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Multi-Armed Bandits (MAB)

» An agent has T rounds to play bandits
> At each time, the agent pulls one arm and observes a reward

> There is an optimal arm



Multi-Armed Bandits (MAB)
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Multi-Armed Bandits (MAB)

Problem definition

» Scenario: K arms

> Model: sequential decision making to maximize cumulative

rewards
input: the arm set {1,--- , K}, and the number of rounds 7 > K
For time t=1,---, T,

an agent selects an arm I; € {1,--- , K}

observes a stochastic reward y;(1;) ~ vy, of the chosen arm I;

» Remarks: for y ~ v;, E[y] = u; and u, = Max;—1 ... K U



Structured Bandits
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Linear Stochastic Bandits (LSB)

Problem definition

» Scenario:
» Arms are represented by d-dimensional vectors

a 2-d case: (1,0) (0.1,0.5) (0.8,0.2) (0.5,0.5)

Input: the number of rounds T'
fortime t=1,---, T,
given the arm set D; C R an agent selects an arm z; € Dy
observes a stochastic reward y;(z;) = z 0, + n;, where 7, is
a stochastic noise

» Remarks:
» Usually, 7; follows a sub-Gaussian distribution



Motivation

Personalized recommendations

2020 Election  Skullduggery  Originals  Health  ContactUs -+

YAngOJ

NewsHome ~ US  World

Who is Patrick
Shanahan, Trump's
Pentagon choice?

“The acting defense secretary has been
described by two people as a man who could

“make the trains run on time* according to a
person who spoke to Yahoo News.

Trump's visit to the Pentagon »

Suspect in mob boss hit Tens of thousands flock to  Last prosecutor on Flynn  Puzzling deaths of \'ruma s 29 tweets spur

flashes pro-Trump slogans ~ Calif. 'poppy apocalypse'  case leaves Mueller team

Politics .
Kellyanne Conway: Mosque shooter's manifesto only

mentions Trump once )
The White House counselor urged Fox News viewers to read the entire 74-page manifesto of

the mass shooter who killed at least 50 people in New Zealand, claiming it will show that he...

T Kelyanne Conway Implores @ Kellyanne Conway suggests
Everyone To Read Accused people read suspected NZ.
Killer's White Supremacy... shooter's manifesto, against...

News recommendation (Li et al., 2010)



Motivation

Portfolio managements

» Sequentially invest T units of money in d financial products
» At each round, select a weight w € [0, 1]¢
» Returns in the investment are rewards in LSB

» High-probability extreme returns exist in financial markets
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Goal and Metric

Regret minimization

min R(A, T) (equivalent to rewards maximization)

T
R(A, T) = qu lz ya(i Z ye(1r)
t=1

True
Optimal

T
= Tu, — g ug,
t=1

Empirically
Optimal at ¢

Exploration <

> Exploitation




Goal and Metric

Pure exploration
Probability of error: P[z7 # Opt] < §
» z7 is the output of A at time T and Opt is the optimal arm
> Two settings:

» Fixed confidence: given §, what is the smallest 77
» Fixed budget: given T, what is the smallest 67

Optimal




Heuristic Methods for Regret Minimization

Selecting the arm with largest empirical average

A four-armed case with Bernoulli distributions
True means: {0.7,0.8,0.6,0.5}

round arm 1 arm 2 arm 3 arm 4
1-4 1=1 8=0 1_1 1oy
5 0 =05 0 1 1
6 0.5 0 0 —05 1
7 0.5 0 0.5 40 =05
8 0.5 0 0.5 20 _ 0.3




Heuristic Methods for Regret Minimization

Selecting the arm with largest empirical average + standard deviation

A four-armed case with Bernoulli distributions
True means: {0.7,0.8,0.6,0.5}

round arm 1 arm 2 arm 3 arm 4
1 _ 0 _ 1 _ 1 _
1—4 1+1=2 2+1=1 1+1=2 1+1=2
5 | #2+07=12 1 2 2
6 1.2 1 30 407=12 2
7 1.2 1 1.2 04 07=12
8 1.2 1 1.2 149 406 =0.9




Methodology for Stochastic Bandits

» Frequentist approach: Upper Confidence Bound (UCB)
» Construct an estimate and confidence interval of u;
» Select the arm with the largest value among supremes of the
confidence intervals

