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Abstract—In the early stage of floorplan design, many modules have (a) (b)

large flexibilities in shape (soft modules). Handling soft modules in general
nonslicing floorplan is a complicated problem. Many previous works have
attempted to tackle this problem using heuristics or numerical methods, but
none of them can solve it optimally and efficiently. In this paper, we show
how this problem can be solved optimally by geometric programming using minimum using some standard convex optimization techniques. How-
the Lagrangian relaxation technique. The resulting Lagrangian relaxation  ever, all these methods are limited to placement topology of rectangular
subproblem is so simple that the optimal size of each module can be com- dissection only, i.e., slicing.

puted in linear time. We implemented this method in a simulated annealing . .
framework based on the sequence pair representation. The geometric pro- The problem of handling soft modules becomes more complicated
gram is invoked in every iteration of the annealing process to compute the in nonslicing floorplans. Both Paet al.[9] and Wanget al.[12] try to
optimal size of each module to give the best packing. The execution time is generalize Stockmeyer’s algorithm [10] to nonslicing floorplan. Kang
much faster (at least 15 times faster for data sets with more than 50 mod- gt g]. [4] extend the bounded sliceline grid (BSG) method [8] to handle

ules) than that of the most updated previous work by Murata and Kuh . L . .
(199)8)_ For a benchmark date?with 48 modules, we tgke 3.7 hin total for SOft modules using heuristics. These methods are either suboptimal or

the whole annealing process using a 600-MHz Pentium 11l processor while aPplicable to some specific nonslicing structures only. Muei. [7]
the convex programming approach described by Murata and Koh needs follow the framework of [5] and try to reduce the number of variables

seven days using a 250-MHz DEC Alpha. Our technique will also be appli- and functions when formulating the problem so as to improve the ef-
cable to other floorplanning algorithms that use constraint graphs to find  fisiency. However, the execution time of their method to find an exact
module positions in the final packing. Lo ’
solution is still very long. It takes seven days to pack a benchmark data
Index Terms—Floorplanning, Lagrangian relaxation, nonslicing, phys-  with 49 modules.
ical design, shaping. In this paper, we will present an efficient method to handle shape
flexibilities of soft modules in general nonslicing floorplans optimally.
I. INTRODUCTION The problem is formulated as a geometric program, but we use

) ] ) ) ~ the Lagrangian relaxation technique [6], a general technique for

FLOORPLANNING has become increasingly important in physicalonstrained nonlinear optimization, to solve the problem efficiently.
design of very large scale integrated circuits due to the advancertifls technique transforms the problem into a sequence of subproblems
the deep submicrometer technology. Many floorplanning algorithrag|ied Lagrangian relaxation subproblems. Each subproblem can be
were proposed in recent years and many of them make use of cg@ificantly simplified by the Kuhn—Tucker conditions. The resulting
straint graphs to compute module positions in the final packing. Uggpproblem is so simple that the size of each module can be computed
fortunately, it is not known how shape flexibilities of soft modulesy jinear time. This complexity can be further reduced to a constant on
can be handled efficiently using constraint graphs. This is an impQfzerage by using a different representation for nonslicing floorplans
tant problem since soft modules are common in the floorplanning stagg supports planar constraint graphs.
when many designs are not yet done in details. Some previous work§ye implemented this method in a simulated annealing framework
[4], [8], [9], [12] have attempted to tackle this problem but none of themising the sequence pair representation. The objective of the annealing
succeeded in obtaining the optimal solution efficiently. - . process is to minimize the total packing area and interconnect cost. To

