IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999 1385

Slicing Floorplans with Boundary Constraints

F. Y. Young, D. F. Wong, and Hannah H. Yang

Abstract—In floorplanning of very large scale integration design, it is
useful if users are allowed to specify some placement constraints in the (a) (b)
packing. One particular kind of placement constraints is to pack some
modules on one of the four sides: on the left, on the right, at the bottom, or
at the top of the final floorplan. These are called boundary constraints. In
this paper, we enhanced a well-known slicing floorplan algorithm [10] to . .
handle these boundary constraints. Our main contribution is a necessary Py & novel shape curve computation procedure which takes the
and sufficient characterization of the Polish expression, a representation positions of the preplaced modules into consideration.
of the intermediate solutions in the simulated annealing process, so that The placement constraint we consider here is called boundary
we can chepkthese constraints efficiently and can fix the expression in Case.qnstraint: some modules are constrained to be packed on one of
the constraints are violated. We tested our algorithm on some benchmark . . .
data and the performance is good. the four sides: on the left, on the right, at the bottom, or at the
top of the final floorplan. This is useful because designers may
want to place some modules along the boundary for input-output
connections. Besides, floorplanning is usually done hierarchically in
which modules are grouped into different units and floorplanning is
I. INTRODUCTION done independently for each unit on the chip. It will help if some

Floorplan design is an important step in physical design of verodules are constrained to be packed along the boundary of the unit

large scale integration circuits. It is the problem of placing a set 5P that they can abut with some other modules in the neighboring
circuit modules on a chip to minimize total area and interconnectiéfits- We extend a well-known slicing floorplan algorithm by Wong
cost. In this early stage of physical design, most of the modules Ard Liu [10] to handle these constraints. Our main contribution is a

not yet designed and thus are flexible in shape (soft modules) dippessary and sufficient characterization of the Polish expression, a
are free to move (free modules). representation of the intermediate solutions in the simulated annealing

Many existing floorplanners are based on slicing floorplans [lﬁ)’rocess, so that we can check these boundary constraints efficiently

[20], [2], [6], [9] and it has been shown theoretically that slicing floor‘-"‘”d can fix the expression in case the constraints are violated. We

plans can pack modules tightly [11]. There are several advantageéeoﬁied our algorithm with some benchmark data and the performance
using slicing floorplans. First, focusing only on slicing floorplan&S 900d- , , , ,
significantly reduces the search space and this leads to fast runtimd. "€ rest of the paper is organized as follows. We first define the
Second, the shape flexibility of the soft modules can be fully exploitdioPlem formally in Section 1. Section lIl provides a brief review of
to pack modules tightly using an efficient shape curve computatidte Wong-Liu algorithm. The new work is presented in Section IV
technique [8], [7]. As a result, existing floorplanners that use sliciff'd the experimental results are shown in Section V.
floorplans are usually very efficient in runtime and yet can pack
modules tightly. Il. PROBLEM DEFINITION

Recently, there are some interesting research activities in then module A is a rectangle of height(A), width w(A), and area
direction of nonslicing floorplans. Two methods, bound-sliceline-grigrca(A). The aspect ratio oft is defined ash(A)/w(A). A soft
(BSG) [5] and sequence-pair (SP) [3], are proposed. These methaglsdule is a module whose shape can be changed as long as the aspect
are originally designed for placement of modules which have ngtio is within a given range and the area is as given. A floorplan
flexibility in shape (hard modules). The sequence-pair method fisr » modules consists of an enveloping rectanglesubdivided by
recently extended to handle soft modules [4]. In order to handi@rizontal lines and vertical lines inte nonoverlapping rectangles
soft modules, it needs to solve an expensive convex programmigigch that each rectangle must be large enough to accommodate the
problem to determine the exact shape of each soft module numergusdule assigned to it. There are two kinds of floorplans: slicing and
times, and this results in long runtime. Note that for the same s@nslicing (Fig. 1). A slicing floorplan is a floorplan which can be
of benchmark data (apte, xerox, hp, ami33, and ami49) in [4], vhtained by recursively cutting a rectangle into two parts by either a

run the slicing floorplan algorithm in [10] and can obtain comparablgertical line or a horizontal line. A nonslicing floorplan is a floorplan
results using only a fraction of the runtime. In fact, we have less th@fhich is not slicing.

