
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999 1385

Slicing Floorplans with Boundary Constraints

F. Y. Young, D. F. Wong, and Hannah H. Yang

Abstract—In floorplanning of very large scale integration design, it is
useful if users are allowed to specify some placement constraints in the
packing. One particular kind of placement constraints is to pack some
modules on one of the four sides: on the left, on the right, at the bottom, or
at the top of the final floorplan. These are called boundary constraints. In
this paper, we enhanced a well-known slicing floorplan algorithm [10] to
handle these boundary constraints. Our main contribution is a necessary
and sufficient characterization of the Polish expression, a representation
of the intermediate solutions in the simulated annealing process, so that
we can check these constraints efficiently and can fix the expression in case
the constraints are violated. We tested our algorithm on some benchmark
data and the performance is good.

Index Terms—Floorplanning, placement constraints, simulated anneal-
ing, slicing.

I. INTRODUCTION

Floorplan design is an important step in physical design of very
large scale integration circuits. It is the problem of placing a set of
circuit modules on a chip to minimize total area and interconnection
cost. In this early stage of physical design, most of the modules are
not yet designed and thus are flexible in shape (soft modules) and
are free to move (free modules).

Many existing floorplanners are based on slicing floorplans [1],
[10], [2], [6], [9] and it has been shown theoretically that slicing floor-
plans can pack modules tightly [11]. There are several advantages of
using slicing floorplans. First, focusing only on slicing floorplans
significantly reduces the search space and this leads to fast runtime.
Second, the shape flexibility of the soft modules can be fully exploited
to pack modules tightly using an efficient shape curve computation
technique [8], [7]. As a result, existing floorplanners that use slicing
floorplans are usually very efficient in runtime and yet can pack
modules tightly.

Recently, there are some interesting research activities in the
direction of nonslicing floorplans. Two methods, bound-sliceline-grid
(BSG) [5] and sequence-pair (SP) [3], are proposed. These methods
are originally designed for placement of modules which have no
flexibility in shape (hard modules). The sequence-pair method is
recently extended to handle soft modules [4]. In order to handle
soft modules, it needs to solve an expensive convex programming
problem to determine the exact shape of each soft module numerous
times, and this results in long runtime. Note that for the same set
of benchmark data (apte, xerox, hp, ami33, and ami49) in [4], we
run the slicing floorplan algorithm in [10] and can obtain comparable
results using only a fraction of the runtime. In fact, we have less than
1% dead space using no more than 7 s for all the test problems.

In floorplanning, it is useful if users are allowed to specify some
placement constraints in the final packing. We did some previous
work on floorplanning with preplaced modules [12]. A preplaced
module is fixed in position, height and width. We solved this problem

Manuscript received November 17, 1998; revised February 5, 1999. This
work was supported in part by the Texas Advanced Research Program and in
part by a grant from the Intel Corporation. This paper was recommended by
Associate Editor C.-K. Cheng.

F. Y. Young and D. F. Wong are with the Department of Computer Sciences,
The University of Texas at Austin, Austin, TX 78712-1188 USA.

H. H. Yang is with the Intel Corporation, Hillsboro, OR 97124-5961 USA.
Publisher Item Identifier S 0278-0070(99)06618-X.

(a) (b)

Fig. 1. A (a) slicing floorplan and (b) nonslicing floorplan.

by a novel shape curve computation procedure which takes the
positions of the preplaced modules into consideration.

The placement constraint we consider here is called boundary
constraint: some modules are constrained to be packed on one of
the four sides: on the left, on the right, at the bottom, or at the
top of the final floorplan. This is useful because designers may
want to place some modules along the boundary for input-output
connections. Besides, floorplanning is usually done hierarchically in
which modules are grouped into different units and floorplanning is
done independently for each unit on the chip. It will help if some
modules are constrained to be packed along the boundary of the unit
so that they can abut with some other modules in the neighboring
units. We extend a well-known slicing floorplan algorithm by Wong
and Liu [10] to handle these constraints. Our main contribution is a
necessary and sufficient characterization of the Polish expression, a
representation of the intermediate solutions in the simulated annealing
process, so that we can check these boundary constraints efficiently
and can fix the expression in case the constraints are violated. We
tested our algorithm with some benchmark data and the performance
is good.