There are two types of floorplans: slicing and nonslicing. A slicingya|uate the area in each iteration of the annealing process, we use the
floorplan is a floorplan that can be obtained by recursively cutting réGeometric program to compute the optimal packing area taking into
angles horizontally or vertically. A nonslicing floorplan is one that igccount the shape flexibilities of all the soft modules simultaneously.
notrestricted to be slicing. Fig. 1 shows an example of each. Nonsliciag,, floorplanner can pack much faster than the most updated previous
floorplans are a more general representation that can describe all kiggsy [7]. For the benchmark data with 49 modules, we take only 3.7 h
of packings. However, slicing floorplans have an important advantaggiotal for the whole annealing process using a 600-MHz Pentium I
over nonslicing: there are efficient algorithms to handle soft mwu'?ﬁocessor while the convex programming approach in [7] needs seven
in slicing floorplans optimally. A well-known approach by Woeg  ays using a 250-MHz DEC Alpha. Our method will also be applicable
al. [13] uses shape curve representation. A shape curve can desciifi§iher floorplanning algorithms that make use of constraint graphs to
all possible shapes of a module and these shape curves can be aggﬁﬂ)ute module positions in the final packing.
up horizontally or vertically to produce new shape curves for Super-The rest of this paper is organized as follow. We will formulate the
modules containing more than one basic modules. Btafl. [S] and  hroplem in Section II. Section 11l describes briefly the sequence pair
Wanget al.[11] use numerical optimization methods. Me{halj (5] relpresentation. We will formulate the geometric program in Section V.
formulate the problem as a geometric programming and find its glohalsection Vv, we will explain in details the Lagrangian relaxation tech-

nique. Experimental results will be shown in Section VI and some re-
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a given range. In this problem, we are givenmodules of areas

Ay, As, ..., A, and their aspect ratio rangdsi min, 71, max),
[P, mins 72, max)s « -« [Pa, min, Tn,max). IN case of a hard module, hy
the maximum and minimum aspect ratio will be the same.
A packingof a set of modules is a nonoverlap placement of the mod- @
ules. Afeasible packings a packing such that the widths and heights of (b)
the modules are consistent with their aspect ratio constraints and area . . . )
(a) Horizontal and (b) vertical constraint graphs for the sequence pair

constraints. We measure the area of a packing as the area of the smaﬁi%%ﬁ

. bacd).
rectangle enclosing all the modules.

We are also given the netlist informationet,, neto, ..., net,, . . . .
and the relative positions of the input—output (/0) pins p- » Fig. 2 shows the horizontal and vertical constraint graphs for the se-
along the boundary of the chip. For each net,, wherel < i < mq, quence pais = (abed, bacd). In this example, the orders ofand
we are given its weight, the 1/0 pin, and the set of modules to whidHjn the two sequences are differént- a -« b .-, .- b---a -+,

it is connected. Our objective is to obtain a feasible packing minto® 1S aboveh and there is an edge frobito a labeledy; in the vertical

mizing the total packing area and interconnect cost. We use the sfgnstraint graph. For) modulesande, thelr orderis_ are thhe S"?‘”;le Ln b?jth
ulated annealing technique (based on the sequence pair representa?ft’)‘f‘u‘fence(9 TG reConnycecaces cooo), SOcis on the right-han

to search the solution space. For each intermediate solution in the g€ ofa and there is an edge fromfo c labeleduw in the horizontal