1% dead space using no more than 7 s for all the test problems. |n our problem, we are given two kinds of soft modulks =

In floorplanning, it is useful if users are allowed to specify somg' y B. The modules inF are free to move while the modules
placement constraints in the final packing. We did some previoys B are constrained to be packed on one of the four sides of the
work on floorplanning with preplaced modules [12]. A preplacefinal floorplan. A feasible packing is a packing in the first quadrant
module is fixed in position, height and width. We solved this problemych that the width and height of all the modules are consistent with

Manuscript received November 17, 1998; revised February 5, 1999. THREIr @spect ratio constraints and their area constraints, and all the
work was supported in part by the Texas Advanced Research Program antni@dules inB are placed on the boundaries as required (Fig. 2). Our
part by a grant from the Intel Corporation. This paper was recommended blgjective is to construct a feasible floorpl&to minimize A + AW

Associate Editor C.-K. Cheng. where A is the total area of the floorplaR, W is an estimation of

F. Y. Young and D. F. Wong are with the Department of Computer Sciences, . : .
The University of Texas at Austin, Austin, TX 78712-1188 USA. %Re interconnect cost anil is a constant that controls the relative

H. H. Yang is with the Intel Corporation, Hillshoro, OR 97124-5961 Usaimportance of4 and . We require that the aspect ratio of the final
Publisher Item Identifier S 0278-0070(99)06618-X. packing is between two given numbefsi, andryax-.

Fig. 1. A (a) slicing floorplan and (b) nonslicing floorplan.

Index Terms—Floorplanning, placement constraints, simulated anneal-
ing, slicing.

0278-0070/99$10.00 1999 IEEE

1386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999

D
(b) B A B
Fig. 2. An example of a feasible floorplan. Suppose module A is constrained A

to be packed along the right boundary. Then the packing in (a) is infeasible
but the packing in (b) is feasible. Fig. 4. Relative positions of modules denoted by slicing trees.

N < % &%
"L TA dods o
i 4

(b)

: fame %7 4 % * 3 5 Fig. 5. Characterization of slicing trees for different boundary constraints.
Polish expression: 16+35%2+%74+ Module E is on the left boundary of R, so it must be in the left subtree of any
&ﬁ;tgrnal node in T labeled “*,” modulé? is on the right boundary of R, so
It must be in the right subtree of any internal node in T labeled “*,” module
C' is on the upper boundary of R, so it must be in the right subtree of any
internal node in T labeled+,” module G is on the lower boundary of R, so
it must be in the left subtree of any internal node in T labeled""

Fig. 3. Slicing tree representation and Polish expression representation
slicing floorplan.

I1l. WONG-LIU ALGORITHM

A slicing floorplan can be represented by an oriented rooted bingky checking the Boundary Constraints
tree, called a slicing tree (Fig. 3). Each internal node of the tree is -
N ; . . The slicing trees and Polish expressions have orientation. In
labeled by a * or at, corresponding to a vertical or a horizontal cut_. 2. - .
. . . ig. 4, the slicing tree on the left corresponds to a Polish expression
respectively. Each leaf corresponds to a basic module and is label,

. _AB+, which means that moduld is below moduleB. The slicing

by a number from 1 ta. No dimensional information on the position . . .
. e - S tree on the right corresponds to the expressidix, which means
of each cut is specified in the slicing tree. If we traverse a slicing tree 8 .
. . . . - . That moduleA is on the left of moduleB. Therefore, if we want to
in postorder, we obtain a Polish expression and a Polish expression IS

said to benormalizedif there is no consecutive *'s nor consecutiv ack a moduled on the right (left) boundary of the final floorplan,

. . . : the slicing treeT” should be such thatl is not in the left (right)
+’'s in the sequence. It is proved in [10] that there is a one-to-one . - .