The rest of the paper is organized as follows. We first define the
problem formally in Section II. Section III provides a brief review of
the Wong–Liu algorithm. The new work is presented in Section IV
and the experimental results are shown in Section V.

II. PROBLEM DEFINITION

A moduleA is a rectangle of heighth(A), width w(A), and area
area(A). The aspect ratio ofA is defined ash(A)=w(A): A soft
module is a module whose shape can be changed as long as the aspect
ratio is within a given range and the area is as given. A floorplan
for n modules consists of an enveloping rectangleR subdivided by
horizontal lines and vertical lines inton nonoverlapping rectangles
such that each rectangle must be large enough to accommodate the
module assigned to it. There are two kinds of floorplans: slicing and
nonslicing (Fig. 1). A slicing floorplan is a floorplan which can be
obtained by recursively cutting a rectangle into two parts by either a
vertical line or a horizontal line. A nonslicing floorplan is a floorplan
which is not slicing.

In our problem, we are given two kinds of soft modulesM =
F [ B: The modules inF are free to move while the modules
in B are constrained to be packed on one of the four sides of the
final floorplan. A feasible packing is a packing in the first quadrant
such that the width and height of all the modules are consistent with
their aspect ratio constraints and their area constraints, and all the
modules inB are placed on the boundaries as required (Fig. 2). Our
objective is to construct a feasible floorplanR to minimizeA+�W
whereA is the total area of the floorplanR; W is an estimation of
the interconnect cost and� is a constant that controls the relative
importance ofA andW: We require that the aspect ratio of the final
packing is between two given numbersrmin andrmax:

0278–0070/99$10.00 1999 IEEE



1386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999

(a) (b)

Fig. 2. An example of a feasible floorplan. Suppose module A is constrained
to be packed along the right boundary. Then the packing in (a) is infeasible
but the packing in (b) is feasible.

Fig. 3. Slicing tree representation and Polish expression representation of a
slicing floorplan.

III. W ONG–LIU ALGORITHM

A slicing floorplan can be represented by an oriented rooted binary
tree, called a slicing tree (Fig. 3). Each internal node of the tree is
labeled by a * or a+, corresponding to a vertical or a horizontal cut
respectively. Each leaf corresponds to a basic module and is labeled
by a number from 1 ton: No dimensional information on the position
of each cut is specified in the slicing tree. If we traverse a slicing tree
in postorder, we obtain a Polish expression and a Polish expression is
said to benormalizedif there is no consecutive *’s nor consecutive
+’s in the sequence. It is proved in [10] that there is a one-to-one
correspondence between the set of normalized Polish expressions of
length2n� 1 and the set of slicing floorplans withn modules.

In [10], Wong and Liu used the set of all normalized Polish
expressions as the solution space for the simulated annealing method.
In order to search the solution space efficiently, they defined three
types of moves (M1, M2, and M3) to transform a Polish expression
into another. They can make use of the flexibility of the soft
modules to select the “best” floorplan among all the equivalent ones
represented by the same Polish expression. This is done by carrying
out an efficient shape curve computation [7], [10] whenever a Polish
expression is examined. The cost function isA+�W whereA is the
total packing area andW is the interconnect cost. This algorithm is
very efficient and the performance is very good.

However, their method does not consider any placement constraint
and there is actually a simple and natural way to handle boundary
constraint in the Polish expression representation. We will describe
it in Section IV.

IV. OUR METHOD

In the simulated annealing process, we check the normalized Polish
expression in each iteration to see whether the boundary constraints
are satisfied. This can be done efficiently in linear time by scanning
the expression once. Then we fix the violated constraints as much
as possible, and include in the cost a boundary constraint term to
penalize the remaining violations.

Fig. 4. Relative positions of modules denoted by slicing trees.

(a) (b)

Fig. 5. Characterization of slicing trees for different boundary constraints.
ModuleE is on the left boundary of R, so it must be in the left subtree of any
internal node in T labeled “*,” moduleH is on the right boundary of R, so
it must be in the right subtree of any internal node in T labeled “*,” module
C is on the upper boundary of R, so it must be in the right subtree of any
internal node in T labeled “+,” moduleG is on the lower boundary of R, so
it must be in the left subtree of any internal node in T labeled “+.”