nealing process, we evaluate the packing by computing a linear fuﬁ(?—ns”a'm gr_aph. In this way, we can construct the horlzontgl and ver-
tion of its area and interconnect cost. However, there can be many al ponstramt graphs by looking at the qrders of every pair of qu-
alizations of the same packing due to the shape flexibilities of the s S in the tW.O sequences. In the annealing process, we can modify a
modules. The most important contribution of our paper is that we gegquence pair by two kinds of moves:
vised an efficient method to compute the shapes of the soft modules tot) M1: exchange two modules in the first sequence only;
give the optimal packing. The problem is formulated as follows. 2) M2: exchange two modules in both sequences.
Problem Floorpolan Area Minimization (FP/AM)Given a set of These two moves are sufficient to transform any sequencefiaiany
hard and soft modules with area and aspect ratio constraints, and a §peer arbitrary sequence pairin one or more steps.
cific packing topology of these modules described by a pair of vertical
and horizontal constraint graphs, find the optimal shape of each module IV. FORMULATION OF THE GEOMETRIC PROGRAM
soas tc_) produce the sme_lllfa_s_t possible feasible packing_taking into CONGe are givenn modules M,, M., ..., M, of areas A,
sideration the shape flexibilities of all the soft modules smultaneous!x.% ... A,. For each modulZ,, wherel < i < n, its minimum
and maximum aspect ratios aremin andr; max, respectively. The
minimum and maximum width ob; are, thus.L; = /A, /i max
andU; = \/A;/r; min, respectively. We are also given the topology
We use sequence pair to represent a general floorplan in the ghthe packing described by a pair of horizontal and vertical constraint
nealing process. A sequence pair of a set of module is a pair of cor@iaphs. Letz; denote the smallest position of the lower left corner
nations of the module names. For example; (abcd, bacd) is a se- Of moduled satisfying all the horizontal constraints in the horizontal
quence pair of the module sgt., b, ¢, d}. We can derive the relative constraint grapltz,. Similarly, y; denotes the smallegtposition of

positions between the modules from a sequencesgajitthe following the lower left corner of modulg satisfying all the vertical constraints
rules. in the vertical constraint grap&... Then, for each edge(i, j) from

modulei to modulej in G, we have the following constraint:

[1l. SEQUENCEPAIR AND CONSTRAINT GRAPH

1) H-constraint:if s =(---a---b---,---a--- b---), module
b is on the right hand side of module v bws < @
2) V-constraintif s = (---a -+ b+, -« b---a---), module Tim WSy

b is below module:. wherew; is the width of modulé. Similarly, for each edge(:, j) from

We can use constraint graphs to represent these horizontal and verfiggdulei to modulej in G.,, we have the following constraint:
placement relationships. A horizontal (vertical) constraint grapah

(G) for a set ofn. modules is a graph of vertices with the vertices
representing the modules and the edges representing the horizontal
(vertical) placement constraints. For example, if moduls on the

A;
yi + “—L < yj-

right-hand side of module, we will add an edge from to b in the Ir.‘ the horizontal constram_t gragdiy, , we denote the setof sources and
sinks bys, andt,, respectively, where a source is a vertex without in-

horizontal constraint graph with a weight equal to the widtl oThe coming edae and a sink is a vertex without outgoing edae. Similarl
reason is that if is on the right hand side af, its lower left corner (no- Ing edg INK IS a verlex without outgoing edge. simiarly,
we uses, andt, to denote the set of sources and sinké&fin respec-

tice that we always refer the position of a module by the coordinatte“?eI Then. for each modul&in
its lower left corner) should be at a distance of at least the width of Y- ’ S

from the lower left corner of. Similarly, if moduleb is above module

a, we will add an edge from to b in the vertical constraint graph with i =0
a weight equal to the height of We can build these graphs directlyand for each moduléin s,
from a sequence-pair representation. )
1) Add an edge from to b labeledw, to the horizontal constraint y; = 0.
graphG,, wherew, is the width ofa iff s = (---a --- b -+,
s e bt For simplicity, we add one dummy vertex labeled+ 1 to eachG),
2) Add an edge fronb to a labeledh; to the vertical constraint andG,. The dummy vertex inG, and G, represents the rightmost
graphG, whereh, is the height ob iff s = (---a --- b---, and the topmost boundary of the chip, respectively. Edgen + 1)

choei ). with weightw; is added ta&), for eachi € ¢, because the rightmost
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chip boundary should be at a distance of at leasirom each module - Z i, nt1Yn+1

i € tp. Similarly, e(i, n + 1) with weight A; /w, is added toG, (i, nt1)EG,

for each: € t,. From now onwards, we assume that the constraint

graphsG, and G, contain these additional vertices and edges. The + Z Z N — Z Ao |

problem can be formulated as the following geometric programming 1<i<n \e(, j)EG (4, )EG
primal problem P P):
minimize  &,+4+1Yn+1 1<i<n \e(i, j)EG, e(j, 1)EG,
subjectto z; +w; <=z; Ve(i, j) € Gy (A) 1
A, o + > )IRRURE KIS U DRI b
Y + o <y, Ve(,j) EG, (B) 1<i<n (i, )EG), (i, EG, o
Li<w, <U: Y1<i<n. ©) + wi(Li —wi)+ > vilwi = U).
1<i<n 1<i<n