. . . subtree of any internal node af labeledx. Similarly, if we want
correspondence between the set of normalized Polish expressmn%o

length2n — 1 and the set of slicing floorplans with modules. put a moduled at the top (_bottom_) of the floo_rplan, the slicing
. X ._treeT" should be such thatl is not in the left (right) subtree of
In [10], Wong and Liu used the set of all normalized Polishh ~ " . R
. : - . any internal node of’ labeled+. An example is shown in Fig. 5.
expressions as the solution space for the simulated annealing method. . .
Lemma 1 summarizes the above observations.

In order to search the solution space efficiently, they defined threel_emma 1: Given a slicing treeT, a module inT is on the right

types of moves (M1, M2, and M3) to transform a Polish expressign . : e
into another. They can make use of the flexibility of the SO%Boundary of the floorpla® corresponding td” if and only if it is not

modules to select the “best” floorplan among all the equivalent on'é]sthe left subtree of any internal node Thlabeled+. A module is
P g q on the left boundary oR if and only if it is not in the right subtree of

represented by the same Polish expression. This is done by carryln?/ internal node Iff” labeleds. A module is on the upper boundary

out an efficient shape curve computation [7], [10] whenever a Polisgh. " o . . :
o . P L of R if and only if it is not in the left subtree of any internal node in
expression is examined. The cost functionlig- \TV where A is the - .
. o T labeled+. A module is on the lower boundary @ if and only
total packing area antl’ is the interconnect cost. This algorithm is_,
. ; if it is not in the right subtree of any internal nodeIhlabeled+-.
very efficient and the performance is very good.

.) . kn the annealing process, we use Polish expressions to represent
However, their method does not consider any placement constra}w - . L . . - .
e slicing trees. It will be inefficient if we build a slicing tree in

and there is actually a simple and natural way to handle boundar . . o .
L each iteration to check the conditions in Lemma 1. Actually we can
constraint in the Polish expression representation. We will descri - . - o
check the necessary and sufficient conditions in Lemma 1 efficiently

it in Section IV. by scanning the Polish expression once. This is done by keeping a
stack when scanning the expression from right to left. Each stack
IV. OUurR METHOD elementz has four bits:z.left, x.right, x.top, and z.bottom. We
In the simulated annealing process, we check the normalized Polsish an element onto the stack whenever we see an operator

expression in each iteration to see whether the boundary constrathts expression. This stack element represents the subfloofplan

are satisfied. This can be done efficiently in linear time by scannimgpresented by the children subtreesnoin the slicing treel. The

the expression once. Then we fix the violated constraints as mudohr bits indicate whether there are modules abdvebelow X, on

as possible, and include in the cost a boundary constraint termthe right of X and on the left ofX, e.g.,z.left = 1 if and only if

penalize the remaining violations. there is at least one module on the left%fin the floorplan.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999 1387

We scan the Polish expression from right to left. When we scan a
+, we push a new element onto the stack. The four bits of are i cl D
copied from the previous stack top element, except thadttom B
is assigned to 1. Similarly, we push a new element onto the stack F
whenever we scan @ but now we assigme.left to 1 and copy the G H
other three bits from the previous stack top element. The invariant m

is that whenever we scan a modulein the expression, the four FE+BA+C*+GH*D+* EF+BA+C*+GH*D+*

bits at the top of the stack will indicate whether there are modules

above 4, below A, on the right of A and on the left of4, and Fig- 6. An example of fixing a Polish expression.

