652 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

the cluster(v) if the area ofcluster(v) U group(u,w) edge. Besides, the optimality of the algorithm still holds because all the
does not exceed the area constralit However,u € theoretical results remain true and can be proved similarly.

G, — cluster(v) implies that the area ofluster(v) U
group(u,w) exceeds\ . Whenu € C, and the area of

cluster(v) U group(u,w) is greater than\/, there must) . L
exist an edgd £, g) such thatf € group(u,w), g € In this paper, we have introduced a new delay model which is more

eroup(u,w), f € (G, — C,) andg € C,. The situation 9general and practical than the general delay model [3]. Under our new
is depicted in Fig. 4(b). Based on the induction hypothesi§€lay model, a circuit clustering algorithm based on a novel vertex
delay(f)+ A(g,v)+D > I(f)+A(g,v)+D.Then, by 9rouping technique is proppsed ar]d i§ proved. to optimally solve the
P3of Lemma 1delay(v) > delay(f) + A(g,v) + D > area-constrained combinational circuit clustering problem for delay
I(f) + A(g,v) + D > I(u) + A(w,v) + D = I(v) > Minimization in polynomial time.

delay(v) which is impossible.

VIl. CONCLUSION

c) If (cluster(v) — C) # ¢ , we can dividecluster(v) into REFERENCES
two disjoint subsetsluster(v) — C', andcluster(v) N C,. [1] R.Rajaraman and D.F. Wong, “Optimum clustering for delay minimiza-
By Corollary 1, there exists an edge,t) such that tion,” IEEE Trans. Computer-Aided Desigwol. 14, pp. 1490—-1495,

s € (cluster(v) — Cy) andt € cluster(v) N C', while Dec. 1995.
I(s) + A(s,t) + D = I"(s,t) > lo(v) = I(v). This [2] H.J(ang and % F. Wong, “Circuit clustering for delay rc?ircljimization
. . | . LT under area and pin constraint$£EE Trans. Computer-Aided Design
is depicted in Fig. 4(c). Since wg knov_ilelay(u) > _ vol. 16, pp. 976_p986’ Sept. 19§7. P 9
delay(s) + A(s,?) + D, due to the induction hypothesis 3] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “On clus-
thatdelay(s) + A(s,t) + D > I(s) + A(s,t) + D, we tering for minimum delay/area,” ifProc. IEEE Int. Conf. Computer-
have Aided Design1991, pp. 6-9.

[4] E.Lawler, K. Levitt,and J. Turner, “Module clustering to minimize delay

in digital networks,”IEEE Trans. Computvol. C-18, pp. 47-57, Jan.

1966.
delay(v) >delay(s) + A(s,t) + D
>I(s)+ A(s,t) + D > l(v)
which contradicts the assumptidrlay(v) < I(v). As a
result, the statement is also true for vertex O
Lemma 4: In our algorithm, for any vertex in the clusteringS Slicing Floorplan With Clustering Constraint

generated by the clustering phase (lines 13-19), the path delaig at
less than or equal thv).
Proof: Our delay model is different from that in [1], but the clus-

tering phase in our algorithm is the same as that of [1], so the proof isAbstract—ln floorplan design, it is useful to allow users to specify some

W. S. Yuen and Evangeline F. Y. Young

the same. Details can be found in [1]. O placement constraints in the final packing. Clustering constraint is a pop-
Based on Lemma 3 and Lemma 4, we can easily derive the followintr type of placement constraint in which a given set of modules are re-
theorem. stricted to be placed adjacent to one another. The wiring cost can be re-

. duced by placing modules with a lot of interconnections closely together.
Theorem 1: The clusteringS generated in our algorithm is an Op'Designers may also need this type of constraint to restrict the positions of

timal clustering for any instance of the problem described in Section §sme modules according to their functionalities. In this paper, a method
Proof: In Lemma 3, it is shown that for each vertexthe label addressing clustering constraint in slicing floorplan will be presented. We
I(v) in our algorithm is less than or equal to the path delay at vertexdevised a linear time algorithm to locate neighboring modules in a nor-
in any optimal clustering; Lemma 4 states that our algorithm is able f}f!1zed Polish expression and to rearrange them to satisfy the given con-
. - straints. Experiments were performed on some benchmarks and the results
generate a clustering with the path delay #&ss than or equal tfv) 5 very promising.
which is the lower bound of the path delay at vertex any optimal .)))
clustering. Together with Lemma 1 in [1], the clusterifiggenerated . 'ndex Terms—Clustering constraint, design floorplanning, floorplan-
. . . . ning, physical design, very large scale integrated computer-aided design
by our algorithm is an optimal clustering. O (VLS| CAD).
We analyze the complexity of our algorithm. @rouping(),
Group_vertex() would run at mostV'| times, so the time complexity
of the WHILE loop isO(|V||E|). In Circuit_clustering(), finding [. INTRODUCTION