A

1 2 3 4 arms

» Bayesian approach: Thompson sampling
» Construct a posterior distribution of u;
» Sample from posterior distributions and select the arm with
the largest sample value



Theoretical Developments of Regret Minimization in MAB

work \ results

original formalization

(Thompson, 1933)

the first theoretical analysis
Lai & Robbins, 1985 ; R(A,T) JAY;
(Lai obbins ) limp_y oo Toz(T) 23 A0 R(aras)
A

. R(UCB,T) i
Um7 00 ogmd S 224,50 Ri(aran)
a simpler algorithm

(Agrawal, 1995) . R(SM, T) A;
lim7, Tog(T) < ZA¢>0 KL (ug, uw )

finite-time analysis
Al t al., 2002 _ log(T'
(Auer et al., 2002) R(UCBL, T) = 0 (Sa,20 242
R(UCB1,T) = O <\/T)

(Agrawal et al., 2012) Bernoulli payoffs2 5
R(TS, T) = O ((ZAi>O 9 log(T)>
(Kaufmann et al., 2012) Bﬁ;”g””' payoffs
lim7 00 Tog(T) S <2a>0 KL(ul u,*)
finite-time lower bound

small T: lower bound R(A, T) > 3 A 50 AQKT
Ay log(T)>

(Garivier et al., 2018)
large T lower bound R(A, T) = (ZA >0 Ri(ur00)




Theoretical Developments of Pure Exploration in MAB

work

results

(Even-Dar et al.,

2002)

bounded payoffs
P[7> TR, A2 og ()] <o

(Audibert & Bubeck, 2010)

bounded payoffs
P[Out # Opt] < TKexp ( K)

Hy

bounded payoffs

(Karnin et al., 2013) P [T> 215:1 AkTQlog (% log (Aik))] <6
P [Out # Opt] < log(K) exp (fm
. b-Gaussian noises
J t al., 2014 su
(Jamieson et al., 2014) P[T> Hilog (}) + H] < 4V + 4¢3
two-armed Gaussian bandits
. E[T] 2(01+02)2
(Kaufmann et al., 2016) limg_,q Tog(1) = (m—u)?

. E[T] 2(01+02)>

11m5_>0 log ) < ﬁ

log(P[Ou t;&Opt]) < (“1_“2)
2(01+02)2

—~
il

lim o SUp —
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Theoretical Developments of LSB

results

work \

original formalization

(Abe & Long, 1999; Auer, 2000) |

(Auer, 2002)

first theoretical analysis; K arms
R(LinRel, T) = O <\/leog%(KTlog(T))>

compact arm set; bounded payoffs

(Dani et al., 2008)

R(A, 7) = 0 (aV'T)
R(CBs, 7) = O (dv/Tlog? (1))

compact arm set; sub-Gaussian noises

(Abbasi-Yadkori et al., 2011)

R(OFUL, T) = O (dﬁlog(T))

(Agrawal & Goyal, 2013)

K arms; sub-Gaussian noises
R(TS, T) = O (d?ﬁlog(dT))

(Lattimore & Szepesvari, 2017)

K arms; Gaussian payoffs
R(A,T)
RT%SAT)) > c(A,0)
T
Tog(T) c(A, 0)

lim T— o0

lim T—o0




Other Classes of Structured Bandits

» Lipschitz (Magureanu et al., 2014): continuum-armed
bandit problems

» Convex (Agarwal et al., 2011): continuum-armed bandit
problems

» Unimodal (Combes & Proutiere, 2014): single-peak
preferences economics and voting theory

» Dueling (Yue et al., 2012): intranet-search systems
» General (Combes et al., 2017)
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Some Important Variants of Bandits

> Agent
» More than one agents — multi-player bandits
» Application: cognitive radio systems

» Feedback

» Rewards are not stochastic — adversarial bandits
» Observe feedback about more arms —
> online learning with full information
> online learning with semi-bandit feedback
» Distributions of noises are non-sub-Gaussian — bandits with
heavy-tailed distributions
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What Is A Heavy-Tailed Distribution?

Practical scenarios

» High-probability extreme returns in financial markets

o1r- - 0.5

> Many other real cases
1. Delays in communication networks (Liebeherr et al., 2012)
2. Analysis of biological data (Burnecki et al., 2015)
3. ..