we can copy these information td.above, A.below, A.right, and

A.left. These four bits, when attached to a module name, indicate))

whether there are modules lying above, below, on the right and Bkcmg tree 7. Since all four bits of the stack top element are

the left of that module in the final floorplan. Finally, we can checkn't'a“md. .to zero at the peglnnlng, which are the correct bound-
the boundary constraints with these information, e.g., a module ary conditions for the entire floorplan, we can conclude that the

constrained to be placed at the top of the floorplan should ha&!%zmzrsn"\:v}” assign correct boundary conditions to all the basic

Atop = 0. S!nce we scan the Polish expresspn from. r.lght o We prove by induction on the depth of the subttekets consider
left, we are doing a reversed postorder traversal in the slicing tr(—;ﬁé base case when the depthtG§ one, i.e.# consists of a single

Each element: in the stack represents an internal naddn the basic module only. We assume that the stack top element shows

tree,_and the flagt.ﬂa.g tells whether we have bgcktracked fromcorrectly the boundary conditions for the subfloorplan represented
the right subtree of in the traversal.x.flag = 0 if we are still

. . g ; by ¢ when we first visit the root of, this implies trivially that the
in the right subtree ofv, and x.flag = 1 if we are in the left g0y top element shows correctly the boundary conditions for this

subtree ofv. basic module when we visit it. Thus the algorithm will assign correct
]) boundary conditions to this module and the statement is true.
Algorithm Check-Boundary-Constraints Now, we assume that the statement is true for any subtvesch
Input: A Polish expression = aiaz -+ az,—1 has a depth less than or equalkowherek > 1. Lets consider a

Output: For each moduld, decide whether there
are modules lying abovd, below A, on
the right of A and on the left ofd in
the final floorplan.

subtreet of depthk + 1. We assume that the stack top element shows
correctly the boundary conditions for the subfloorplan represented by
t when we first visit the root of. We consider two different cases.

In the first case, we assume that the roott a§ a * operator. Let

1. top= 0. Assign 0 to all four bits obtacKtop] t; andt, be the right and left subtree at the rootofrespectively.

2. Fori=2n —1 downto 1: The next step after visiting the root ofis to visit ¢, (a reversed

8. If i is ax operator: postorder traversal). The boundary conditions for the subfloorplan

4. Push a new elementonto the stack R, represented by, is the same as that efexcept that we are sure

5 voleft =1 there must be at least one module on the leffRef, sincet, is on

6. Copy..right, w.above, and..below from the left of 1. In the algorithm, we push a new elemenbnto the

sm(:k[m_p —1] stack before visiting;, and copy the bits from the previous stack

1€ I'ﬂ.“g = 0; z.op :_ ¥ top element to this new element except that we piitft = 1. This

8. If a; is a+ operator. stack top element thus shows correctly the boundary conditions for

20 fl:jl:z r;ew elementonto the stack Ry, wher_l we st_art to _visitl. According to the in(j_qctive hypothesis, _

11' éopyJ'.left. v.right, and . above from the algorl_thm VYI|| assign correct b.oundary conditions to all the basic
’ smck[top/ Y ’ modules int; since the depth_ of; is Igss than or qua_l_tb. When

12. v flag = 0 z.0p = + we backtrack front;, we modify the bits ofc before visitingt.. We

13, If o, is & m(;dule name: .copy:n.left.from the element pelow and putright = 1 becausgl

14. Copy the four bits fromstack[top] to a, is on the right oft, and there is at least one module on the nght of

15. While stack[top].flag = 1 andtop > 0 ’ the subfloorplank:, represented bys. Thl§ stack top element will

16. Pop stack thus_, ;how correc_tly the bogndary_ conditions f% when we start_

17. If top > 0: to v_|S|t t,. According to the |nd_u_ct|ve hypotheS|_s, the algorl_thm will

18. stack[top].flag = 1 assign correct l_Joundary conditions to the basic modulgs since

19. If (stack[top].op = %) the depth oft; is less thgn or equal té. In the second case, we

20. stack[top].right = 1 assume that the root dfis a + operator. We can argue similarly