The Kuhn—-Tucker conditions imply that /0x; = 0 andd(/dy; =0
V. LAGRANGIAN RELAXATION forall1 < i < n + 1 at the optimal solution of?P. Therefore, in

searching for the and;7 to optimizeL D P, we only need to consider

Accordl_ng to th_e I__agranglan relaxation proc_edure, we can mtrod_u%se multipliers such that these conditions are satisfied. Therefore, for
nonnegative multipliers, called Lagrange multipliers, to the constraints | « ; < ,,

in order to get rid of those difficult constraints and incorporate them
into the objective function. LeX;, ; denote the multiplier for the con-

straintz; + w; < x; in (A) and ;,; denote the multiplier for the 0¢/0mi = Z V iy = Z , i =0
constrainty, + A, /w, < y; in (B). Let A andji be vectors of all e(h NEG <l DECn
the Lagrange multipliers introduced to the constraints in (A) and (B), ¢/ oy; = Z i — Z py,i =0
respectively. Then, the Lagrangian relaxation subproblem associated (i, NEG, (4, EG,
with the multiplierA and;i, denoted byl RS/ (X, ji), becomes
and
minimize  =,41Ynt+1+ Z
6(/81711-‘,-1 =Ynt+1 — Ai,n-&-l =0
Z 7 )\lJ(J, +w; —a;)+ (i yEG,
e(1,1)€G,
A-ll 6(/8Un+l =Tn41 — ‘ Z Hi,n+1 = 0.
Z pig \yit ==y et n+1)EG,
e(i, HEG, !
subjectto L; <w; <U; V1<i<n. Rearrange
: . v Aj,i = A 1
LetQ(X, ji) denote the optimal value of the probldn®S/ (X, /7). We (_é@ i 7(,2(1 + @
define the Lagrangian dual problethp P) of PP as follows: A R
Doowii= D i @)
maximize Q(X, i) *ld, )EGy o4, )€Gy
subject to X > 0andg > 0. and
SinceP P can be transformed into a convex problem [7], we can apply Ynt1 = Z Aint1 3)
[6, theorem 6.2.4] and imply that (t& i) is the optimal solution to (i, n+1)EG,
LDP, the optimal solution of. RS/ (X, @) will also optimizePP. o1 = Z T )

e(i, n+1)EG,
A. Simplification of the Lagrangian Relaxation Subproblem
The Lagrangian relaxation subprogra[rRS/(X, j7) can be greatly We us€ to denote the set cﬁfX, ji) satisfying the above relationships
simplified by the Kuhn-Tucker conditions. Consider the Lagrangian(1)—(4) for a given pair of horizontal and vertical constraint graphs. If
of PP [6] (X, fi) € , the objective functio of LRS/(\, [i) becomes

(=ZTnt1Ynt1 + Z iy (@i + wi — x5) L o _ ) A
e(i, ))EG) F= Z Z A it Z Ll
1<:i<n e(i, )EG, e(i, J)EGy

A;
+ Z H‘i,j(yi + o yj) + Z wi(Li — w;)

e(i, j)EG, 1<i<n — E )\7:177_;'_1 E i, n+41

+ Z vilwi — Uy) e(i, n+1)edy, e(i, n+1)EG,
1<i<n
=Tpi1Ynil — Z i, nb1 P41 Where(Ze(i, n+1)eq, )‘iﬂz-&-l)(zﬁ(i, nt1)eG, Hi n+1) IS @ constant

c(i,n41)E), for a fixed (X, ji).
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B. SolvingLRS/(X, ji)