the max"_““m delay_ m_atrixL\. takes OS 4 (|Vl + IED), findiqg Floorplan design is the problem of planning the positions and shapes
a tc_)pologlcal orde_r n 7I|ne‘ 4 takeS(|V| + |E|) ,t'me' the sorting of a set of modules on a chip in order to optimize the circuit perfor-
in line 11 takes timeO(|E|lg(|E])), and Labeling() takes only 006 at 4 very early designing stage. During this floorplanning phase,

O(|E]) tlrr:e. So, the first WHILE loop ofCircuit clustering() ey g performance like layout area, interconnect cost, heat dissipation
takes O(|V |(|E_|lg(|E|) + [VIIE])) time. Cluste_rlng phase (_Iln(_as and power consumption, etc., should be taken into consideration.
13-19) takes time&)(|V| + |E|). So the overall time complexity is
O(VI(IElg(IE]) + [VIIED) = O(VP|E)).

Remarks: In fact, our algorithm can also handle the case where the
intercluster delayD is a variable value (sap(x.,y),V(z,y) € E). Manuscript received December 3, 2001; revised May 17, 2002. This paper
Itis because the calculation 8f(r.y) = I(x) + D + Ay.r) in- M EEREEEE B AL LIC i Computer Science and Engineering
cludes t,he value oD such that ifD becomes a variabl® (. y), th_e Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (e-mail: 7
calculation becomes’(x, y) = I(x) + D(x,y) + A(y,r), and still fyyoung@cse.cuhk.edu.hk).
correctly represents the situation whigny) becomes an intercluster Digital Object Identifier 10.1109/TCAD.2003.810738

0278-0070/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 653

There are three kinds of floorplans: slicing, nonslicing, and mosaic
floorplan. A slicing floorplan is one that can be obtained by recur-
sively partitioning a rectangle in two by either a vertical or a hori-
zontal line. The advantages of using slicing floorplan are that it has
simple representations such as slicing tree and Polish expression [7],
[8], and optimal module shaping can be done efficiently. However,
slicing floorplan is only a small subset of all feasible packings and is not
general enough. A nonslicing floorplan is not necessarily slicing, and
can represent any kind of packing. Several methods, sequence-pair [5],
bound-sliceline-grid (BSG) [6], O-tree [2], B*-tree [1], and transitive
closure graph [4], have been proposed for representation of nonslicFﬁ% L
floorplan. The paper [3] proposes a new type of floorplan called mo- "
saic floorplan that is similar to general nonslicing floorplan except that / \\

Example of clustering constraint.

it does not have any unoccupied rooms. A representation called corner
block list can be used to represent mosaic floorplan.

+ +
A floorplanning algorithm has to deal with several essential issues, \ / \

including module shaping, routability, area and delay, in order to op-
timize the circuit performance. With the scaling down of the IC tech- A * G "
nology, the number of transistors that can be built into a standard size / \\ /\ /\
chip has increased rapidly, and it has become increasingly important N A 4 D N H
to consider the circuit performance as early as possible in the floor- /\ /\ /\
planning stage. Placement constraints in floorplan design are useful i & 4 % J |

for restricting the relative positions between the modules according to

their functionalities in order to improve the circuit performance like ingig. 2. Siicing tree.
terconnect cost and delay, etc. Some previous works on preplace con-

straint and range constraint in slicing floorplan [12], [11] have bee&ﬂe three input valued,, r; ands;. A; is the area of the module, and
done. Clustering constraint is another popular type of constraint Mands, are the minirhurh and rhaximum aspect ratio of the module

which a given set of modules are restricted to be placed adjacent to ?@?pectively. Letv; andh; be the width and height of the module, then
another. The wiring cost can be reduced by placing modules with a ot