1. stack[top].left = stack[top — 1].left as al_)_ove to show that _the algorlthm will assign correct boundary

2. If stack[top].op = + conditions to aII. the pasm modules in .

23. stack|top].above = 1 Therefore py mduguon, Fhe statement is true and we can conclude

24 stack|top].below = stack[top — 1].below that the algorithm will assign correct boundary conditions to all the

basic modules i
2) Analysis: Let » be the number of modules. The length of the
Proof of correctness:Consider any subtreein the slicing tree Polish expression will b&» — 1: » modules and» — 1 operators.

T, we want to prove by induction that if the stack top elemenh the algorithm, we will scan the Polish expression once from right
shows correctly the boundary conditions for the subfloorplan refw left. When we see an operator, we will push an element onto the
resented byt when we first visit the root of, the algorithm will stack and set the flag of the element to zero. When we see a module
assign correct boundary conditions to all the basic modules inname, we will pop the stack until we see an element of flag O, then
Notice that if this statement is true, we can puts the whole we will reset the flag to one. We do a constant amount of work

1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999

1 10 7 5 49 7 24
3
15
12 6
14 a1
3 45 38 42
25
36 B
4
A 23
¥l » i 43
; 22 2%
32
28 471 16 39 8
29 40 i
% 17
21 19 11 48 9 3
20 i 37

Fig. 7. Another result packing of ami49. Modules 1, 3, 5, 7, 10, 24, 46, and 49 are constrained to the upper boundary. Modules 9, 11, 18, 19, 21,
31, 37, and 48 are constrained to the lower boundary.

for each module name and operator in the Polish expression and the TABLE |
complexity of the algorithm is thué(n). RESULTS OF TESTINGS WITH MCNC EXAMPLES
o)] Data Dead space (%) | Time (sec)
B. Fixing a Polish Expression -
_ _ _ _ ami33-bcl 1.81 4.58
If a Polish expression does not satisfy the boundary constraints, we -
can fix it as much as possible by shuffling the modules. An example ami33-bc2 1.33 4.53
is shown in Fig. 6. In the figure, boundary constraint is violated in ami33-bc3 1.62 4.41
Fig. 6(a) since modulé is not packed at the bottom, as required. To ami33-bed 1.86 4.98
fix this, we exchang& with F' whereF is the module closest t&' in 33.bo5 151 401
the Polish expression and th&tis packed on the lower boundary. In amaJJ-be . .
general, if a moduled is not packed along the boundary as required, ami49-bel 1.51 37.77
we will _shufﬂe it W|_th another moduld_B_ Whlch_ls_ closest tod in amid9-be2 317 36.98
the Polish expression and th&'s position satisfies the boundary -
constraint ofA. The complexity of this procedure i9(mn) where amid9-be3 4.65 39.76
m is the number of constrained modules ani$ the total number of ami49-bcd 3.48 36.03
modules. In the worst case, for _each constrained madylae n(_ee_d ami49-bch 4.95 37.60
to scan all the other modules to find the closest one which satisfies the
constraint ofA. However, if we start the scanning process from the playout-bel 3.36 41.70
position of A, we usually do not need to scan all the modules to find playout-bc2 2.46 42.83
the clogest one. Besides Fhe number of modulgs which violate their playout-bc3 251 41.74
constraints decreases rapidly during the annealing process. Therefore,
the time taken is actually much faster in practice. playout-bed 2.02 41.72
It is possible that some constraints are still violated after all the playout-bcs 5.20 42.06

possible shufflings, since a Polish expression may correspond to a

floorplan which does not have enough positions along the boundaries

to satisfy all the required constraints. We include a boundary coright, the penalty term ford will be the distance between the right
straint term in the cost function to penalize the remaining violateside of A and the right boundary of the final floorplan. The penalty
constraints. All violations will be eliminated as the annealing processrms are similarly defined for modules constrained to be packed on
proceeds because of this boundary constraint penalty term. the left, at the top and at the bottorh.and X are constants which
control the relative importance of the three termsis usually set
such that the area term and the interconnect term are approximately
balanced. The boundary constraint termawill drop to zero as the
Rrocess proceeds.