In this sectiorl, we considgr solving the Lagrangian relaxation su@l/’ 1)
problemLRS/(\, ji) when(), i) € Q,i.e., computingw; for 1 <

i < n. F can be written as

F =

k+ Z Z X | wi + Z Wi, 5 %
1<i<n e(i, ))EG,, e(i, J)EG, Wi

where

k=— Z Ai,n«i»l Z Hi, n+1
e(i,n+1)eG, e(i, n+1)EG,

is a constant. Differentiaté’ with respect tow; in order to get the

optimal value ofw; to minimize F’

oF
=0
ow;
A;
Z Aij— 2 Z i ;=0
e(i, ))EGy, ¢ oe(d,J)€EGy
Ai X Z i, 5
e(i, ))EG,
W= | ——
2 A
e(i, ))EG

Recall thatw; must lie within the rangdL;, U;]. Let w; denote
VA X Eei e, 1)) Tt pea, - Since OF/dw; s
positive forw; < w; and negative for; > w!, the optimaky; can

be computed as

w; = min{U;, max{L;, w; }}.

The total time to compute the widths of all the modules@fgFEs | + )
|E.|), where|E\,| and|E, | are the numbers of edges in the horizontal
and vertical constraint graphs, respectively. The algorifimd-Width

below outlines the steps to solieRS/ (X, 7).

Algorithm Find-Width
[* This algorithm solves
mally given (X, i) € Q *
Input: Areas Aq, ..., Ap
Lower bounds of widths Li, Lo, ---, L,
Upper bounds of widths U, Us, ..., U,
Constraint graphs G, and Gy,
Lagrange multipliers (N R e
Output: Widths Wy, W, - .., Wy
1. For ¢=11t0 n
sumi = sumg = 0
For all e(t, 7) € Gy
Compute sumi = sumq + A;,
For all e(d, 7) € Gy
Compute sumg = suma + p;
If  (sumq #0) and (sumso/sum; > 0)
Compute w* = \/Ai * suma/ sumy
w; = min{l;, max{L;, w*}}.

LRS/(X, i) opti-

7

ONNOoOOAWN

C. SolvingLDP

As explained above, we only need to consider tf(&sq?) € Qin

from an arbitrary(X, i) € Qin stepk, we will move to a new pair
by following the subgradient direction:

Xiy =g+ pe(ai + wi — )]

A, *
! 2
Hij = {m,) + Pk <yi R y;)}

o+ a ifx>0
[2] —{0’

if <0
andpy, is a step size such thitn, .. pr. = 0 and) ;> | px = oo.
After updatingX and i, we will project (X", /i) back to the nearest
point (\*, 4*) in {2 and solve the Lagrangian relaxation subproblem
LRS/(N*, i*) using the method described in Section V-B. This pro-
cedure is repeated until the solution converges. The following algo-
rithm summarizes the steps to solu® P.

where

Algorithm Solve-LDP

[* This algorithm solves the LDP problem
optimally. Given the placement topology
described by a pair of constraint graphs,

it computes the optimal values for the

widths of the modules to minimize the

total packing area. */

Input: Areas Ay, As ... A,

Lower bounds of widths Ly, Ly, ..., L,
Upper bounds of widths Uy, Us, ..., U,
Constraint graphs G, and G,

Output: Widths Wi, W, ..., Wy

1. Initialize (A, 1) and p1

2. k=1

3. Repeat

4. Call  Find-width() to solve  LRS(A u)

5 Compute  (z;, y;)V1<i<n+1 using the

longest path algorithm

6. Compute X, ; = [\ + pr(zi + wi—
)|V e(i, §) € Gu
7. Compute i ; = [pi, j + pr(yi + Ai/wi—

yj)]+\V/C(i, Jl € Gy

8. Project (X, /) to (X, u*) such that
(Vi) € Q

9. k=k+1_

10. (A i) = (A%, p*)

