
TCG-Based Multi-Bend Bus Driven Floorplanning

Tilen Ma Evangeline F.Y. Young

Department of CSE Department of CSE

The Chinese University of Hong Kong The Chinese University of Hong Kong

Shatin, N.T. Hong Kong Shain, N.T., Hong Kong

Tel: 852-26098401

Fax: 852-26035024

e-mail fyyoung@cse.cuhk.edu.hk

1 Abstract—In this paper, the problem of bus driven floor-
planning is addressed. Given a set of modules and bus specifica-
tions, a floorplan solution including the bus routes will be gener-
ated with the floorplan area and total bus area minimized. Some
previous works have addressed this problem with restricted bus
shapes of 0-bend, 1-bend or 2-bend [1]. However, in this paper,
we address this bus driven floorplanning without any limitations
on the shapes of the buses. We solve this problem by a simulated
annealing based floorplanner using the Transitive Closure Graph
(TCG) representation [6]. Experimental results show that we can
improve over [1] significantly in terms of both run time and qual-
ity, since there are more flexibilities in routing the buses and com-
plex shape validataion steps are not needed. For data sets with
buses connecting a large number of blocks, our approach can still
generate high quality solutions effectively, while the approach [1]
of restricting to 2-bend buses often cannot give any feasible solu-
tions.

I. INTRODUCTION

As technology advances, the amount of interconnections be-

tween different modules on a chip increases rapidly. Bus rout-

ing has become more and more important. Bus driven floor-

planning considers bus placement. The objective of the prob-

lem is to obtain a bus-routable floorplan such that the area of the

chip and the total area of the buses are minimized. In [4], the

authors proposed a unified method to handle simultaneously

different kinds of placement constraints, including alignment

and abutment. This approach is not suitable for bus driven

floorplanning neither as for a bus, the order in which the blocks

are passed by the bus is not fixed.

In [3], the authors made use of the idea from [5] and de-

signed an intact algorithm to solve the bus driven floorplanning

problem based on a simulated annealing framework. Each can-

didate floorplanning solution is checked by an evaluation step

to see if the buses are feasible, i.e., the required set of blocks

can be passed through by a 0-bend bus. Chen and Chang [2]

also addressed this bus driven floorplanning problem based on

the B*-tree representation. One major drawback of these two

approaches is that, only horizontal and vertical buses are con-

sidered and the solution quality will deteriorate when the num-

1The work described in this paper was partially supported by a grant from

the Research Grants Council of the Hong Kong Special Administrative Region,

China (Project No. 4181/06)

ber of blocks involved in each bus is large. Another previous

work [1] improved over them by allowing 0-bend, 1-bend, and

2-bend buses.

It is still very restrictive to allow only 0-bend, 1-bend and

2-bend buses. There is no reasons to impose such restriction

except for reducing the number of vias used since vias have ad-

verse effects on delay, area and circuit reliability. However, if

all bendings occur at the blocks on the bus net, no extra vias is

required since a via exists anyway to connect to each block on

the net. If a bending occurs somewhere rather than at the mod-

ules on the net, an extra via is required to connect the horizontal

and vertical bus components.

Therefore, in this paper, we try to address this bus driven

floorplanning problem under the constraint that all bendings

must occur at the blocks on the bus net. There is no limita-

tions on the bus shape and the number of bendings as long as

the above requirement on the bending positions is satisfied. We

solve this problem in a floorplanner based on the TCG repre-

sentation. In our approach, we will first compute the shape of a

bus satisfying the above constraint and minimizing the total bus

length. This is done by applying a modified minimum spanning

tree algorithm on a combined constraint graph (called common
graph). After this step, each bus is decomposed into a set of

horizontal and vertical bus components. We will then compute

the positions of the blocks in the floorplan realization step by

properly adjusting the block positions such that all the bus com-

ponents can pass through their respective blocks successfully.

Experimental results have shown that we can improve over [1]

in terms of both run time and quality, by having more flexi-

bilities in the shapes of the buses, and replacing the complex

shape validation steps by simplier methods. For data sets with

buses connecting a large number of blocks, our approach can

give satisfactory results effectively, while the approach [1] of

restricting to 2-bend buses often cannot give any feasible solu-

tions.