Heavy-Tailed Distributions

Intuition and definition

» A distribution with a “tail” that is “heavier” than an
exponential

Pr(X > x)

http://users.cms.caltech.edu/~adamw/papers/2013-SIGMETRICS-heavytails.pdf

» Mathematically, a random variable X is said to be heavy-tailed
if limy o0 €?P[|X] > 2] = oo for all ¢ >0


http://users.cms.caltech.edu/~adamw/papers/2013-SIGMETRICS-heavytails.pdf

Heavy-Tailed Distributions in Bandits

» Heavy-tailed distributions in bandits (Bubeck et al., 2013)
E[X?] < 400, (2)

where X is a stochastic reward/noise, and p € (1, 2]
» Remarks

» Eq. (2) is a subcase of the general definition of heavy tails

» p > 1 is necessary for bandits as the expected payoff of each
arm should be finite

» The bounded p-th moments with p € (2, 4+00) can reduce to
the case of p = 2 (Jensen's inequality)

» Payoffs with sub-Gaussian noises are light-tailed with finite
2-nd moment



Weaker Assumption: Bounded p-th Moments

Examples

bounded p-th moments with p € (1,2]

» Standard Student’s t-Distribution with 3 degrees of freedom
» The 2-nd central moment is bounded by 3
» The 2-nd raw moment (with a constant shift a) is bounded by
3+ a?

» Pareto distribution with shape parameter « and scale
parameter z,,

» The p-th raw moments are bounded by aa?,/(a — p), for all

pe(la)
» The p-th central moments are not directly available



LSB with Heavy-Tailed Payoffs

Problem definition

input: the arm set {D;}L;, and the number of rounds T
For time t=1,---, T,
given the arm set D, C R an agent selects an arm z; € Dy
observes a stochastic reward y; = 2/ 6 + 1, where 1, is a
stochastic noise

» Previous assumption (Abbasi-Yadkori et al., 2011): 7, is
sub-Gaussian conditional on F;_1

» Qur assumption: % or 1; is heavy-tailed conditional on F;_

» Bounded raw moments
» Bounded central moments

> A connection in regret:
5(\/7’) (sub-Gaussian) — O (ﬁ) (2-nd moment
bounded)



Linear Stochastic Bandits with Heavy-Tailed Payoffs
(LinBET)

LinBET

Given a arm set D; for time step t = 1,---, T, an algo-
rithm A, of which the goal is to maximize cumulative pay-
offs over T rounds, chooses an arm z; € D;. With F;_1, the
observed stochastic payoff y.(z;) is conditionally heavy-tailed,
ie., E[|ylP|Fie1] < bor Elly: — (1, 04)|P| Fie1] < ¢, where
p € (1,2], and b, c € (0,+00).



Challenges and Contributions

Challenges
» The lower bound of LinBET

» How to develop a robust estimator and bandit algorithms for
LinBET

> Regret analysis for the proposed bandit algorithms

Contributions
> The first to provide the lower bound for LinBET
> Develop two novel bandit algorithms to solve LinBET

» Conduct experiments to demonstrate the effectiveness of the
algorithms



Lower Bound of LinBET

Results

Assume d > 2 is even. For D; € R% we fix the arm set as
D; = D(d)- where D(d) £ {(:171,--- ,.’Ed) € Ri X+ 1 =

= xg +xg = 1}. Let Sg = {(01,---,0q) : Vi €
[d/Q],(QQi_l,Hgi) S {(2A,A),(A,2A)}} with A € (0,1/d].
Payoffs are in {0, (l/A)P%l} such that, for every z € D(4), the
expected payoff is 6, z.

Theorem 1. If 6, is chosen uniformly at random from Sy, and
1

the payoff for each x € D(gq) is in {0,(1/A)»-1} with mean

6. x, then for any algorithm A and every T > (d/lQ)%, we

have

d
E[R(A, T)] > 192 7.