C. Cost Function

The cost function is defined ad + AW + XD where A is
the total area of the packing obtained from the shape curve
the root of the slicing treelV is the half-perimeter estimation of
the interconnect cost, anB is the penalty term for the boundary
constraint. The penalty term is the total distance of the modules We tested the above method on three MCNC building blocks
from the boundaries of the floorplan along which they should examples: ami33, ami49, and playout. ami33 has 33 modules and 123
packed. For instance, if modulé is constrained to be packed on thenets. ami49 has 49 modules and 408 nets. playout has 62 modules and

V. EXPERIMENTAL RESULTS

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999 1389

1611 nets. We pick 12 modules from ami33, 16 modules from ami49 Multilevel Spectral Hypergraph Partitioning

and 20 modules from playout, and require them to be packed along with Arbitrary Vertex Sizes
the boundaries evenly. We tested the floorplanner with 15 data sets
which are derived from the MCNC examples by imposing different J. Y. Zien, M. D. F. Schlag, and P. K. Chan

boundary constraints on the selected module. The starting temperature
is decided such that an accepting ratio is 100% at the beginning.

The temperature is lowered at a constant rate (0.9), and the numbg@oStract—This paper presents a new spectral partitioning formulation
which directly incorporates vertex size information by modifying the

of iterations at one temperature step '_s twenty times the numbe_rl_% lacian of the graph. Modifying the Laplacian produces a generalized
modules. All the experiments were carried out on a 300-MHz Pentiugiyenvalue problem, which is reduced to the standard eigenvalue problem.
Il Intel processor. Experiments show that the scaled ratio-cut costs of results on benchmarks

Table | shows the experimental results. All the boundary co?"i‘ﬂthh ar?ltra}ry_vert_exthsues lrrtlprlove tbty ZZ%Kthe” thel EIgsnk\)/eC:ﬁrs

; NP ; . e Laplacian in the spectral partitioner are replaced by the

strlallnts are SatIS.erd in eac.h da.ta set. Both thg pa°k'”9 qlljahty. ig?fanvectors of our modified Laplacian. The inability to handle vertex

efficiency are satisfactory. Fig. 7 is a result packing of ami49 in whiizes in the spectral partitioning formulation has been a limitation in

we require modules 1, 3, 5, 7, 10, 24, 46, and 49 to be packed at #pplying spectral partitioning in a multilevel setting. We investigate

top and modules 9, 11, 18, 19, 21, 31, 37, and 48 at the bottom. TWheether our new formulation effectively removes this limitation by

packing is very tight and all the boundary constraints are satisfie

0combining it with a simple multilevel bottom-up clustering algorithm and
an iterative improvement algorithm for partition refinement. Experiments
show that in a multilevel setting where the spectral partitioner KP
provides the initial partitions of the most contracted graph, using the
REFERENCES modified Laplacian in place of the standard Laplacian is more efficient
and more effective in the partitioning of graphs with arbitrary-size