The rest of this paper is organized as follows. A formal defi-

nition of the bus driven floorplanning problem will be given in

section II. We will discuss the general placement constraints

for buses and the bus ordering issue in section III and IV. De-

tails of our algorithm will be described in section V . The ex-

perimental results will be presented in section VI.

2C-3

192978-1-4244-1922-7/08/$25.00 ©2008 IEEE

II. PROBLEM FORMULATION

We assume that there are two metal layers reserved for bus-

routing, one for horizontal buses and the other for vertical

buses. In the bus driven floorplanning (BDF) problem, we are

given the following:

1. A set of n rectangular modules M = {m1, m2 . . .mn}
and each modules mi is associated with an area ai and an

aspect ratio bound [ri, si] where ri, si ∈ R+, and

2. A set of k buses B = {b1, b2 . . . bk} and each bus bj has a

width tj and a bus net Nj , where tj ∈ R+ and Nj ⊆ M .

Our goal is to decide the position of each block and the route

of each bus, such that no overlapping occurs between any two

blocks and between any two horizontal (vertical) components

of the buses. Besides, all bendings of the buses must occur at

the modules on the corresponding bus nets in order to minimize

the number of vias used. The objective is to minimize the chip

area and the total bus area.

In this paper, we propose a novel algorithm to solve this

problem, without fixing the bus shapes nor limiting the num-

ber of bendings as long as they occur at the modules on the bus

nets. With more flexibilities in the shapes of the buses, the size

of the solution space is increased and a better BDF solution can

be obtained. Besides, the overall efficiency can be improved

since complex bus shape validation steps are not needed.

III. PLACEMENT CONSTRAINTS FOR BUS

In this section, we will discuss how we can align blocks in a

packing in order to allow buses with zero or more bends to pass

through. These basic technique will be used in our floorplanner.

A. Zero-Bend Bus

There are only two types of zero-bend buses, horizontal and

vertical. In the following, we only discuss the placement con-

straints for horizontal buses. The vertical buses can be handled

similarly.

Consider a set of k modules {m1, m2 . . . mk}, where mod-

ule mi has a width wi and a height hi for wi, hi ∈ R+. If all

the k modules are aligned horizontally, the corresponding hori-

zontal closure graph Gh is shown in Fig. 1 (assuming that they

align in the order of m1, m2 . . .). Due to the transitive closure

property, each node is connected to all the “downstream” nodes

by a horizontal edge with a weight equal to its width. On the

other hand, the vertical closure graph Gv will contains only k
isolated nodes without any edges between them.

Fig. 1. Gh for horizontally aligned modules.

Suppose that we need to generate a horizontal bus b with

width t and a bus net N ⊆ M . In order to allow the bus to pass

through all its blocks in the final floorplan, we need to main-

tain a relative relationship between the modules in the vertical

direction, i.e., the vertical overlap of the modules has to be at

least the bus width t. This can be done by adding constraint

edges to Gv. We will first add to Gv a dummy module md of

height t and zero width to represent bus b. Then, we will add

constraint edges between md and each mi in N . In this case,

the distance of mi’s lower right corner relative to md’s lower

left corner must be in the range of [−hi + t, 0], so a pair of

constraint edges are added to Gv:

1. An edge from md to mi with weight t − hi

2. An edge from mi to md with weight 0

Similarly, if we want to generate a vertical bus, a dummy

module md of zero height and width t will be added to Gh.

Then, a pair of constraint edges will be added to Gh between

each mi in N and md as follows.

1. An edge from md to mi with weight t − wi

2. An edge from mi to md with weight 0

Notice that instead of adding pairs of edges between every

pair of modules in a bus net, this approach of adding a zero area

dummy node to represent the bus can help reducing the num-

ber of additional constraint edges from quadratic to linear, and

hence to improve the efficiency of the floorplanning algorithm.

Fig. 2 shows the vertical closure graph Gv after inserting the

constraint edges.

Fig. 2. Constraint edges added to Gv for a horizontal zero-bend bus.

