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Similarity is the Fundamental

Recommender System Face Verification
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Popular Distance Functions

Euclidean flx,y) = \/(x — T (x—y)
Cityblock
Oy =) Jxi -yl
i
Chebyshev f(x,y) = max{|x; — y;|}
Minkowski %
fx,y) = (Zm - ym’)
i
J d min{x;, V;
accar A = % {xi, i}
> max{x;, y;}
Cosine xTy
x,y)=1-—
oY) =1 i
KL Divergence X;
f(y) = ) xlog™
: l
l
Mahalanobis fOo,y) =(x—y)TM(x —v)
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Euclidean Distance

Fxor) = (=) (e~ %)

not suitable for high-
dimensional data
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Similarity between Images

D(x1,x2) = [If (x1) — f(x2)l

- x € R? represents high-
dimensional data

Bellet, Aurelien, Amaury Habrard, and Marc Sebban. "A Survey on Metric Learning for Feature Vectors and Structured Data." arXiv: Learning (2013).
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Distance Learning
- Beyond the Euclidean distance:

flxy,x3) = |[dp(x1) — Pp(x )l

 e.g. Mahalanobis distance:

fu(x1,x2) = \/(x1 —x3) "M (x; — x5)

Data Learned Learned

Underlying EluldENDistance learning WEl Vietric-based | EelE ey

distribution algorithm algorithm HiSe 6l

Remain semantic meaning
More accurate result . 0 . .
in original dimension
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Supervision to Learn a Distance Function

- Positive / negative pairs:
S = {(xl-, xj) : x; and x; should be similar}
D = {(xi,xj) : x; and x; should be dissimilar}
* For positive/negative pairs, we need pre-assigned threshold:
§ ={(x0%7) = dy(x1,%;) < uj
D ={(x,%) : du(x,%7) = I}
 Relative constraints:

R = {(xl-, Xj, xk) : x; should be more similar to x; then to xk}



Challenges in Big Data Era

* Handle high-dimensional data

Positive Semidefinite Matrix

dy (i, %) = (% — xj)T &l M e R4 X (x;—x;) =0
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Challenges: huge number of constraints

Sampling ‘ Embedding Objective

j:l>||||||| @
:>||||||| @

CNN 0 N @

N images ~ mmmmmmm——)  ()(N3) triplets

Impossible task for big data set

https://www.cs.utexas.edu/~cywu/projects/sampling_matters
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Category of Distance Function

Negative m
Anchor LEARNING
Negative

Anchor -
Positive Positive
, Global distance
Linear .
learning
Non-linear Local distance

low complexity learning

Non-linear
high complexity

Deep distance
learning

Wasserstein
distance learning

Probabilistic
metric space
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Thesis Contribution in Overall

Employ multiple machines to
solve big data problem

Mathematically sound Communication-efficient
parallel solution Distributed Implementation

Computational Complexity
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Thesis Organization
Introduction
(Chapter 1)
Background Review
(Chapter 2)
Global Distance Learning Local Distance Learning
( ) [IICNN’16] ( ) [SIGIR’17]

Deep Distance Learning Probabilistic Distance Learning
( ) [CIKM’18] ( ) [IICAI’19]
Conclusion
(Chapter 7)
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Probabilistic

Global Distance Learning

Parallel Algorithm Distributed Implementation
Theoretical Analysis Experiments
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Linear Projection
 Mahalanobis distance:
dy(xq,%;) = \/(x1 —x5) TM(x1 — x5)

» Equivalent to a linear projection on Euclidean metric space

MeSt->M=1ITL

| o o Scale
° (©]
o0 % o .
® ©0gq o
) (] ® () ® (©) //:.. 5 ° /
o ® " %o Rotate e °o
— oo ® — ®
°7 %, " %6 ,° Like PCA!
® \\ ot
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Information-Theoretical Metric Learning (ITML)

« Reformulate distance learning problem
min Dy (4, Ap)

tr(ACx;—x ) (xi—xj)D=u,  (x3,x/)€ES
tr(A(x;—xj)(xi—x;)T)=l,  (xx;)€ED

* The global optimal solution does not rely on eigen-decomposition:
Apyr = Ap + BA(x; — %) (x; — x)T Ay