) X : S C A7 = w;h; andr; < h;/w; < s;. The overall aspect ratio of the
of interconnections closely together. Designers may also need this B%rplan is also required to be within a given range

of copstrair?t to restrict the positions of some mpdules accor.ding tothein ihis paper, clustering constraint is considered in floorplan design.
functionalities. The paper [9] proposed a hybrid floorplanning methqgiven a set of module® and a subset of modules C &, we want to

using partial clustering and module restructuring. Their method rﬁéck the modules i such that the modules i will be adjacent to

stricts clusters to be placed in rectangular regions (subtrees in a slicg?j%h other. Fig. 1 shows an example of clustering constraint. Modules

tree). Since constrained modules are restricted to be placed in rectany: ondH are the subset of modules to be clustered and they have to
gular regions, the packing topology is limited and the deadspaceb%f placed adjacent to each other in the final packing. The floorplanning

the final floorplan is usually large. The paper [10] proposed a uniﬁe[ﬂ blem with clustering constraints is defined as follows.
method to handle different kinds of placement constraints in gene aP

floorplan. However, their method does not handle the clustering CoR- proplem FP/CC
straint as defined here. .

In this paper, clustering constraint is considered in which some mod-C'Ven @ set ofv modules® = {mi,ma,...,m.} andm; =
ules are required to be placed next to each other. The cost of rout 4g" ri;si) fori = 1,...,n where, is the area of modulé, and
can be reduced by imposing clustering constraints to those modLﬁé@nqs" are the minimum and maximum aspect ratio of modute
which are heavily connected. The method we used will determine tﬁgectlvely._Le_ﬂ be a subset of the_ modulesdn pack the modules
surrounding positions of a target module in a Polish expression 'quf to minimize thg total area gnq interconnect cost such that the fol-
swap the constrained modules into those positions in order to sati ing three conditions are satisfied.
the constraints. Our method can also be extended to handle more thah) The modules in\ will form a cluster (lying adjacent to each
one cluster in a floorplan. This paper is organized as follows. We will other) in the final packing.
define the problem in Section II. In Section IIl, a slicing floorplanner 2) Each module satisfies its area and aspect ratio constraint.
on which our method is based will be described. In Section IV, de- 3) The aspect ratio of the whole packing is within a given range
tailed descriptions of the clustering method will be given. Results will [r, s].
be shown in Section V.

[ll. BASIC SLICING FLOORPLANNER

Ourworkis based on a well-known slicing floorplanner [8]. A slicing
floorplan can be represented by a binary tree. The leaf nodes of the tree

A floorplan with» modules (, 2, ..., n) is an enveloping rectangle are the basic modules and the internal nodes are labeled either with a
R subdivided by horizontal and vertical line segments inttonover- + or a * operator to represent a horizontal or a vertical cut, respec-
lapping rectilinear regions such that each regl®nmust be large tively. An example is shown in Fig. 2. Reading the tree in postorder, a
enough to accommodate the corresponding module Polish expression will be obtained that is used to represent the floorplan

In most iterative methods, a floorplan is evaluated by a functign structure in the algorithm. A normalized Polish expression is a Polish
AW, whereA is the area of the floorplan an#l is the total wire length. expression with no consecutive identical operators.
The aspect ratio of each module will be limited so that the delay insideSimulated annealing is used to optimize the total area and intercon-
each module will not be too long. For each rectangular moduleere nect cost of the floorplan. The costis computedias AW whereA is

Il. PROBLEM DEFINITION

654 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

the total area ant’ is the wire length. Normalized Polish expressionis
used to represent a solution packing during the annealing process. The
neighbors of each solution have to be defined such that the optimal so-
lution is reachable. Three types of moves M1, M2, and M3 are used.
M1 swaps two adjacent operands in the expression, M2 interchanges
the operators in a chain (a chain is a substring of operators in the Polish
expression) and M3 swaps two adjacent operand and operator.

Fig. 3. Example of the surrounding modulesrof
IV. FLOORPLANNING WITH CLUSTERING CONSTRAINT

. . . S For each modulé/; in the slicing floorplan,; is surrounded by

In this paper, we consider clustering constraint in slicing roorpIar& most four cuts which correspond to four operators in the normal-
A simple method to solve this problem is by adding a term in the cos} . - . .