A. Checking the Boundary Constraints

The slicing trees and Polish expressions have orientation. In
Fig. 4, the slicing tree on the left corresponds to a Polish expression
AB+; which means that moduleA is below moduleB: The slicing
tree on the right corresponds to the expressionAB�; which means
that moduleA is on the left of moduleB: Therefore, if we want to
pack a moduleA on the right (left) boundary of the final floorplan,
the slicing treeT should be such thatA is not in the left (right)
subtree of any internal node ofT labeled�: Similarly, if we want
to put a moduleA at the top (bottom) of the floorplan, the slicing
tree T should be such thatA is not in the left (right) subtree of
any internal node ofT labeled+: An example is shown in Fig. 5.
Lemma 1 summarizes the above observations.

Lemma 1: Given a slicing treeT; a module inT is on the right
boundary of the floorplanR corresponding toT if and only if it is not
in the left subtree of any internal node inT labeled�: A module is
on the left boundary ofR if and only if it is not in the right subtree of
any internal node inT labeled�: A module is on the upper boundary
of R if and only if it is not in the left subtree of any internal node in
T labeled+: A module is on the lower boundary ofR if and only
if it is not in the right subtree of any internal node inT labeled+:

In the annealing process, we use Polish expressions to represent
the slicing trees. It will be inefficient if we build a slicing tree in
each iteration to check the conditions in Lemma 1. Actually we can
check the necessary and sufficient conditions in Lemma 1 efficiently
by scanning the Polish expression once. This is done by keeping a
stack when scanning the expression from right to left. Each stack
elementx has four bits:x:left ; x:right ; x:top; andx:bottom : We
push an element onto the stack whenever we see an operator� in
the expression. This stack element represents the subfloorplanX

represented by the children subtrees of� in the slicing treeT: The
four bits indicate whether there are modules aboveX; belowX; on
the right ofX and on the left ofX; e.g.,x:left = 1 if and only if
there is at least one module on the left ofX in the floorplan.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999 1387

We scan the Polish expression from right to left. When we scan a
+, we push a new elementx onto the stack. The four bits ofx are
copied from the previous stack top element, except thatx:bottom

is assigned to 1. Similarly, we push a new element onto the stack
whenever we scan a� but now we assignx:left to 1 and copy the
other three bits from the previous stack top element. The invariant
is that whenever we scan a moduleA in the expression, the four
bits at the top of the stack will indicate whether there are modules
aboveA, below A; on the right ofA and on the left ofA; and
we can copy these information toA:above, A:below , A:right , and
A:left : These four bits, when attached to a module name, indicate
whether there are modules lying above, below, on the right and on
the left of that module in the final floorplan. Finally, we can check
the boundary constraints with these information, e.g., a moduleA

constrained to be placed at the top of the floorplan should have
A:top = 0: Since we scan the Polish expression from right to
left, we are doing a reversed postorder traversal in the slicing tree.
Each elementx in the stack represents an internal nodev in the
tree, and the flagx:
ag tells whether we have backtracked from
the right subtree ofv in the traversal.x:
ag = 0 if we are still
in the right subtree ofv, and x:
ag = 1 if we are in the left
subtree ofv:

Algorithm Check-Boundary-Constraints
Input: A Polish expression� = �1�2 � � ��2n�1

Output: For each moduleA; decide whether there
are modules lying aboveA; belowA; on
the right ofA and on the left ofA in
the final floorplan.

1. top = 0. Assign 0 to all four bits ofstack[top]
2. For i = 2n� 1 downto 1:
3. If �i is a � operator:
4. Push a new elementx onto the stack
5. x:left = 1
6. Copyx:right ; x:above; andx:below from

stack [top � 1]
7. x:
ag = 0; x:op = �

8. If �i is a+ operator:
9. Push a new elementx onto the stack
10. x:below = 1
11. Copyx:left ; x:right ; andx:above from

stack [top � 1]
12. x:
ag = 0; x:op = +
13. If �i is a module name:
14. Copy the four bits fromstack [top] to �i