* Mahalanobis distance between data points:
p(t) = (x; — %) A (x; — x;)

Davis, Jason V., et al. "Information-theoretic metric learning." Proceedings of the 24th international conference on Machine learning. ACM, 2007.
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Contributions

» To handle high-dimensional data

* A parallel Information-Theoretical Metric Learning (ITML) algorithm
* Theoretical analysis to bound the gap
« Well-designed approach for a popular distributed platform, Apache Spark

Theoretical Guarantee \

Sequential - Parallel - Distributed
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Parallel Computation

* Speed up the algorithm by parallel computation

Worker Worker
(x1,X2,U17) (X4, X5, Uys)

Distance Metric

EICINEES

Worker Worker
(x2, X3, Uz3) (x4, %2, 142)
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Parallel Updates to PSD Matrix

 Parallel updates will destroy the positive semidefinite property

Positive Semidefinite Matrix

wl (WE]

dA(Xi,Xj) = (xl- — Xj)T X - X (Xi — Xj) >0
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Decomposition of PSD Matrix

e Constraints:

rank(4;) =1 Vi€ [k]

Positive Semidefinite Matrix

- =++

SU, Yuxin Distributed Distance Learning Algorithms and Applications
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Decomposition of Mahalanobis Matrix

 We reformulate Mahalanobis Matrix as

A=I+ZaiziziT
i

* Bregman projection over all constraints:

 Where z; € R4

C
A =1+ ) Bi (D702 (t)
=1

« Cis the number of constraints
« [ is the step size of Bregman projection

SU, Yuxin Distributed Distance Learning Algorithms and Applications
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Update z;

» In Bregman projection, A;(x; — xj) € R4

z(t+1) = Apiq (X — x5)
= Appqck

C
= |14 ) B ®2©®® |
=1

* In the original Bregman projection

Br(t) ~ pr(t)

« where pi(t) is the Mahalanobis distance between k-th constraint
computed with A4;



Calculate Mahalanobis distance

CZAtCk

Pr (1)

C
= o |1+) B®uOTO |a
=1

C
che+ ) B Ockz(®)z 0
=1

* The computation procedure is separable and easy to conduct in
parallel
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Parallel Computation

 For each worker:

« Compute partial Mahalanobis distance
* Collect z from other workers
« Update z and broadcast its newer z to other workers

Worker Worker
(X1, X2, U17) (X4, X5, Uss)

Distance Metric

Parameters

Worker Worker
(x2, X3, Up3) (x4, %2, 1l42)
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Algorithm

Input: S : set of similar pairs; D: set of dissimilar pairs; u,[ : distance
thresholds; v : slack parameter
Output: A : Mahalanobis matrix
1. A=1, C:|S|+|D‘
2: for constraint (z,,z,)r, k€{1,2,...,C} do
)\k «— 0
dy < u for (xp,z,)r € S otherwise dj < I
ck < (Tp — Tk, 2k < Ck
end for
while 3 does not converge do
for all worker £ € {1,2,...,C} do in parallel

C 4. .T,
2. = Cl + E i—1 ,.8@3@2?,3 C.
10: P < ({zg

11: if (zp,24) €5 then

© o N g AW

SU, Yuxin Distributed Distance Learning Algorithms and Applications 24



Algorithm (cont’d)

. : (1 _ 2
12: Q< min ()\k, 5 (p dk))
. (8]
13: B+ ap
. . Ydi
15: else
16: o <+ min ()\k, . (% — %))
17: R l—l—ap
. . YAk
18 dfc S ’}“—Gﬂdk
19: end if
20: A — A\ —
C T
21: 2L — (I + > 1 Biziz ) C
22: send z; to other workers.