B. Multi-Bend Bus

A multi-bend bus is formed by one or more zero-bend bus

components. After decomposing a multi-bend bus into a set of

0-bend bus components, the corresponding sets of additional

constraint edges for each component can be inserted into the

constraint graphs as discussed in the previous section to align

the blocks for the bus component to pass through. Fig. 3 shows

a placement of four blocks and an L-shaped bus with two bus

components, one horizontal and one vertical. The TCGs with

the additional constraint edges are shown on the right.

Now we are left with the problem of how to decompose a

bus into a set of horizontal and vertical bus components such

that all bendings will occur at the modules of its bus net. In

our approach, we will first build a graph called common graph
for each bus. By finding a suitable spanning tree on this graph,

we will be able to determine the bus components. More details

will be given in section V.

IV. BUS ORDERING

In a feasible BDF solution, no buses should overlap with one

another on each metal layer. It means that no horizontal com-

ponents should overlap with another horizontal component and

similarly for the vertical components. This non-overlapping re-

quirement can be enforced by imposing a bus ordering between

2C-3

193

Fig. 3. An example of handling multi-bend buses.

the buses, e.g., bus i must be put on top of or on the right hand

side of bus j. Given a floorplan of n modules {m1, m2 . . .mn}
with constraint graphs Gh = (V, Eh) and Gv = (V, Ev), the

edges in Eh and Ev , representing the relative positions between

the modules, may give a natural ordering between two buses b1

and b2 with bus nets N1 and N2 respectively as follows:

Case 1 b1 is on top of b2 when

1. b1 and b2 are both horizontal bus components, and

2. ∃eij ∈ Ev such that mj ∈ N1 and mi ∈ N2.

Case 2 b1 is on the right side of b2 when

1. b1 and b2 are both vertical bus components, and

2. ∃eij ∈ Eh such that mj ∈ N1 and mi ∈ N2.

Fig. 4 shows an example in which a natural ordering can be

deduced from the vertical constraint graph. In this example, the

bus going through block m1 and m2 must be above that going

through m4 and m5 since m4 is required to be placed below

m2.

Fig. 4. Two horizontal buses with a natural ordering deduced from the

constraint edges.

For those bus pairs which do not have such natural orderings,

we need to assign their orderings explicitly if they may overlap.

There are only two cases that two bus components b1 and b2

may overlap:

Case 1 N1 ∩N2 �= ∅, i.e., b1 and b2 share at least one module.

Case 2 N1 ∩ N2 = ∅ and ∃mi ∈ N1 and mj, mk ∈ N2 or

∃mi ∈ N2 and mj , mk ∈ N1 such that eji and eik ∈ Eh

(or eji and eik ∈ Ev), i.e., the modules of b1 and b2 inter-

leave with each other in the x-direction (or y-direction).

In these two cases, we will impose an explicit bus ordering

to prevent overlapping. Suppose t1 and t2 are the widths of

b1 and b2 respectively and md1 and md2 are their correspond-

ing dummy modules in the constraint graphs. An explicit bus

ordering can be enforced as follows:
1. When b1 and b2 are both horizontal, we add an edge from

md1 to md2 with weight t1 or an edge from md2 to md1

with weight t2 to Gv

2. When b1 and b2 are both vertical, we add an edge from

md1 to md2 with weight t1 or an edge from md2 to md1

with weight t2 to Gh

Fig. 5 shows an example of how bus overlapping can be pre-

vented by imposing an explicit bus ordering. In this example,

the overlapping between the two horizontal bus components is

removed by adding an edge of weight t2 from dummy node

md2 to node md1 in Gv .

Fig. 5. Prevention of bus overlap by imposing explicit bus ordering.

In this example, b1 is connecting m1 and m6, and b2 is connecting

m4 and m5.