. . T 1zed Polish expression. If those four operators are located in the Polish

function of the annealing process as a penalty for violating the cogl ression, the set of modul of M, can be found. For a Polish
straint. This method was tested but the results are poor and the ¢)EEressiom =ajaz, ..., a,, we define avalid subexpressiofd =

straints will usually be violated in the final packing. In our approach,

clusters are maintained throughout the whole annealing process. .~ FFl: -« Ghim wherek 2 L andn > k+m as a subexpression
9 9p " in o such thatv;, must be an operand and the number of operands is

%‘a’ﬁal to the number of operators plus ongirA valid subexpression
indeed represents a subtree in the whole slicing tree.

h . P) . o The two operators, + and *, correspond to cuts of different orienta-
|sthen’obta|ned.’ForeaML < H." i M’.¢ A, we W'I.l sw_apAL with tions. Let(, 8, and~ be valid subexpressions in a Polish expression.
someM; whereM; € A\IL,. This algorithm will maintain the cluster) .

Some terms are defined as follows:

in the floorplan throughout the whole annealing process. An overview . ’ ;
of the algorithm is given below:) below(8,() &= v = (6+

module. A target moduléZ; is picked randomly from the subsgét
given by the user. A set dif;’s surrounding moduleH; in the packing

i) above(6,() <— ~ =68+
iii) left(s,¢) < ~ = (6%

Main Program iv) right(6,() < ~ = 6(x*.
begin Given a target moduléd/;, the algorithmFind_Surroundingwill
Initialize temperature T find four valid subexpressions, b, ¢, andd such thatbelow (61, a),
While T > Threshold do above(62,b), left (63, ¢), andright(és,d), andé; fori = 1,...,4is
begin the smallest valid subexpression containiidg and satisfying the cor-

Move by either M1, M2, or M3 responding relationship.

Call procedure Clustering

Compute Cost Algorithm : Find_Surrounding(M;, «)

If Cost is reduced Input: @ = aio, ..., asm_; iS @ Polish ex-

Accept the move pression of the original packing.

Else , kAT t is the index of the target module.

Prob = mm(l_ve) _ Output: Valid subexpressions a, b, ¢, and

fWhefed A. = change in hCOSt' k=constant d such that below(61,a), above(6s,b), left(ss,c),

If Random (0,1) < Prob then and right(és,d), and & for i = 1,...,4 is the

Accept the move shortest valid subexpression containing

Else M, and satisfying the above relation-

dReject the move ship.
en 1 first = end = ¢
end 2 While (a, b, ¢ d are not all found) and

(first > 1) and (end < 2n —1)
. . 3 begin

A. Locating Surrounding Modules 4 If Qenay: iS an operator

An algorithm is devised to locate the surrounding positions of @ begin
target module in a normalized Polish expression. We definstihe 6 Find k£ such that
rounding sebf a moduleM; as 7 € = Qlgirst—k Ofirst—k+1,-- -5 Qfirst—1
Definition: Given a module)Z; in a slicing floorplanF’, the sur- 8 is the shortest valid subexpression
rounding sefl; of M; is a set of modules if" such thatamoduldZ; 9 If (@ena+1=+) and (a is not found yet)
isinII; ifand only if (1)}, is above (below}/; and there is no module 10 a=e
M. in F whereM;, is above (below}{; andM; is above (below},, 11 Else if (aenar1=x%) and (¢ is not found
or (2) M; is on the right (left) ofAZ; and there is no modul&{;, in F yet)
where M, is on the right (left) of\/; and A, is on the right (left) of 12 c=e
M. 13 first = first — k; end =end + 1
Note that we can locate the modules in the surrounding setofagiveé end
module in linear time by just looking at the Polish expression and id Else
real packing is needed. A target moddle € A is selected randomly. 16 begin
A setll, is found such thad{; is surrounded by the modulesihy in 17 Find % such that
the packing. An example is shown in Fig. 3. In this example= F* 18 € = Qlend+1 Qend+2 ; - - - » Qend+k
andTl, = {A,B,.C,E,G, H}. 19 is the shortest valid subexpression

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

+ H * +
/ /\/\ lJ*AG$+H*BC"ED+*+*+K*
G B CE D first

end

(a)

/\ I J

a d
[J* AF +HF
first

BC*ED+*+*+K*
d

en

Fig. 4. Example to illustrate the algorithm Find_Surrounding.