23: end for
24: end while

25: A =T+ Bizizl

SU, Yuxin Distributed Distance Learning Algorithms and Applications
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Probabilistic

Global Distance Learning

Parallel Algorithm Distributed Implementation
Theoretical Analysis Experiments
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Parallel Update vs Delayed Sequential Update

Sequential Update

Atsc

c

_ T AT

=A; + Z Bi Atti—1CiCi Apyiq
im1

Parallel Update

C
Apye =Ac + z Bi Accicl AT
i=1

Apto

At—l—l ././'\141—:0

A~

At—l—l > ®
/{ 1
. At o
Ay Ay

 Parallel update is equivalent to the delayed sequential update

SU, Yuxin

Distributed Distance Learning Algorithms and Applications 27



Major Result

Theorem: Delayed update under Bregman divergence

Assume the difference of matrices is measured by the Bregman divergence with
respect to LogDet divergence ¢(X) = —logdet (X). The minimizer of Dy (4, A)

after T iterations is A™:

1
Dy (A%, 1) +=LO

R[A] : Zpd,(At,A ) < .

ﬁmln

* R is the accumulated loss of learned distance function

* () is the length of convergence path.

« L denotes the length of projection path in the original sequential
algorithm.
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Probabilistic

Global Distance Learning

Parallel Algorithm Distributed Implementation
Theoretical Analysis Experiments
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From “Parallel” to “Distributed”

 Parallel computation is not enough because of the limited memory
* One-by-one mapping between logical worker and real machine is
not suggested because of

* Heavy communication between machines
* Imbalanced workload wastes physical resources

Network Switch

——————/

SU, Yuxin Distributed Distance Learning Algorithms and Applications 30



Apache Spark

« Apache Spark is the most popular distributed platform for large-
scale machine learning task.

 Resilient Distributed Datasets (RDD) in Spark is suitable for our

Spo{(z

Lightning-fast cluster computing

SU, Yuxin Distributed Distance Learning Algorithms and Applications 31



RDD Partition

RDD 1

RDD 2

RDD 3

Node A

RDD 1
Partition 1

Node B

Node C

RDD 1
Partition 2

Node D

RDD 1
Partition 3

RDD 2
Partition 1

RDD 3
Partition 1

RDD 3
Partition 2

RDD 2
Partition 3

RDD 3
Partition 3

RDD 3
Partition 4

SU, Yuxin
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Framework of Parallel Distance Learning on Spark

Broadcast Accumulator
C1 C
RDD 162 .- \didz - | RDD
N “”
21 fp==-------- v Worker! |-« s-------- > 21
-‘:“‘ - \\\ = /, ‘,’ /
Z9 RN TN A xS w29
ST ONR Worker2 ‘/"'i ------
\>’/, "'\“- A\ » /
Z?) ”, \\v—-"—-’\__...—-\‘\‘\ < - f, ‘‘‘‘ v Z3
[] L--"" *a ) ‘ ’ :"I‘I -7 .
____________ 4o .
AR N N7 T~ Worker3 [/ .
. \\\\ \\\ .\ L] / .
~ o N \ /
~ o \\ \ L] ¥
\\\ -\\ \ e 1
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zC WorkerC f-=------------- > ZC

t
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* Broadcast and Accumulator are shared with workers.

« Worker i is responsible for updating z;

SU, Yuxin
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Probabilistic

Global Distance Learning

Parallel Algorithm Distributed Implementation
Theoretical Analysis Experiments
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Setup

« 32 physical machines, 4TB memory, 668 logical cores
*  10Gbps network switch

* Apache Spark 1.6.0 with Scala 2.10

* YARN cluster management

Synthetic Datasets ImageNet Datasets

« Binary classification :
- Dimensions range from 102 to 10° D.ECAF !1] features with 51,456
dimension

«  The number of constraints range . : :
from 10 to 104 50 images with 1,225 constraints

* We also implement the sequential ITML in Apache Spark with
distributed matrix multiplication.

[1] Donahue, Jeff, et al. "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition." international conference on machine learning (2014): 647-655.
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Scalability

SU, Yuxin

Running Time (Mins)

200
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_ 38,
— | |
50 100 200 400 500 668

#Workers

do1TMLLE proposed DITML

Distributed Distance Learning Algorithms and Applications
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Performance on Accuracy

Accuracy of k-NN classification when k = 4

Synthetic-102 0.900 0.930 0.920
Synthetic-10° 0.940 0.962 0.957
Synthetic-10* 0.933 0.938 0.938
Synthetic-10° 0.812 0.923 0.900

ImageNet 0.682 0.835 0.830
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Probabilistic