V. METHODOLOGY

Simulated annealing (SA) is used as the basic searching en-

gine in our floorplanner. In each iteration of the annealing

process, a floorplan, represented by a pair of transitive closure

graphs (Gv and Gh), is generated. A pair of reduced constraint

graphs (G′
v and G′

h) (whose structures will be described later)

will then be constructed to for the efficiency of the later pro-

cesses. For each bus, we will create a graph called common

graph from the two reduced constraint graphs, on which we

will apply a modified minimum spanning tree algorithm to de-

termine the set of bus components. Then, we will decompose

the bus into a number of horizontal and vertical components. A

set of constraint edges will be added to Gv and Gh to align the

blocks for the bus components to pass through according to the

method in section III. Meanwhile, we will check whether the

bus is feasible. If the bus is infeasible, its constraint edges will

be removed and a penalty term will be added to the cost of the

annealing process. After processing all the buses, some more

constraint edges will be inserted to prevent bus overlapping.

Finally, we will perform a single source longest path algorithm

to determine the positions of the modules and the buses. At

the end, we will compute the cost of the BDF solution accord-

ing to the total chip area, the total bus area and the number of

infeasible buses.

A. Construction of Reduced Graphs

Given the constraint graphs Gh = (V, Eh) and Gv =
(V, Ev) of a candidate floorplan solution, we will construct a

2C-3

194

pair of reduced graphs G′
v = (V ′, E′

v) and G′
h = (V ′, E′

h),
where

1. V ′ = ∪jNj for all 1 ≤ j ≤ k,

2. E′
h ⊆ Eh and eij ∈ E′

h iff eij ∈ Eh and mi, mj ∈ V ′,
3. E′

v ⊆ Ev and eij ∈ E′
v iff eij ∈ Ev and mi, mj ∈ V ′,

4. the weight of eij ∈ E′
h (E′

v) is the longest path distance

between mi and mj in Gh (Gv) respectively.

The reduced graphs (G′
h and G′

v) contain the constraint mod-

ules as nodes and the weights on the edges represent the dis-

tances between the modules in Gh and Gv . The weights of the

edges in E′
h and E′

v can be found by performing an all pair

longest path algorithm on Gh and Gv.

B. Construction of Common Graph

For each bus bj with width tj and bus net Nj , we will further

construct a common graph denoted by Gcj = (Vj , Ej), where

1. Vj = Nj ,

2. Ej = {eik|eik ∈ E′
h ∪ E′

v and mi, mk ∈ Nj}, and

3. the weight of an edge in Ej is the same as that of the

corresponding edge in E ′
h or E′

v , depending on where it

comes from.

The common graph for bus bj contains all the modules on

the bus net Nj . Its edge set includes all the edges in G′
v or

G′
h connecting any two modules in Nj . Due to the transitive

closure properties of G′
v and G′

h, the resulting common graph

Gcj is a complete graph with |Nj | nodes.

C. Spanning Tree for Bus Assignment

A bus is required to pass through all the modules on its bus

net. No matter what its shape is, the routing of the bus must

span all the nodes in the common graph. Therefore, our aim is

to find a good spanning tree denoted by Tj(Vj , ETj) from the

common graph Gcj(Vj , Ej).
In order to reduce the total bus area, our goal is to find a min-

imum spanning tree. However, the minimum spanning tree on

Gcj does not always lead to a feasible bus. The first reason is

that the number of bus components passing through a module

may exceed the maximum number allowed (we call this the ca-
pacity of the module), e.g., a connected module can at most al-

low one horizontal and one vertical bus component of the same

bus to pass through. The second reason is that adding the cor-

responding set of constraint edges for a particular bus compo-

nent (as described in section III) may create positive cycles in

the constraint graphs because its alignment requirements on the

modules may contradict with those of some other selected bus

components.

To solve the first problem, we modified the Kruskal’s algo-

rithm as follows. When constructing the spanning tree, we will

update the number of vertical edges (edges from G′
v) and hori-

zontal edges (edges from G′
h) connected to mi for all mi ∈ Nj .

Whenever a new edge (mi, mk) is included in Tj , not only

that we will check if Tj becomes cyclic (as in the traditional

Kruskal’s algorithm), we also check if the capacities of mi and

mk are violated. We will just skip the edge if either of them

is true. If no spanning trees can be constructed at the end, the

bus is regarded as infeasible. To solve the second problem,

we will incorporate the bus feasibility check to be described in

section E.