(1] K.Bazargan, S. Kim, and M. Sarrafzadeh,” Nostradamus: A floorplannghq unit-size vertices; average improvements of 17% and 18% are ob-
of uncertain design,” irProc. Int. Symp. Physical Desigri998, pp. served for graphs with arbitrary-size and unit-size vertices, respectively.
18-23. _Comparisons with other ratio-cut based partitioners on hypergraphs
(2] D.P.Lapotin and S. W. Director, “Mason: A global floorplanning tool,"yith ynit-size as well as arbitrary-size vertices, show that the multilevel
in Proc. [EEE Int. Conf. Computer-Aided Desigt85, pp. 143-145. gpectral partitioner produces either better results or almost identical
[3] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani, “Rectangletesyits more efficiently.
packing-based module placement,”Rnoc. IEEE Int. Conf. Computer-
Aided Design 1995, pp. 472-479. Index Terms—Eigenvalues, multilevel, multiway partitioning, partition-
[4] H. Murata and E. S. Kuh, “Sequence-pair based placement method fog, ratio-cut metric, spectral method.
hard/soft/preplaced modules,” Rroc. Int. Symp. Physical Desigh998,
pp. 167-172.
[5] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module . INTRODUCTION
placement on BSG-structure and IC layout applicationsPrioc. IEEE
Int. Conf. Computer-Aided Desigd996, pp. 484-491. Hypergraph partitioning is an important problem with a variety
[6] R. H. J. M. Otten, “Automatic floorplan design,” iProc. 19th of diverse and practical applications, including circuit partition-
ACM/IEEE Design Automation Confl982, pp. 261-267. ing, network performance analysis, database storage optimization,
(7] —, “Otten efficient floorplan optimization,” inlEEE Int. Conf. 534 parallel processing. Two general classes of algorithms have
Computer Design1983, pp. 499-502. . o . . .
[8] L. Stockmeyer, “Optimal orientations of cells in slicing floorplanen’!erged in the re_'searCh community: spe_<_:tra_l algorlthr_ns, and iterative
designs,”Inform. Contr, vol. 59, pp. 91-101, 1983. refinement algorithms. A spectral partitioning algorithm uses the
[9] T. Tamanouchi, K. Tamakashi, and T. Kambe, “Hybrid floorplanningigenvectors of a graph for generating partitions of a graph. The
Fisecd Of” gartial tC'Uif_ZfiggDa”d &%%U'e reiggczug;ng,’Pmc. IEEE ejgenvectors provide an optimal solution to a relaxed version of the
nt. Conf. Computer-Aided Desig , Pp. —483. . e . P .
[10] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in ratio-cut partitioning pr.o.blen?. In rfitlo-cut partlthnlng, no constralnts
Proc. 23rd ACM/IEEE Design Automation Cqnf986, pp. 101-107. are placed on the partition sizes; instead the objective function favors
[11] F. Y. Young and D. F. Wong, “How good are slicing floorplans?,more balanced partitions [1], [2]. Ratio-cut partitioning excels in
|ntegr’c§ti0‘n, the VLSI J.vol. 23, pp. 61-73, 1997. i situations where finding natural clusters is preferable to imposing
[12] —, "Slicing floorplans with preplaced modules,” Froc. IEEE Int. constraints [3]. Iterative refinement algorithms are based on defining

Conf. C ter-Aided Desigii998, pp. 252-258. ; .
ont. Lomputer-Aided besig PP a cost function and then performing a sequence of moves to reach

a locally optimal solution. Combining the two approaches, using
a spectral algorithm to find initial partitions, and then performing
iterative refinement, provides a deterministic algorithm resulting in
solutions whose ratio-cut costs are better than those produced by
either method alone.

Except for the work of Hendrickson and Leland [4] on load
balancing for hypercube multiprocessors, previous spectral algorithms
for partitioning graphs and hypergraphs have been limited by the

Manuscript received September 3, 1998; revised January 28, 1999. This
work was supported by the National Science Foundation (NSF) under Grant
MIP-9223740. This paper was recommended by Associate Editor R. Gupta.

J. Y. Zien was with the Computer Engineering Department, University of
California, Santa Cruz, CA 95064 USA. He is now with the IBM Almaden
Research Center, San Jose, CA 95120 USA.

M. D. F. Schlag and P. K. Chan are with the Computer Engineering
Department, University of California, Santa Cruz, CA 95064 USA.

Publisher Item Identifier S 0278-0070(99)06628-2.

0278-0070/99$10.00 1999 IEEE