Local Distance Learning

Learning to rank

Experiments
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Search Engine

Google

1st
2nd
3rd

4st

5st

SU, Yuxin

| |

| testaey 1 Query Phrase 4y Q

|
All Images Videos Mews Maps More Settings Tools
About 135,000,000 resuits (0.52 seconds) Candidate Documents

connection pooling - Efficient SQL test query or validation query that ...
stackoverflow.com/___jefficient-sgl-test-query-or-validation-query-that-will-work-acro__. v
Sep 8, 2010 - Many database connection pooling libraries provide the ability to test ... After a little bit o
research along with help from some of the answers here:.

mySQL: Testing connection with query? - Stack Overflow

stackoverflow.com/questions/4957155/mysgl-testing-connection-with-query -
Feb 10, 2011 - is there any query | can run that will always output something sweet. This should do it.
SELECT "Something sweet'. Edit If you don't want ...

Is there a command to test an SQL query without executing it ...

stackoverflow.com/__/is-there-a-command-to-test-an-sgl-query-without-executing-it- .
Mar 12, 2010 - The only thing | know of is to wrap it in a transaction that is always rolled back: BEGIN
TRANSACTION DELETE FROM user WHERE somekey = 45; ...

SQL Fiddle

sgifiddle.com/ =
Application for testing and sharing SQL queries.

Testing Queries

https://docs.oracle.com » ... » Building Queries and Data Views «
Testing Queries. This topic describes how to test BEA Liquid Data for WEbLDgiCTM queries. The
ollowing sections are included here: Switching to the Test View.

Distributed Distance Learning Algorithms and Applications
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Candidate Documents: Query Independent

World Wide
Web

Documents

Repository

SU, Yuxin Distributed Distance Learning Algorithms and Applications 40



Learning to Rank for Query-document Pair

Training Data

Test Query [ e

Ranked List [ Doc

SU, Yuxin Distributed Distance Learning Algorithms and Applications



Feature List of Microsoft Learning to Rank Datasets

3
4 Covered query term number
5
71
72 Sum of TF-IDF
73
106
107 Observation
108 « Contain local structures in data
128
129 Out-link number
130 PageRank
131 SiteRank
134 URL click count

https://www.microsoft.com/en-us/research/project/mslr
SU, Yuxin Distributed Distance Learning Algorithms and Applications

Title

URL
Whole document

Title

URL
Whole document

Title

URL

Whole document
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The State-of-the-art Methods
* Gradient-Boosted Regression Tree (GBRT) [1]
- A-MART [2]

BM25 > 0.5

PageRank >
0.3

Drawback of decision tree-like methods

* Sensitive to noise
* No structural information (weak for theoretical analysis)

[1] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." Annals of statistics (2001): 1189-1232.
[2] Burges, Christopher, et al. "Learning to rank using an ensemble of lambda-gradient models." Proceedings of the learning to rank Challenge. 2011.
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ldeas from Manifold Learning

* Find better similarity measurement on the feature space of
guery-document pair

Ideal Document 2
Ideal Document 4

Ideal Document 3

Ideal Document 1

SU, Yuxin Distributed Distance Learning Algorithms and Applications 44



Contributions

Distance Learning

. : . :
Geometric Mean Local Geometric First Learning to Rank for
Metric Learning Mean Metric Learning [ Query-document Pairs

Experiments: outperforms in terms of

* The state-of-the-art query-dependent metric-learning-to-rank algorithms
« The state-of-the-art learning-to-rank methods for query-document pairs

SU, Yuxin Distributed Distance Learning Algorithms and Applications 45



Geometric Mean Metric Learning

« Similar and Dissimilar Matrices:

-

S = z (p: = p;) (i = ;)
(pipj)ES

D = ) Gi-pd@i—p)
(pipK)ED

* Compute the metric:

M = §-1/2 (51/2])51/2)1/25—1/2

» The fastest distance metric learning algorithm

Zadeh, Pourya, Reshad Hosseini, and Suvrit Sra. "Geometric mean metric learning." International conference on machine learning. 2016.