15. While stack [top]:
ag = 1 and top > 0
16. Pop stack
17. If top > 0:
18. stack [top]:
ag = 1
19. If (stack[top]:op = �)
20. stack [top]:right = 1
21. stack [top]:left = stack [top � 1]:left
22. If stack [top]:op = +
23. stack [top]:above = 1
24. stack [top]:below = stack [top � 1]:below

Proof of correctness:Consider any subtreet in the slicing tree
T , we want to prove by induction that if the stack top element
shows correctly the boundary conditions for the subfloorplan rep-
resented byt when we first visit the root oft, the algorithm will
assign correct boundary conditions to all the basic modules int:

Notice that if this statement is true, we can putt as the whole

Fig. 6. An example of fixing a Polish expression.

slicing tree T: Since all four bits of the stack top element are
initialized to zero at the beginning, which are the correct bound-
ary conditions for the entire floorplan, we can conclude that the
algorithm will assign correct boundary conditions to all the basic
modules inT:

We prove by induction on the depth of the subtreet: Lets consider
the base case when the depth oft is one, i.e.,t consists of a single
basic module only. We assume that the stack top element shows
correctly the boundary conditions for the subfloorplan represented
by t when we first visit the root oft; this implies trivially that the
stack top element shows correctly the boundary conditions for this
basic module when we visit it. Thus the algorithm will assign correct
boundary conditions to this module and the statement is true.

Now, we assume that the statement is true for any subtreet which
has a depth less than or equal tok wherek � 1: Lets consider a
subtreet of depthk+1: We assume that the stack top element shows
correctly the boundary conditions for the subfloorplan represented by
t when we first visit the root oft: We consider two different cases.
In the first case, we assume that the root oft is a � operator. Let
t1 and t2 be the right and left subtree at the root oft, respectively.
The next step after visiting the root oft is to visit t1 (a reversed
postorder traversal). The boundary conditions for the subfloorplan
Rt represented byt1 is the same as that oft except that we are sure
there must be at least one module on the left ofRt , sincet2 is on
the left of t1: In the algorithm, we push a new elementx onto the
stack before visitingt1; and copy the bits from the previous stack
top element to this new element except that we putx:left = 1: This
stack top element thus shows correctly the boundary conditions for
Rt when we start to visitt1: According to the inductive hypothesis,
the algorithm will assign correct boundary conditions to all the basic
modules int1 since the depth oft1 is less than or equal tok: When
we backtrack fromt1, we modify the bits ofx before visitingt2: We
copyx:left from the element below and putx:right = 1 becauset1
is on the right oft2 and there is at least one module on the right of
the subfloorplanRt represented byt2: This stack top element will
thus show correctly the boundary conditions forRt when we start
to visit t2: According to the inductive hypothesis, the algorithm will
assign correct boundary conditions to the basic modules int2 since
the depth oft2 is less than or equal tok: In the second case, we
assume that the root oft is a + operator. We can argue similarly
as above to show that the algorithm will assign correct boundary
conditions to all the basic modules int:

Therefore by induction, the statement is true and we can conclude
that the algorithm will assign correct boundary conditions to all the
basic modules inT:

2) Analysis: Let n be the number of modules. The length of the
Polish expression will be2n � 1: n modules andn � 1 operators.
In the algorithm, we will scan the Polish expression once from right
to left. When we see an operator, we will push an element onto the
stack and set the flag of the element to zero. When we see a module
name, we will pop the stack until we see an element of flag 0, then
we will reset the flag to one. We do a constant amount of work



1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999

Fig. 7. Another result packing of ami49. Modules 1, 3, 5, 7, 10, 24, 46, and 49 are constrained to the upper boundary. Modules 9, 11, 18, 19, 21,
31, 37, and 48 are constrained to the lower boundary.

for each module name and operator in the Polish expression and the
complexity of the algorithm is thusO(n):

B. Fixing a Polish Expression

If a Polish expression does not satisfy the boundary constraints, we
can fix it as much as possible by shuffling the modules. An example
is shown in Fig. 6. In the figure, boundary constraint is violated in
Fig. 6(a) since moduleE is not packed at the bottom, as required. To
fix this, we exchangeE with F whereF is the module closest toE in
the Polish expression and thatF is packed on the lower boundary. In
general, if a moduleA is not packed along the boundary as required,
we will shuffle it with another moduleB which is closest toA in
the Polish expression and thatB’s position satisfies the boundary
constraint ofA: The complexity of this procedure isO(mn) where
m is the number of constrained modules andn is the total number of
modules. In the worst case, for each constrained moduleA, we need
to scan all the other modules to find the closest one which satisfies the
constraint ofA: However, if we start the scanning process from the
position ofA, we usually do not need to scan all the modules to find
the closest one. Besides the number of modules which violate their
constraints decreases rapidly during the annealing process. Therefore,
the time taken is actually much faster in practice.