20 If (@endtk+1=+) and (b is not
found vyet)

21 b=c¢e

22 Else if (@epdtr+1=x*) and (d is not
found vyet)

23 d=c¢e

24 end =end +k+1

25 end

26 end

The complexity of this algorithm i©(n). Fig. 4 illustrates the steps Output:

655

Hx :
IJ*AF+H‘BC*‘ED+“+*+K"‘

first end

(b)

AN

A

/ 1 J
/d
+ a d b
@/® / II'AF+E*T*+K'
first d
|) o

(d)

ca d b
IJ*F+E**T+K*

first end

(e)

procedure can be used to fihd efficiently givena, b, ¢, andd. The
following procedure is for finding the modules Ik from the subex-
pression lying below the target module, i.e., from the subexpression
Procedures for the other three subexpressions can be constructed sim-
ilarly.

Procedure : Mark Neighbor Below(first,end)
Input: first is the first index of the valid
subexpression a.

end is the last index of a and first < end.
II is the set of modules lying at

of the algorithm. The expressions b, ¢, andd are valid subexpres- the top of the supermodule represented by
sions representing subtrees in the slicing tree. For the example in Fig. 3,

M;=F,a=G,b=BCxED+x,¢= A,andd = H. The shortest 1 If

first = end

valid subexpression can be obtained by counting the number of ope2a- II = II U ag,¢

tors and operands. Note that not all the basic modulesiinc, andd

3 Else

belong to the surrounding sBt of M,. For example, the subexpres-4 begin

sionb is lying aboveM, and only the modules lying atthe bottom ofthe5 Find %k such that

€ = Qend—k Qend—2 - -- Qend—1

supermodule correspondingltbelong tdll;. Fig. 5 shows an example is the shortest valid subexpression

in whichb = BC x ED + = but D does not belong tfl;. A recursive 6

If (Qend = *)

656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

10 Call Mark Neighbor Below(first(a),end(a)).
11 Call Mark Neighbor_Above(first(b),end(b)).
12 Call Mark Neighbor Left(first(c),end(c)).
13 Call Mark Neighbor Right(first(d),end(d))
14 Y, =AnNI
15 If T +1> 4]
16 All clustering constraints are sat-
isfied.
17 Return
18 end
19 Take i where |Y;| is maximum and M;e€
I] Candidate is not marked
20 If count =0, put Clustering={}
)) 21 Add the modules in T, to Candidate
Fig. 5. D does not belong tbl, wherel, is F'. 22 If |H | > |A| _1
23 begin .
7 Mark Neighbor Below(first,end — k — 1) 24 For each M, € ANl
8 Mark Neighbor Below(end — k,end — 1) 25 Find M; € ll;nA
9 Else if (enqa = +) 26 swap(M;, My)
10 Mark Neighbor Below(end — k,end — 1) 27 count = |A] -1
11 end 28 end
29 Else
30 begin o
B. Constraint Satisfaction 31 For each M, ell;NnA

Find M; € ANIl; and M; ¢ Clustering

In the annealing process, all the given constraints have to be satis%id

in order to make the floorplan feasible. Modules in the constrainhset

Swap(M;, My)

will be swapped with the surrounding dét until the conditionA C gg Add M; to Clustering
, - o count = count + 1
{M,} U II, is satisfied. 36 end
In the first iteration,M; is randomly selected from\. An intersec- 37 Mark M,
38 end

needed to satisfy the clustering constraintgAf > |II;| + 1, there
is not enough room for swapping, and the whole process will be re-

peated recursively by selecting another module that is already in thqf ITL:| < |A| — 1 (lines 30-36), the number of positionsTi is not

lelljsrt]er as the ngwr:arget TOdgle untlllgll the constramtsﬁare rs]atlsf! ough for accommodating all the constrained modules. Other target
three moves in the simulated annealing process can affectthe neigly o5 will be selected and the process will be repeated until all the

boring structure and may lead to infeasible packings. However we Wé nstraints are satisfied. The algorithm can handle even large cluster
swap operands in the Polish expression to maintain a feasible soluté

throughout the whole annealing process. There is only one case in move

M1 that does not affect the feasibility of the packing, i.e., if two adja-

cent operands to be swapped are bothior both in® — A. Modi- - Multiclustering Extension

fication is not required in this case and the clustering constraints will Multiclustering constraint allows users to have more than one

not be violated after the move. cluster in the final packing. The algorithm described above handles
The following algorithm describes the strategy to ensure that all t@ly one cluster. Multiclustering constraint can be handled by invoking

clustering constraints are satisfied throughout the annealing procesge above algorithm several times. However, the major problem is that

the surrounding sets of the target modules in different clusters can

overlap. Infeasible packing will be resulted if modules are swapped

randomly. For example, given two clustering sAtsand A, a target

moduleM,, andM,, is picked from each clustering set. Li&t, and

II;, be the surrounding sets &f,, andM,,, respectively. If a module

M, exists such thabf, € II,, andM; € II,, this module);

should be removed from eithék;, or II;,. Otherwise, the swapping

space provided by/; may be used twice.