SU, Yuxin Distributed Distance Learning Algorithms and Applications
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Localized Metric Learning

« A single (global) metric is a linear transformation

-
dm(p1,p2) = (p1 —p2) "M(p; —p2) = (L(P1 — Pz)) (L(P1 — Pz))
* Local metric contains multiple basis metrics:

d(pipj) = dmep)®iP;)

M) = ) w (M,
r=1

Global metric Per—class metrics Per—exemplar
: metrics
(,ILL\\I & e et X
zx : & O
-4 < 'i? ~
‘I . 3 A4 N

Q
. o AN e,
seg'el o.o.' '.". :o'o..'.:o o 2
. :5.:-:. . -,;"':" Class2 . 3,’,:::.:. . ‘-;'{.
:..-,:‘:' " Test point «<% £ a0t
3.:: S R % .'::E?:: :‘. 8.::{. o %e% ..o ‘::5:?.:' 0..
o.’{.'. ::...o..:.' S et Teifen on seelt 0.0 o0
Y &L 0‘0‘.':": .:’ 0':{\'0':...‘.‘.". M 4

.‘o' .\3.2 :.:.:. L H .0.' Q . {: ..::: s %05
Class3
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Smooth Interpretation

Smooth Interpretation

Riemannian metric M, is a smoothly varying:

(i, %7),, = 2 M(p)x;

 For the anchor document p,., we propose a smoothing weight function:

p
wr(p) = exp (—5 Ip — prIIM,,)

- Easy to compute

Hauberg, Sgren, Oren Freifeld, and Michael J. Black. "A geometric take on metric learning." Advances in Neural Information Processing Systems. 2012.

SU, Yuxin Distributed Distance Learning Algorithms and Applications 48



ldeal Candidate Document

m
f@.9) = = Y 0 - exp(=Ilp = prllug,) - 1o = rll,

r=1

« Relevance to g for document p
- @, needtolearn
« The combination of p, is considered as ideal candidate document

Id(;al Candidate
Document

SU, Yuxin Distributed Distance Learning Algorithms and Applications 49



Proposed Framework

Training Data

Sampling

Test Query [|

Ranked List [ |

]

SU, Yuxin

Irrelevant

IrreIevant

S —————t
v

‘—\\{

Evaluatlon

_IWI/
>

Mahalanobis
Metrics

Weighted LocaI
Metric Model

etri

Distributed Distance Learning Algorithms and Applications
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Weighted Approximate Rank Pairwise

* For a set of candidate document D, with query gq:

Weighted Approximate Rank Pairwise (WARP) loss

v

@) = D 1fa(07 %) ~ fo(0" 9]

P~ €Dg

Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to rank with joint word-image embeddings. Machine Learning, 81(1):21-35, 2010.
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Update of @,

Stochastic gradient descent to minimize the WARP loss

— q)q(t) — U

D, (t + 1)

al(q,p*,p7)

0D, (1)

-oo-n()|

afq (r~, Dy (1)) _ afq (p+: Dy (t))

0D, (1) 0D, (1)

00,

(r)
02,

. dfq(0,Pq) _ [an(p’¢£Ir))]
r= m

fy(pol"

)

()
02,

SU, Yuxin

= exp(—“P R pr”Mr) ) “p R p‘r”Mr
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Algorithm

ALGORITHM 1: L-GMML to Rank

Input: Candidate set for ¢ queries {D1.D2,..., Dy, ..., D}, m : number of local
metrics, 1" : number of iteration, j : step size, ¢: hinge loss margin
Output: {(p1, M), (p2, M) ..., (pm,M,,)} : set of local metrics and associated

anchor points, p € R, M € S, & € R“*™ : weights for local metrics to
model the ideal candidate documents for each queries
for ¢ € [1,¢] do
Extract D, and D, from D,;
end
for i € [1,m] do
Sample D and D; from {D,}
M; = GMML (D;",D;);
for p € D do

') «+~Sort D, in ascending order by computing |lp — dHif%- Vd € Dy;

qut_;

end

Find the anchor point p, with maximum NDCG score of ng;
end

SU, Yuxin Distributed Distance Learning Algorithms and Applications 53



Algorithm (cont’d)

fort=1 to 1T do
Sample a tuple (¢, p™,p~) from {Dy},er1.q such that

C+ flj! (p :(I)L] ( )) > fq (p :(I)q (IL)),
N, 4 the number of less relevant documents drawn with replacement from D, until
p~ is found;