It is possible that some constraints are still violated after all the
possible shufflings, since a Polish expression may correspond to a
floorplan which does not have enough positions along the boundaries
to satisfy all the required constraints. We include a boundary con-
straint term in the cost function to penalize the remaining violated
constraints. All violations will be eliminated as the annealing process
proceeds because of this boundary constraint penalty term.

C. Cost Function

The cost function is defined asA + �W + XD where A is
the total area of the packing obtained from the shape curve at
the root of the slicing tree,W is the half-perimeter estimation of
the interconnect cost, andD is the penalty term for the boundary
constraint. The penalty termD is the total distance of the modules
from the boundaries of the floorplan along which they should be
packed. For instance, if moduleA is constrained to be packed on the

TABLE I
RESULTS OF TESTINGS WITH MCNC EXAMPLES

right, the penalty term forA will be the distance between the right
side ofA and the right boundary of the final floorplan. The penalty
terms are similarly defined for modules constrained to be packed on
the left, at the top and at the bottom.� andX are constants which
control the relative importance of the three terms.� is usually set
such that the area term and the interconnect term are approximately
balanced. The boundary constraint termsD will drop to zero as the
process proceeds.

V. EXPERIMENTAL RESULTS

We tested the above method on three MCNC building blocks
examples: ami33, ami49, and playout. ami33 has 33 modules and 123
nets. ami49 has 49 modules and 408 nets. playout has 62 modules and



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 1999 1389

1611 nets. We pick 12 modules from ami33, 16 modules from ami49
and 20 modules from playout, and require them to be packed along
the boundaries evenly. We tested the floorplanner with 15 data sets
which are derived from the MCNC examples by imposing different
boundary constraints on the selected module. The starting temperature
is decided such that an accepting ratio is 100% at the beginning.
The temperature is lowered at a constant rate (0.9), and the number
of iterations at one temperature step is twenty times the number of
modules. All the experiments were carried out on a 300-MHz Pentium
II Intel processor.

Table I shows the experimental results. All the boundary con-
straints are satisfied in each data set. Both the packing quality and
efficiency are satisfactory. Fig. 7 is a result packing of ami49 in which
we require modules 1, 3, 5, 7, 10, 24, 46, and 49 to be packed at the
top and modules 9, 11, 18, 19, 21, 31, 37, and 48 at the bottom. The
packing is very tight and all the boundary constraints are satisfied.

REFERENCES

[1] K. Bazargan, S. Kim, and M. Sarrafzadeh,“ Nostradamus: A floorplanner
of uncertain design,” inProc. Int. Symp. Physical Design, 1998, pp.
18–23.

[2] D. P. Lapotin and S. W. Director, “Mason: A global floorplanning tool,”
in Proc. IEEE Int. Conf. Computer-Aided Design, 1985, pp. 143–145.

[3] H. Murata, K. Fujiyoushi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” inProc. IEEE Int. Conf. Computer-
Aided Design, 1995, pp. 472–479.

[4] H. Murata and E. S. Kuh, “Sequence-pair based placement method for
hard/soft/preplaced modules,” inProc. Int. Symp. Physical Design, 1998,
pp. 167–172.

[5] S. Nakatake, K. Fujiyoushi, H. Murata, and Y. Kajitani, “Module
placement on BSG-structure and IC layout applications,” inProc. IEEE
Int. Conf. Computer-Aided Design, 1996, pp. 484–491.

[6] R. H. J. M. Otten, “Automatic floorplan design,” inProc. 19th
ACM/IEEE Design Automation Conf., 1982, pp. 261–267.

[7] , “Otten efficient floorplan optimization,” inIEEE Int. Conf.
Computer Design, 1983, pp. 499–502.