Algorithm : Clustering(a, A)
Input: o Q1 9, -y Qop 1
pression of the packing.

A is the set of modules having clus-

tering constraint.

Output: Modified a that represents a fea-
sible floorplan satisfying the given

clustering constraint

is a Polish ex-

D. Cost Function

1 count =0

2 Candidate=A The cost function is computed as+ AW + 3C whereA is the

3 While count < |A] -1 total area of the packingy is the half perimeter estimation of the

4 begin wire length, and_ is a penalty term for the clustering constraint. The

5 For each M, € Candidate penalty termC' is the sum of squares of the center to center distances
6 begin between every pair of modules in the same cluster. The penalty term
7 Find 1I; by: helps in generating a packing in which the constrained modules will be
8 Initialize I1; as empty placed as close to each other as possible. The parameserss are

9 Call Find Surrounding(M;,) constants that control the relative importance of the three terms.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003 657

TABLE | TABLE Il
RESULTS OF THECONTROL EXPERIMENTS RESULTS OF TESTING WITH MULTICLUSTERS
FOR THEMCNC EXAMPLES
Data Set| n | % Deadspace| Time (sec) X
Data Set | n | # of Clusters |% Deadspace|Time (sec)
ami33 |33 245 12.7 .
(Cluster Sizes)
ami49 |49 3.00 375 .
ami33-mcl |33 3(4.43) 2.35 21.0
1 t 62 4. .
prayou 33 1244 ami33-me2 (33| 4(3332) 3.16 21.4
ami33-mc3 |33| 5(3.2.2.2.2) 2.17 21.9
TABLE 1
RESULTS OF TESTNG Vi ONE CLUSTER amid9-mel 49| 3(655.5) 3.83 57.8
amid9-mc2 |49| 4(4.4.4.4) 2.77 56.7
Data Set | n |Cluster Size|% Deadspace| Time (sec)
ami49-me3 |49| 5(4,3,3,3.3) 3.99 57.1
ami33-ccl (33 7 1.62 19.1
playout-mc1|62 3(7,7,6) 8.28 156.9
ami33-cc2 (33 7 2.80 184
playout-mc2(62| 4(5,5,5.5) 7.18 154.6
ami33-cc3 (33 7 2.74 22.6
playout-mc3 (62| 5(4.4.4.44) 5.87 151.8
ami49-ccl (49 10 4.65 534
ami49-cc2 (49 10 353 532
ami49-cc3 (49 10 4.04 519 ! - 5
playout-cc1{62 12 8.44 146.5 7 u
playout-cc2|62 12 743 147.8
playout-cc3{62 12 6.57 146.4 .

V. EXPERIMENTAL RESULTS

We tested our method with three Microelectronics Center of Nort
Carolina (MCNC) building blocks examples (ami33, ami49 anc
playout). Ami33 has 33 modules and 123 nets. Ami49 has 49 modul
and 408 nets. Playout has 62 modules and 1161 nets. A cont
experiment without any clustering constraint was performed for ea
data set and the results are shown in Table I. The temperature was
decreased at a constant rate (0.9), and the number of iteration§i@t 6. Result packing of ami33 with three clusters’,(5,7,11,13;
each temperature step was one hundred times the number of moddfest427:3013:19,22,25,29).