Lower Bound of LinBET

d=2 and E [|y|?|Fi-1] < d case

> Arm set: Dy 2 (21, m) € Ri cx 41 =1}

» 0, is chosen uniformly at random from {u1, 12}, where
w1 = (2A,A) and g = (A, 2A)

» A will be set as a small value dependent on T

» Change of measure (through g = (A, A))

X2 optimal arm for p,

1

optimal arm for y,




Lower Bound of LinBET

d=2 and E [|y|"| Fi-1] < d case

» Payoff distribution of

=1 1
y(z) = (x)7 " with a probability of A7=16] z,
0 with a probability of 1 — Ap%lgjx



An Algorithm for LSB
Optimism in face of uncertainty (OFU) (Abbasi-Yadkori et al., 2011)
dy

6,: optimal f 0,1
1 optimalforarm (0,1) 6,: optimal forarm (0.5,0.5)

63: optimal forarm (1,0)

dy
> At time ¢, select arm z; by
> (24,0) = argm%}X(m,a)eDtx CH(JU, 9>
Lo Ct = {0 : ||9 — etyk* |Vt < /Bt}v Vt — )\I+ E‘tr:]_ w,-:L‘;r

> The regret is bounded by 0 (maxtem ﬂt_lﬁ)

» For sub-Gaussian case, LSE — ; = © (y/Iog {)
» For heavy-tailed case, LSE — f3; is polynomial of ¢



Techniques for Designing Algorithms

Median of means and truncation (Bubeck et al., 2013)
» Median of means

l mean i mean i mean
. median

» Truncation

t=1 t=2 t=3 t=4

e sample drawn from the chosen arm
» sample after truncation



Previous Results
MoM and CRT by Medina & Yang (2016)

» Medina & Yang (2016) proposed two algorithms MoM (based
on median of means) and CRT (based on truncation)

» Both achieved the regret of O( T%) when p =2

» Is it possible to design algorithms to achieve the regret of
O(/T) when p = 27



Algorithms: Median of means under OFU (MENU)

Algorithm 1 MENU

1:
2:

e A

9:
10:

11:
12:

input d, ¢, p, 5, A\, S, T, {D,}N_,
initialization: %k = [24log (<5)], N = |[£], Vo = Ay,
CO = B(O’ S)
forn=1,2,--- ,Ndo
(xru en) = argmax(z 0)e D, x C,_1 <SL', 9>
Play z,, for k times and observe payoffs ¥, 1, Yn,2, - , Unk
Vo= Va1 + xnzg
For j c [k], én,j = V;l Z?:l Yi,iT;
For j € [k, let 7j be the median of {||0,.; — .
[H\j}
k* = arg minje gy 1y
Bp=3 ((9dc)% nw + /\%S)
Cn = {9 . He - en,k* Vi < Bn}
end for

Vﬂ:SE




Understanding of MENU

Median of means over linear parameters by Hsu & Sabato (2014)

d;

dy

» For each estimate, compute the distances between the
estimate and estimates of other groups
» Take the median of the distances as the index of the estimate

» Select the estimate with the smallest index

42/58



Understanding of MENU

Framework comparison with MoM by Medina & Yang (2016)

MENU MoM

On ke

-

take median of means of {0}

calculate LSE with {[;}7,

ol .
calculate k LSEs with payoffs on {z,}7, A rako modian of means
e == ) ks
EAEE B N of payoffs on {z;}*,i € [n]
8 SO
1
i Yz, -
k= [241og ()T {5 1 1
T . 1 .
Va1 | wo | @s | (@Y oy R B TN
ol ok o b o8 »
k=15 (b !
1 1
N- 13 :
1 1
- s
[EZ I zn ) - TN
Lo e e = el




Understanding of MENU

Result comparison with MoM by Medina & Yang (2016)

» For MoM by Medina & Yang (2016)
» The regret is bounded by 0 (maxnzl,... ,Nﬂn,lk\/TV), where
Ba=6 (K5 Vi)
» The value of k and N is constrained by max,—; ... y8, = Q(1)
» The regret of the MoM algorithm is 5(0% dng%é)
» For our MENU

» Make each group contain the same playing history to compute
regret easily
> k= © (log(T))
2—p



Upper Bound Analysis: MENU

Results

Theorem 2. Assume that for all t and z; € Dy with ||z||2 < D,
104]l2 < S, |2 0.] < L and E[|ny|?|Fi_1] < c. Then, with
probability at least 1 —§, for every T > 256 + 24 log (e/d), the
regret of the MENU algorithm satisfies

S
==
~—

R(MENU, T) < O(cr d2™*

> The regret is 0 (ﬁ) when p =2



Algorithms: Truncation under OFU (TOFU)