D. Formation of Bus Components

There are two possible types of edges in the spanning tree Tj .

Those coming from G′
v are vertical edges while those coming

from G′
h are horizontal edges. We will group those adjacent

tree edges of the same kind to form one bus component. This

grouping is performed until every tree edge is contained in one

and only one component. Finally, the adjacent vertical edges

will form a vertical bus component and the adjacent horizontal

edges will form a horizontal bus component.

E. Bus Feasiblity Check

In the modified Kruskal’s algorithm discussed in section C,

in fact, the positive cycle detection can be performed for each

edge found during the spanning tree construction, However, the

run time will be very expensive in that case. Therefore, in prac-

tice, we will perform the detection only after the whole span-

ning tree and all bus components of a bus is found.

For each bus with all its bus components found, a set of con-

straint edges will be added as discussed in section III. These

edges together with the dummy modules (one for each compo-

nent) will be added to the reduced graphs G′
h and G′

v . By using

the Bellman-ford algorithm, positive cycles in either G′
h or G′

v

can be detected. The bus is regarded as infeasible if positive

cycles exist. Otherwise, we will keep the constraint edges and

the dummy modules in G′
h and G′

v and also copy them to Gh

and Gv . The total number of dummy modules in the constraint

graphs will be equal to the total number of bus components

among all the feasible buses.

F. Overlap Removal

To prevent overlapping between two bus components which

do not have a natural ordering, an explicit ordering (and thus

additional constraint edges) will be needed if they may overlap

as discussed in section IV. In fact, there may be more than

one feasible orderings for a set of bus components, and we can

consider exhausting all cases to find the best one. However, as

the width of a bus is relatively small compared with those of

the modules, the ordering has little effect on the bus feasibility.

Therefore, we will just choose one ordering arbitrarily in our

floorplanner.

G. Floorplan Realization

After adding all the constraint edges for the buses, the resul-

tant floorplan can be obtained by performing a single source

longest path algorithm on the constraint graphs. Besides find-

ing the coordinates of the modules, the y-coordinate of a hor-

izontal bus component and the x-coordinate of a vertical bus

component can be obtained from the longest path distances of

the dummy nodes in Gv and Gh respectively.

H. Simulated Annealing

Simulated annealing (SA) is used as the basic searching en-

gine in our floorplanner.

2C-3

195

H.1 Set of Moves

There are four kinds of operations to perturb a TCG: (1) swap

two nodes in both of Gh and Gv , (2) exchange a module’s

height and width, (3) Reverse a reduction edge in Gh or Gv ,

and (4) move a reduction edge from one TCG (Gh or Gv) to

the other.

H.2 Cost Function

The objective of the BDF problem is (1) to minimize the area

of the floorplan, (2) to minimize the total bus area, and (3) to

accommodate all the buses, so the cost function is defined as

follow:

Cost =
{

αA + βB + γI ifB > δ
αA + γI ifB ≤ δ

where A is the chip area, B is the total bus area and I is

the number of infeasible buses, and α, β, γ and δ are param-

eters that can be specified by the users. The parameter δ is a

threshold for the bus cost which allows the floorplanner to give

solutions with smaller dead space percentage. If the bus cost is

smaller than this threshold, it is not added to the total cost.

H.3 Speedup of the Annealing Process

Bus assignment is the most time-consuming step in our floor-

planner. In order to reduce run time, we will estimate the cost

in each annealing iteration before invoking the bus assignment

step. To estimate the cost, we will first compute the chip area

A and compare it with the cost of the previous BDF solution

(C). If A < C, we will continue with the bus assignment. Oth-

erwise, we will continue with a probability e−
A−C

T , where T
is the current temperature. By adding this simple computation,

many poor BDF solutions can be pruned at an early stage. This

improvement can reduce over 70% of the run time for our floor-

planner and its effectiveness can be seen from the experimental

results.