[8] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan
designs,”Inform. Contr., vol. 59, pp. 91–101, 1983.

[9] T. Tamanouchi, K. Tamakashi, and T. Kambe, “Hybrid floorplanning
based on partial clustering and module restructuring,” inProc. IEEE
Int. Conf. Computer-Aided Design, 1996, pp. 478–483.

[10] D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,” in
Proc. 23rd ACM/IEEE Design Automation Conf., 1986, pp. 101–107.

[11] F. Y. Young and D. F. Wong, “How good are slicing floorplans?,”
Integration, the VLSI J., vol. 23, pp. 61–73, 1997.

[12] , “Slicing floorplans with preplaced modules,” inProc. IEEE Int.
Conf. Computer-Aided Design, 1998, pp. 252–258.

Multilevel Spectral Hypergraph Partitioning
with Arbitrary Vertex Sizes

J. Y. Zien, M. D. F. Schlag, and P. K. Chan

Abstract—This paper presents a new spectral partitioning formulation
which directly incorporates vertex size information by modifying the
Laplacian of the graph. Modifying the Laplacian produces a generalized
eigenvalue problem, which is reduced to the standard eigenvalue problem.
Experiments show that the scaled ratio-cut costs of results on benchmarks
with arbitrary vertex sizes improve by 22% when the eigenvectors
of the Laplacian in the spectral partitioner KP are replaced by the
eigenvectors of our modified Laplacian. The inability to handle vertex
sizes in the spectral partitioning formulation has been a limitation in
applying spectral partitioning in a multilevel setting. We investigate
whether our new formulation effectively removes this limitation by
combining it with a simple multilevel bottom-up clustering algorithm and
an iterative improvement algorithm for partition refinement. Experiments
show that in a multilevel setting where the spectral partitioner KP
provides the initial partitions of the most contracted graph, using the
modified Laplacian in place of the standard Laplacian is more efficient
and more effective in the partitioning of graphs with arbitrary-size
and unit-size vertices; average improvements of 17% and 18% are ob-
served for graphs with arbitrary-size and unit-size vertices, respectively.
Comparisons with other ratio-cut based partitioners on hypergraphs
with unit-size as well as arbitrary-size vertices, show that the multilevel
spectral partitioner produces either better results or almost identical
results more efficiently.

Index Terms—Eigenvalues, multilevel, multiway partitioning, partition-
ing, ratio-cut metric, spectral method.

I. INTRODUCTION

Hypergraph partitioning is an important problem with a variety
of diverse and practical applications, including circuit partition-
ing, network performance analysis, database storage optimization,
and parallel processing. Two general classes of algorithms have
emerged in the research community: spectral algorithms, and iterative
refinement algorithms. A spectral partitioning algorithm uses the
eigenvectors of a graph for generating partitions of a graph. The
eigenvectors provide an optimal solution to a relaxed version of the
ratio-cut partitioning problem. In ratio-cut partitioning, no constraints
are placed on the partition sizes; instead the objective function favors
more balanced partitions [1], [2]. Ratio-cut partitioning excels in
situations where finding natural clusters is preferable to imposing
constraints [3]. Iterative refinement algorithms are based on defining
a cost function and then performing a sequence of moves to reach
a locally optimal solution. Combining the two approaches, using
a spectral algorithm to find initial partitions, and then performing
iterative refinement, provides a deterministic algorithm resulting in
solutions whose ratio-cut costs are better than those produced by
either method alone.

Except for the work of Hendrickson and Leland [4] on load
balancing for hypercube multiprocessors, previous spectral algorithms
for partitioning graphs and hypergraphs have been limited by the

Manuscript received September 3, 1998; revised January 28, 1999. This
work was supported by the National Science Foundation (NSF) under Grant
MIP-9223740. This paper was recommended by Associate Editor R. Gupta.

J. Y. Zien was with the Computer Engineering Department, University of
California, Santa Cruz, CA 95064 USA. He is now with the IBM Almaden
Research Center, San Jose, CA 95120 USA.

M. D. F. Schlag and P. K. Chan are with the Computer Engineering
Department, University of California, Santa Cruz, CA 95064 USA.

Publisher Item Identifier S 0278-0070(99)06628-2.

0278–0070/99$10.00 1999 IEEE