11. Until w;'S converge.

D. Projection

As described above, we used subgradient optimization to search for
the optimal(X, 7). Starting from an arbitraryX, j7) € €, we will
move to a new pai(X’, ') by following the subgradient direction.
(X', ") will then be projected back to the nearest pgitt, ;i*) in Q2
based on the two-norm measure. This projection step is done by finding

an orthonormal bas@é, cees Aps fily oen, fig OF Q. Then
- p - e -
=1
kl -
pE=> (- (6)

1

i

order to maximize) (X, fi) in the LD P problem. We used a subgra- To find the orthonormal bases spanningwe first find a sef of in-
dient optimization method to search for the optinal /7). Starting dependent vectors spannifigising QR decomposition. For simplicity,
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we consideR’s only in the following discussion. Lé&2, denote the set TABLE |
of X's satisfying the relationships (1) and (3) and let SPEED AND QUALITY OF THE SIZING PROCEDURE
Q,\X =7 #Module | Deadspace (%) | Deadspace (%) | Time (sec)
Before Sizing After Sizing

be the system of equations described by (1) and (3). By QR decompo- 10 9 0 0.35
sition, we can write each dependent variablén X as a linear combi- 20 7 0 1.38
nation of the other independent variabless in A 50 9 0 2.84
100 11 0 8.90

A=A 200 11 1 148.8

j 500 14 3 4697.1

From these formulae, we can obtain a set of independent vektors
spanningy. Notice that in (1)—(4), each variable will appear at most
twice and their coefficients are either 1-eil, so the QR decomposi-
tion step takes onl@(»?) time instead of)(r*), wheren is the total
number of modules and there is no floating point division throughout
the whole process. Then we apply the Gram—Schmidt process [2] to
obtain the orthonormal bases fraf.

Algorithm Gram-Schmidt

Input: An independent set Uy oeey Uy € RP
Output: An orthonormal set di, -y qm € R’
such that the set qi, -- -, ¢m Spans the
same space as vi, ..., Um

1. For k=1,....,m
For ¢=1,...,k—1 (skip when k=1)
Tik = Uk * U
Uk = Uk — TikU; B%
TR = [[Uk||2 15T
U = (1/7pn) Uk

G54 R pleausEn

oukwnN

The Gram-Schmidt Algorithm take9(|E|*), where|E| is the
number of edges in the constraint graph. Fortunately, we only need
to do the QR decomposition and Gram—Schmidt process once for
each sequence pair. After finding an orthonormal set of vector, we can
repeatedly use this set to do projection in searching for an optimal
(X, 1) € € according to (5) and (6). Another useful incremental
technique to improve the efficiency is due to the observation that the
structures of the constraint graphs are unchanged if we just exchange
two modules in a move of the annealing process (M2), so we do
not need to recompute the orthonormal bases in almost half of the
iterations.