I. Soft Module Adjustment

We will adjust the dimensions of the soft modules in a post-

processing step. This soft block adjustment step is also done by

simulated annealing with the same cost function. In each itera-

tion of the annealing process, a module lying on a critical path

will be selected, and either its width or height will be changed

a little bit. However, if some originally feasible buses become

invalid after this adjustment, the candidate solution will be re-

jected.

VI. EXPERIMENTAL RESULTS

We compare our results for a data set which previouly used in

[1] (Details can be found in [1]). Since there is no experimental

results for hard modules given in [1], we only compare the

results after the soft module adjustment. Experimental results

show that our approach can reduce the dead spaces by 22.62%

on average (Table VI).

In order to have a better comparison including run time with

the approach presented in [1] and to demonstrate the advan-

tage of our algorithm that favors test cases with large bus nets,

TABLE I

COMPARISON ON DATA SET ONE WITH [1].

[1] Our Work Comparison*
Time
(s)

Dead Space
(%)

Time
(s)

Dead Space
(%)

(%)

ami33-3 32 1.01 10 0.84 -16.83

ami33-4 92 1.90 29 0.72 -62.11

ami33-5 95 3.80 31 1.28 -66.32

ami49-4 88 0.63 32 0.87 +38.10

ami49-5 261 1.17 44 1.13 -3.42

ami49-6 140 2.19 104 1.64 -25.11

Average: -22.62

*It is calculated by [(x1 − x0)/x0] × 100%, where x0 and x1 are the dead space

obtained by [1] and our algorithm respectively.

TABLE II

DATA SET TWO.

Data No. of Blocks No. of Buses Avg./Max. No. of
Blocks on a Bus Net

ami33-a 33 5 3 / 4

ami33-b 33 5 4 / 5

ami33-c 33 5 5 / 6

ami33-d 33 5 6 / 7

ami33-e 33 5 7 / 8

ami33-f 33 5 8 / 9

we have created another set of test cases based on the ami33

benchmarks. Test cases from ami33-a to ami33-e are explic-

itly created to have a gradual increase in the average net size.

Details are shown in table II. Our proposed algorithm was im-

plemented using the C language. All test cases are run by both

our floorplanner and that in [1] on the same machine, Dell Op-

tiplex 280 Intel P4 (3.2GHz) with 2GB memory. We run each

test case for ten times and then record the average.

The results are shown in table III. When the bus net size

increases, experiments show that both the run time and dead

space percentage of our floorplanner will increase. However,

comparing with [1], our algorithm still perform better in run

time by 32.07% and in dead space percentage with and without

soft module adjustment by 11.17% and 21.34% respectively.

More importantly, note that the approach in [1] is not able to

generate any feasible solutions when the bus net size increases

further. For ami33-e, only one out of the ten annealing pro-

cesses generates a feasible final floorplan. For ami33-f, none

of the ten resulting floorplans is feasible.

More details of the experiments for data set are reported in

table VI, which may give more insights to our approach. The

increase in bus flexibility (without restricting the number of

bendings) has increased the percentage of feasible candidate

BDF solutions in the annealing process and this is one major

reason of why our algorithm can generate solutions with higher

quality. For run time, there are three factors contributing to the

reduction. Firstly, there is no more complex shape validation

steps; Secondly, our searching can find feasible solutions with

less iterations because of the relaxed restriction on bus shapes.

Lastly, the speedup step as discussed in section H.3 can signifi-

cantly reduce the run time by skipping 88% of the iterations on

average.

Finally, we also derive a new set of test cases from ami49

with bus net sizes ranging from 10 to 49. To the best of our

knowledge, no previous approaches can handle a buses with

2C-3

196

TABLE III

COMPARISON ON DATA SET TWO WITH [1].