) D of Do (t of .p—l—!q, (1) |
e = [ (|5 e -]
_l_

end

SU, Yuxin Distributed Distance Learning Algorithms and Applications 54



Probabilistic

Local Distance Learning

Learning to rank

Experiments
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Datasets

Query-independent Datasets (Query-document pairs)

Train Test Train Test Levels | Features

Yahoo! Set | 19,944 6,983 473,134 165,660 5 519
Yahoo! Set Il 1,266 3,798 34,815 103,174 5 596
MSLR-WEB10K 6,000 2,000 723,412 235,259 5 136
MSLR-WEB30K 31,531 6,306 3,771k 753k 5 136

SU, Yuxin Distributed Distance Learning Algorithms and Applications 56



Comparison between GBRT and Proposed L-GMML

GBRT L-GMML
Dataset Test Set Time (min.) Test Set Time (min.)
NDCG@5 0.6529 41.2 0.6698 28.1
Yahoo! Set | NDCG®@10 0.6824 43.3 0.6715 28.9
NDCG®20 0.6912 41.5 0.6934 28.8
NDCG@5 0.6731 37.6 0.7096 26.5
Yahoo! Set I NDCG@10 0.6817 36.8 0.7264 26.6
NDCG®20 0.6954 37.4 0.7219 26.4
NDCG@5 0.4019 + 0.0083 494 +£52 0.4771 £ 0.0951 19.7 £ 2.1
MSLR-WEB10K NDCG®@10 0.4342 + 0.0219 483 +2.1 0.5390 + 0.0812 19 +£ 3.1
NDCG@20 0.4512 + 0.0279 48.8 +£3.8 0.5510 4+ 0.0728 19 +£ 28
NDCG@5 0.409 4+ 0.0312 167 + 286 0.4837 + 0.0715 71.7 £ 2.7
MSLR-WEB30K NDCG@10 0.4146 #+ 0.0327 177 +=30.1 0.4976 = 0.0619 719 + 3.9
NDCG®20 0.421 £+ 0.361 167 £27.3 0.5038 + 0.0718 725 +53

SU, Yuxin
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Comparison between A-MART and Proposed L-GMML

A-MART L-GMML
Dataset Test Set Time (min.) Test Set Time (min.)
NDCG@5 0.6567 46.5 0.6698 28.1
Yahoo! Set | NDCG@10 0.7060 48.0 0.6715 28.9
NDCG®@20 0.7091 46.9 0.6934 28.8
NDCG®@5 0.6791 431 0.7096 26.5
Yahoo! Set Il NDCG@10 0.7062 433 0.7264 26.6
NDCG®20 0.7087 43.8 0.7219 26.4
NDCG@5  0.4417 + 0.0131 583 +2.8 0.4771 +£0.0951 19.7 £ 2.1
MSLR-WEB10K NDCG@10 0.4513 + 0.0196 576 +3.8 0.5390 + 0.0812 19 + 3.1
NDCG@20 0.4634 4+ 0.0257 57.1 =52 0.5510 + 0.0728 19+ 28
NDCG@5 0.3812 +£ 0.0297 182 +19.8 0.4837 + 0.0715 71.7 £ 2.7
MSLR-WEB30K NDCG@10 0.409 4+ 0.0232 183 £17.9 0.4976 £ 0.0619 7194+ 39
NDCG@20 0.4112 +0.0240 181 +10.7 0.5038 + 0.0718 725 +5.3

SU, Yuxin
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Probabilistic

Deep Distance Learning

Parallel Algorithm Experiments

Distributed Implementation
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Siamese Networks

Positive

q TAUOD )
1|00C
NAUOD

Loss

Anchor .
Functions

q TAUOD )
T|00d
NAUOD

si2Ae7 pajdauu0d-||n4

Negative

() TAUOD )
T|00C
NAUOD

CNN
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Most Important Issue: Sampling

Sampling \ Embedding Objective

CNN > [TTTTT] s
@:b |||||||

CNN [ O @

(

N images Eee——) O(N?3) triplets

Impossible task for big data set

https://www.cs.utexas.edu/~cywu/projects/sampling_matters
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Semi-hard Negative Mining

