Å		
• S()	q_1	\$	(`)		
A					
()					

Example

Another LR(0) grammar

$$L = \{ w \# w^R \mid w \in \{ \mathsf{a}, \mathsf{b} \}^* \} \qquad \qquad C \to \mathsf{a} C \mathsf{a} \mid \mathsf{b} C \mathsf{b} \mid \#$$

Another LR(0) grammar

 $C \rightarrow a Ca \mid b Cb \mid #$

ba#ab		
state	actior	
1	S	
4	S	
3	S	
2	R	
5	S	
7	R	
6	S	
8	R	
	state 1 4 3 2 5 7 6	

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as $L = \{ww^R \mid w \in \{\mathsf{a},\mathsf{b}\}^*\}$

What goes wrong when we do LR(0) parsing on L?

$$L = \{ww^R \mid w \in \{a, b\}^*\} \qquad \qquad C \to aCa \mid bCb \mid \varepsilon$$

Example 2

 $C \to \bullet a C a$ $C \rightarrow \bullet b C b$ $C \rightarrow \bullet$ b а $C \to \mathsf{a} \bullet C \mathsf{a}$ $C \to \mathsf{b} \bullet C\mathsf{b}$ b $C \rightarrow \bullet a C a$ $C \rightarrow \bullet a C a$ а b $\rightarrow \bullet b C b$ $C \rightarrow \bullet b C b$ а $C \rightarrow$ $C \rightarrow \bullet$ CC $C \rightarrow a C \bullet a$ $C \rightarrow a C \bullet a$ ↓a b $C \rightarrow a Ca \bullet$ $C \rightarrow b C b \bullet$

$$C \rightarrow a Ca \mid b Cb \mid \epsilon$$

shift-reduce conflicts

Parser generator

"PDA" for parsing G

Motivation: Fast parsing for programming languages

LR(1) Grammar: A few words

LR(0) grammar revisited

LR(1) grammars

LR(0) grammars

LR(0) parser: Left-to-right read, **R**ightmost derivation, **0** lookahead symbol

 $S \rightarrow SA \mid A$ $A \rightarrow$ (S) | () Derivation

 $S \Rightarrow SA \Rightarrow S() \Rightarrow A() \Rightarrow ()()$

Reduction (derivation in reverse) ()() $\rightarrow A$ () $\rightarrow S$ () $\rightarrow SA \rightarrow S$

LR(0) parser looks for rightmost derivation Rightmost derivation = Leftmost reduction

Parsing computer programs

Parsing computer programs

CFGs of most programming languages are not LR(0)

LR(0) parser cannot tell apart

if ...then from if ...then ...else

LR(1) grammars resolve such conflicts by one symbol lookahead

We won't cover LR(1) parser in this class; take CSCI 3180 for details