Algorithm 2 TOFU

L input d, b, p, 6, \, T, {D;} L,
2: initialization: Vy = Ay, Cp = B(0, 5)
3: fort=1,2,---,Tdo

© X N> a

10:
11:
12:
13:
14:

_1
p—1 2—p
b = (1(b)> =

(z1,0¢) = argmax(y p)ep,x ¢, (%, 0)
Play z; and observe a payoff y;
Vi=Vio1 +ma) and X[ = [21,- -+, 2
[ug, - - ,ud]T = V;1/2X;r
fori=1,---,ddo

YT (yl]luz1y1<b“"' ’yt]luf,zylgbl)
end for
GT V_I/Q( TYL... YT)
B, = 4V/dbv (log (24T)) = 5 1 AbS
Update Cy = {0+ (|0 — 0]lv, < 31}

15: end for




Understanding of TOFU

Comparison with CRT by Medina & Yang (2016)

» For CRT, the payoff at time ¢ is truncated by a;
>yl =yl y<a,
~ 1 1
» The regret of the CRT algorithm is O(bdT="72r)

» For TOFU, at time ¢, all of the historical payoffs are truncated
by b; for each u;

> u; is the 4-th row of V;%XtT
> Y= (iLuiyoe s Yelumsn)
s 0l = V] Yl YD)

» A 2d example

arms | (0.1) | (1

#pulls‘ 50 ‘ 1




Upper Bound Analysis: TOFU

Results

Theorem 3. Assume that for all ¢ and 2; € D; with ||z||2 < D,
160+]l2 < S, |2 6.] < L and E[|y|P|Fs—1] < b. Then, with
probability at least 1 — 4, for every T > 1, the regret of the
TOFU algorithm satisfies

R(TOFU, T) < O(b# dT?).

> The regret is 0 (\/T) when p =2



Experimental Results

» Datasets

» Four synthetic datasets
» Metric: Cumulative payoffs
» Baselines: MoM and CRT by Medina & Yang (2016)

» Setting

» Run experiments in a personal computer with Intel
CPU®3.70GHz and 16 GB memory

» Run Independently ten times for each epoch

» Show cumulative payoffs with one standard variance



Experimental Results
Synthetic Datasets

dataset| {#arms,#dims} distribution {p, b, c} optimal
{parameters} arm
s1 {20,10} Student’s {2.00, NA, 3.00} 4.00
t-distribution {v =
3,l,=0,sp =1}
s2 {100,20} Student’s {2.00, NA, 3.00} 7.40
t-distribution {v =
3,l,=0,sp =1}
S3 {20,10} Pareto distribution {1.50, 7.72, NA} 3.10
{a=2,8m = zt;*}
S4 {100,20} Pareto distribu_trion {1.50, 54.37, 11.39
{a=2,8, =27 29* } NA}




Experimental Results
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(a) S1 (b) S2
Figure 1: Comparison of cumulative payoffs for synthetic datasets

S1-S2 with four algorithms.

Observation

» For S1-S2, our algorithm MENU beats MoM by Medina
& Yang (2016)



Experimental Results

1le4 led
—— CRT
—— CRT
254 e TOFU w6 | —— TOFU
w =
5 %
>
52.0 §
215 24
< <
£1.0 E,
3 3
05
02 04 06 08 10 02 04 06 08 1.0
Rounds led Rounds led
(a) S3 (b) S4

Figure 2: Comparison of cumulative payoffs for synthetic datasets
$3-S4 with four algorithms.

Observation

» For S3-5S4, our algorithm TOFU beats CRT by Medina &
Yang (2016)



Summary

Contributions
» Derive lower bound for LinBET
» Develop two almost optimal bandit algorithms MENU
and TOFU to solve LinBET

» Theoretical analysis of two algorithms

Publication: “Almost Optimal Algorithms for Linear Stochastic Bandits with
Heavy-Tailed Payoffs” (NIPS 2018, Spotlight).

Discussions
» Efficiency of TOFU
» Problem-dependent bounds

» The impact of d
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Conclusions

» Introduce the problem of bandits
» Conduct a brief survey

» Introduce our results in LinBET



Publication

1 Han Shao, Xiaotian Yu, Irwin King and Michael R. Lyu. Almost
optimal algorithms for linear stochastic bandits with heavy-tailed
payoffs. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 8430-8439, 2018. Spotlight
presentation.