VI. EXPERIMENTAL RESULTS

We tested our floorplanner with the MCNC benchmarks and some
randomly generated data sets using a 600-MHz Pentium Ill processor.
In all the experiments, the weightings between the area term and the
wirelength term in the cost function of the annealing process are ap- ®)
proximately balanced. We did three sets of experiments. In the first set,
we want to know the speed and quality of sizing all the modules onEi#g- 3. Packings of 100 modules (a) before and (b) after one sizing step.
by the Lagrangian relaxation method. We randomly generated six data
sets with 10 to 500 modules each. The aspect ratio of each modulén the second set of experiments, we apply the sizing procedure in
can range from 0.1 to 10.0 and the areas of the modules are randoevgry iteration of the annealing process. We use the same set of parame-
generated in the range between 0 and 500 000. The sizing proceduterisas in [7]: the initial temperature is decided such that the acceptance
applied only once at the end of the annealing process and the chiprasio is 95%, the temperature is exponentially lowered in four decades
pect ratio can range between 0.5 to 2.0. The result is shown in Tabley.20 steps, the number of iterations in one temperature step is ten times
Notice that the result for each data set is obtained by repeating the e number of modules, and the aspect ratio of the whole chip is approx-
periment six times and picking the best one. Fig. 3 shows the packinggtely one. The temperature drops until it is below a certain threshold
for the data set with 100 modules before and after the sizing procedu(tex 107'°). We test our method using the benchmark data sets and
Murata and Kuh [7] have also reported the speed and quality of th#ie aspect ratio of the modules can range between 0.1 to 10.0. The re-
method on data set with module size randomly generated in the rasgéis is shown in Table Ill. Note that our experiments are performed
between 002 to 10 00§ running on a 250-MHz Alpha DEC and their on a 600-MHz Pentium 1l processor while [7] used a 250-MHz DEC
results is shown in Table II. Alpha processor. Fig. 4 shows a result packing for ami33.
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TABLE I
RESULTS FROM[7]
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TABLE IV

RESULTS OFTESTING WITH THE BENCHMARK DATA USING ASPECT

RATIO BOUND [0.5, 2.0]

#Module | Deadspace (%) | Deadspace (%) | Time (sec)
Before Sizing After Sizing Data | n [ Deadspace | Time No. of Time per Tteration
10 26 1 0.396 (%) (sec) | Iterations (1073 sec)
20 11 0 4,93 apte | 9 0.54 53.0 29072 1.8
50 9 1 60.5 xerox | 10 0.4 71.6 28742 2.5
100 7 1 937 hp 11 1.4 107.3 28292 3.8
200 7 1 7140 ami33 | 33 4.3 774.6 28382 27.3
500 9 2 73834 amid9 | 49 7.7 2354.0 28982 81.2

TABLE llI
RESULTS OFAPPLYING THE SIZING PROCEDURE INEVERY ITERATION OF
THE ANNEALING PROCESS

Our Method 7
Data | n | Deadspace | Time No. of | Time per Iteration | Time
(%) {sec) | Iterations (1073 sec) (sec)
apte | 9 0.05 53.8 30872 1.7 1198
xerox | 10 0.47 79.0 33802 2.3 789
hp 11 1.3 129.9 36742 3.5 1346
ami33 | 33 1.6 2622.5 110222 23.8 75684
amid9 | 49 4.4 13200.9 | 166602 79.2 612103

VIl. REMARKS

Our method can also be used in the presence of hard rectilinear
blocks. This can be done by partitioning a rectilinear hard block into
several rectangular submodules and keeping them together as one
piece by inserting additional edges in the constraint graphs. In this
way, we can still shape the soft modules optimally in the presence of
hard blocks.

In our current implementation, the time taken to compute the width
of a modulei is linear to the total number of outgoing edges from
the two constraint graphs. Thisi¥n) on average for constraint graphs
constructed from the sequence pair representation. However, this can

be reduced t®(1) by using another representation, e.g., O-tree [1] and

(1]

(2]
(3]

(4]

(5]

(6]

Fig. 4. Result packing of ami33 with aspectratio bound [0.1, 10.0]. It has 1.6% 7]

deadspace.

(8]

In the last set of experiments, we also use the benchmark data sets
and invoke the sizing procedure in every iteration of the annealing
process. However, we allow the aspect ratio of each module to rangd9l
from 0.5t0 2.0. Thisis amore reasonable range and it can better demo, o]
strate the speed and quality of the sizing method in practice. In this s
of experiments, the initial temperature is decided such that the accept1]
tance ratio is 95%. The aspect ratio of the whole chip is also approxi-
mately one. The temperature is lowered at a constant rate of 0.95 un[il
itis below a certain threshold ( 10~'%) and the number of iterations
at each temperature step is a constant of 30. The results are shown[in;
Table IV.

B*-tree [3], which supports planar constraint graphs.
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