[1] Our Work Comparison
Time* (s) Dead Space (%) Time* (s) Dead Space (%) Time (%) Dead Space (%)

No Soft
Adjust

With Soft
Adjust

No Soft
Adjust

With Soft
Adjust

No Soft
Adjust

With Soft
Adjust

ami33-a 31.3 (+0) 6.40 1.80 9.7 (+1) 6.30 1.42 -69.01 -1.56 -21.08

ami33-b 32.8 (+1) 8.23 3.16 12.3 (+0) 6.59 1.84 -62.50 -19.92 -41.73

ami33-c 34.0 (+1) 8.51 2.58 16.4 (+0) 7.82 2.34 -51.76 -8.10 -9.46

ami33-d 31.6 (+1) 10.35 2.57 22.0 (+1) 8.36 2.35 -30.38 -19.24 -8.64

ami33-e 20.4 (+0) 10.35 3.13 24.5 (+2) 8.99 1.97 +20.10 -17.58 -36.83

ami33-f 26.5 (+1) **9.52 2.21 26.8 (+1) 9.46 1.98 +1.13 -0.63 -10.29

Average: -32.07 -11.17 -21.34

*Figures inside brackets represent the run time for soft module adjustment.

**No feasible solutions is generated.

TABLE V

RESULTS ON DATA SET THREE.

Data No.
of
Blocks

No.
of
Buses

Net
Size

Run Time (s) Dead
Space
(%)

Dead Space
after Soft
Adj. (%)

No. of SA Iter. Iter.
for Bus
Asgmt.

Feasible
Floorplan

ami49-a 49 1 10 40(+2) 5.32 1.21 131,210 5693 91.78%

ami49-b 49 1 20 40(+2) 5.97 1.55 124,252 6402 89.36%

ami49-c 49 1 30 40(+2) 6.47 1.50 127,971 6639 84.86%

ami49-d 49 1 40 49(+2) 7.86 1.74 131,270 6717 81.02%

ami49-e 49 1 49 51(+2) 9.35 2.16 148,372 8736 77.82%

TABLE IV

DETAILED RESULTS ON DATA SET TWO.

[1] Our Work

Data No. of SA
iter.

Feasible
Floor-
plan*

No. of SA
iter.

Iter.
for Bus
Asgmt.**

Feasible
Floor-
plan*

ami33-a 1,557,336 73.8% 73,971 9,131 92.1%

ami33-b 1,557,336 58.7% 81,388 8,420 84.6%

ami33-c 1,557,336 50.2% 63,881 6,936 73.7%

ami33-d 1,557,336 29.0% 84,149 9,920 71.7%

ami33-e 1,557,336 0.0% 69,557 8,888 75.6%

ami33-f 1,557,336 0.0% 81,590 11,136 69.6%

*The percentage of floorplans generated by the SA in which all the buses are feasible.
**The number of floorplans that passes the test in section H.3.

such a large net size. The results are shown in table V. Our

approach can generate floorplan solutions quickly, even for the

test case with largest net size (ami49-e), the total run time is

still less than one minute. The resulting floorplans generated

have small dead space percentage both before and after the soft

module adjustment step.

Fig. 6. A floorplan solution of ami33-e. The buses are {0, 5, 10, 15,

20, 25}, {1, 6, 11, 16, 21, 26}, {2, 7, 12, 17, 22, 27, 30}, {0, 3, 8, 13,

18, 23, 28, 31}, {1, 4, 9, 14, 19, 24, 29, 32}

Fig. 7. A floorplan solution of ami49-b. Its bus is {0, 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}

REFERENCES

[1] Jill H.Y. Law and Evangeline FY Young. “Multi-Bend Bus Driven Floorplanning”,
ISPD, pp. 113-120, 2005.

[2] T.-C. Chen and Y.-W. Chang ”Modern floorplanning based on fast simulated an-
nealing”, ISPD , pp. 104–112, 2005.

[3] Hua Xiang, Xiaoping Tang and Martin D.F.Wong. “Bus-Driven Floorplanning”,
ICCAD, 2003.

[4] Evangeline F.Y.Young, Chris C.N.Chu and M.L.Ho. “A Unified Method to Handle
Different Kinds of Placement Constraints in Floorplan Design”, ASP-DAC, 2002.

[5] X. Tang and D.F.Wong. ”Floorplanning with alignment and performance con-
straints”, DAC, pp.848-853, 2002.

[6] J.-M. Lin and Y.-W. Chang. “TCG: A Transitive Closure Graph-Based Representa-
tion for Non-Slicing Floorplans”, DAC, pp. 764-769, 2001.

2C-3

197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