2 Xiaotian Yu, Han Shao, Michael R. Lyu and Irwin King. Pure
exploration of multi-armed bandits with heavy-tailed payoffs. In
Proceedings of the Thirty-Fourth Conference on Uncertainty in
Artificial Intelligence (UAI), pages 937-946, 2018.



Future Directions

1. Automatically learning in bandits
» Setting: distributional parameter learning

» Challenge: index learning and error control in distributional
parameters

» Motivation: unknown b or ¢ information in real-world datasets

2. Removing forced exploration in structured bandits

» Challenge: how to design an efficient adaptive learning
framework

» Motivation: the state-of-the-art algorithms use forced
exploration
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Comparison on Regret, Complexity and Storage of Four
Algorithms

algorithm | MoM | MENU | CRT | TOFU
regret | O(T52) | O(T») | O(12*%) | O(1
complexity | O(T) | O(TlogT) | O(T) | O(T%
storage | 0o(1) | O(log 7) | 0o(1) | o(7)




Upper Bound Analysis: MENU

Proof sketch

Lemma 1. [Confidence Ellipsoid of LSE] Let 0,, denote the LSE
of 6, with the sequence of decisions z1,--- , x, and observed
payoffs 41, ,yn. Assume that for all 7 € [n] and all z, €
D, C RY, E[|n,|P|F;_1] < c and ||f,]]2 < S. Then 6, satisfies

Pr(I0n — 0ullv, < (9de)PnT +A2S) >,

Lemma 2. Recall 0,,;, 0, - and V,, in MENU. If there exists
a v > 0 such that Pr <Hén,j_9*HVn < 7) > 2 holds for all

j € [k] with £ > 1, then with probability at least 1 — ¢ 3,
10n k= — Ol v, < 37



Upper Bound Analysis: MENU

Proof sketch of Lemma 1

» Let u; denote the ith row of Vl/QXT

2
> 1100 — Bullv, < /S (6] (Y — Xa8)) + Ay

» Union bound

(G )

d n 2
< Pr (30,7, [ui,rmr| > )+ Pr (Z (Z wmmﬂmi,fnfgw) > v2> ,

=1 \7=1

where 1 is the indicator function
» Both terms could be bounded by Markov's inequality

1 2-p
» Set v = (9dc)rn2»



Upper Bound Analysis: MENU

Proof sketch of Lemma 2

» By Azuma-Hoeffding's inequality, we have with prob. at
least 1 — efﬁ, more than 2/3 of {én,la e ,émk} are
contained in By, (0x,7) = {6 : H0 Ocllv, <7}

2 s € [K\j}

> 7j be the median of {||0,.; — 0,
> Select arm arg minjcy 7;
> 1f 0,5 € By, (0+,7), 101, = On,sll v, < 27 for all
0,5 € By, (0+,7) by triangle inequality. Therefore,
T < 2y
> 1f On; & By, (0+,37), [10n; — Onsllv, > 27 for all
On,s € By, (0+,7) by triangle inequality. Therefore,
T; > 2y



Upper Bound Analysis: TOFU

Proof sketch

Lemma 3. [Confidence Ellipsoid of Truncated Estimate] With
the sequence of decisions zj,--- ,x;, the truncated payoffs
{Y;f}gzl and the parameter estimate 0] are defined in TOFU
(i.e., Algorithm 2). Assume that for all 7 € [f] and all
5 € D, C R, EllyrPlFr 1] < band 0ull2 < S With
probability at least 1 — §, we have

~~
DD
= ‘

p=1
16} — 6.lv, < 4v/adbe <log (%d» " im LaRs, (3)

where A > 0 is a regularization parameter and V; = \l[; +
¢
27':1 me;r'



Upper Bound Analysis: TOFU

Proof sketch of Lemma 3

» Like before,

d
2
16 = -1lv, < Jz (aT (V1 = X262)) ™+ Al 1

i=1

» For each 7
t
of (Y=X8.) = wir (Y], - ElYir|Fra])
T7=1

t
< + D wir B[ YirLjy, v, >0, Fr-1]

=1

t
> wir (Y], — B[V, 171])
=1

» The first term is bounded by Bernstein's inequality

> Set by = (b/log(2d/8))7 ¢ %