All experiments were performed on an UltraSPARC-II 400-MHz
processor. method can be extended to handle more than one cluster successfully

In the first set of experiments, 20% of the modules in each benchithout imposing much penalty in the floorplan quality and the exe-
mark were selected randomly to have clustering constraint. (Ami33jtion time. Figs. 6 and 7 show a result packing of ami33 with three
ami49, and playout have 7, 10, and 12 constrained modules, respasters and a result packing of ami49 with four clusters, respectively.
tively.) For each benchmark, we repeated the experiment three timefigs. 8 and 9 show the improvement in interconnection by imposing
by selecting different modules into the constraint set. The results a&tastering constraints. We observed from the data set ami33 that mod-
shown in Table Il. We can see that the clustering constraint can be sdes 15, 18, 19, 20, 21, 24, and 25 are heavily connected with each
isfied in all the experiments with only a small increase in total area anther, so we imposed a clustering constraint between them. Figs. 8 and
execution time. This has demonstrated the effectiveness of our meti®oshow the result packings with and without the clustering constraint.
in handling a single cluster in slicing floorplan. One can see that the interconnect cost in Fig. 8 is much smaller than

In the second set of experiments, we tested our method with mthat in Fig. 9. This example demonstrated that with careful selection
ticlustering constraints. In each benchmark problem, we picked threéthe clustering constraints, our method can be used to reduce the in-
four, and five clusters, each having 2—7 modules. The results are shdemtonnect cost of a floorplan by constraining those strongly connected
in Table IIlI. If we compare Table Il with Table II, we can see that oumodules in a cluster.

658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

%

eS|

PN

Fig. 7. Result packing of ami49 with four

C>:10,11,12,13(’5:15,16,17,18(4:18,19,20,21).

clustersC,(:6,7,8,9;

caEgiy . |
.%7

\

e

7

12

7 5]

W : : 4

Fig. 9. Result packing of the same problem in Fig. 8 without imposing any
clustering constraint (wire lengtl 0.1596 x 10° units).

(1]

[2

(3]

[4]

(5]

(6]

(71

Fig. 8. Result packing showing the improvement in interconnection by [g]
imposing clustering constraints (wire length0.1472 x 10° units).

VI. CONCLUSION

We have devised and implemented an efficient method to handl
clustering constraint in slicing floorplan. Experimental results showe

9]

0]

that our method can handle clustering constraint effectively without im-
posing much penalty in the quality of the floorplan and the execution
time. In addition, this method can be extended to handle multicluster$11]
We have also demonstrated how the method can be used to reduce inter-
connect cost by imposing clustering constraint between those modulegy]

that are strongly connected with one another.

REFERENCES

Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-trees: A new
representation for nonslicing floorplans,”fvoc. 37th ACM/IEEE De-
sign Automation Conf2000, pp. 458-463.

P. N. Guo, C. K. Cheng, and T. Yoshimura, “An O-tree representation
of nonslicing floorplan and its applications,” Proc. 36th ACM/IEEE
Design Automation Conf1999, pp. 268-273.

X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu,
“Corner block list: An effective and efficient topological representation
of nonslicing floorplan,” irProc. IEEE/ACM Int. Conf. Computer-Aided
Design 2000, pp. 8-12.

J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure graph-based rep-
resentation for nonslicing floorplans,” Proc. 19th ACM/IEEE Design
Automation Conf.2001, pp. 764—769.

H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB placement with
obstacles based on sequence-pdEFEE Trans. Computer-Aided De-
sign, vol. 17, pp. 60-68, Jan. 1998.

S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module place-
ment on BSG-structure and IC layout applications Pimoc. IEEE/ACM

Int. Conf. Computer-Aided DesigNov. 1996, pp. 484—493.

R. H. J. M. Otten, “Automatic floorplan design,” ifProc. 19th
IEEE/ACM Int. Conf. Computer-Aided Desigi982, pp. 261-267.

D. F. Wong and C. L. Liu, “A new algorithm for floorplan design,”
in Proc. 23rd ACM/IEEE Design Automation Cgnfune 1986, pp.
101-107.

T. Yamanouchi, K. Tamakashi, and T. Kambe, “Hybrid floorplanning
based on partial clustering and module restructuring®roc. Int. Conf.
Computer-Aided Desigri996, pp. 478—483.

E.F. Y. Young, C. C. N. Chu, and M. L. Ho, “A unified method to handle
different kinds of placement constraints in floorplan design,Pioc.

7th Asia South Pacific Design Automation Conf./15th Int. Conf. VLSI
Design 2002, pp. 661-667.

F. Y. Young and D. F. Wong, “Slicing floorplans with boundary con-
straints,” inProc. IEEE Asia South Pacific Design Automation Cpnf.
1999, pp. 17-20.

——, “Slicing floorplans with range constraints,” iroc. Int. Symp.
Physical Design1999, pp. 97-102.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