« Each mini-batch:

2(X _ 1 1)2 —02
(i,)EP

« Where

k*(i,j) = argmin D;
k:ylk]#y[i]

* Need very large minibatches (1800 images)

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE conference on computer vision and pattern recognition

2015.
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N-pairs Embedding

« Each mini-batch:
(X, y)

__ 1 Z log expiSi,;}

1Pl Sty exPISis} + iyingeytin €XP{Si)
m
A
+2 ) NGl
l

» where S; ; = f(x)" f (%))

« Softmax cross-entropy loss among the pairwise similarity values

Sohn, Kihyuk. "Improved deep metric learning with multi-class n-pair loss objective." Advances in Neural Information Processing Systems. 2016.
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Challenges

All of them are single-machine solutions

No markable

Limited GPU

Memory

Cumbersome Loss

improvement

. Time-

Let’s consider multiple machines solution!

SU, Yuxin
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Distributed Deep Learning

Parameter Servers p’=p +Ap

A

/” l || \
O O30 0 D0 0

Model
Replicas
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Distributed Deep Distance Learning

x® s a local hard-negative sample

\
l
!
l
!
!

Single-machine solution Parameter

Server

Mini-batch Worker 3

x(3)

x?

Worker 2 Mini-batch

Worker 4 Mini-batch

x ™)

Maybe x™® is the global one
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Contributions

Synchronization of global hard negative samples

« This is the first distance learning oriented distributed deep
distance learning approach

I Hybrid synchronization

Synchronization of DNN model

¢ Communication-efficient approach to synchronize DNN model
with mixed topology

Experimental report

« Huge improvements in terms of accuracy of image retrieval
and runtime speedup
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Batching with Category Information

Class 1 [T Class {1,4} | \laEeE ey Worker 1

Class 2 [T

Class 3 [T Class {2,5,6} | Vit eiias Worker 2

Random sampling in
category level Class {3,7,9} | V/itor s Worker 3

Class M — 1T

Class M [T
Class {M,10,M-1} [0S Worker 4
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Broadcast of Embedded Anchor Points

Xc(lj) is the collection of anchor points in worker j The dimensionality of G is
fj(-) is the DNN model in worker j relative small

SU, Yuxin Distributed Distance Learning Algorithms and Applications
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Scatter the Corresponding Hard Negative Samples

 For the machine j:

ngj_) < argmax D(Gi(j ), Gp)
i:yli]#y[p]

Scatter to other machines

Gi(j) — f](xl)

SU, Yuxin Distributed Distance Learning Algorithms and Applications
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N-positive Pairs Embedding

 For the machine j:

1 exp{Sik} A =
(X, y) = —— z lo ’ + 2” Cepl
|P| gexp{Si,k}+exp{Si,H(i)} m L f Gl

(i,k)EP

. . ) . ———— "Global” hard negative
I(i) « argzronax D (Gi, G- sample

« Six = flx)"f )
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Probabilistic

Deep Distance Learning

Parallel Algorithm Experiments

Distributed Implementation
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Model Synchronization: Observation |

Siamese network has two distinct parts

fully-connected
layers

f(x)

Two settings in all deep distance learning framework

fully-connected
layers

f(x)

X Pre-trained

Pre-trained fully-connected
and layers

f ()
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Observation Il: Hierarchical Topology

e —————— - ——

e e -

—

YIHUMS 9|D0d

/‘\t

YIHUMS 9|D0d

Network
Switch

Network
Switch

.\

YIHUMS 9|D0d

4
-
@)
=
)
Q
P

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = e =
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Model Synchronization: Mixed Topology

All Reduce Ring-based

A 4

Ve,
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Parameter Server vs Mixed Topology

Ve,

Ci(t+ 1)

(t+1) (t) (t)

jepP

Distributed Distance Learning Algorithms and
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Probabilistic

Deep Distance Learning

Parallel Algorithm Experiments

Distributed Implementation
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Configuration

Hardware

4 servers with 2 NVIDIA GTX 1080 GPUs each
« 10 Gbit/s switch network

*  PyTorch v0.3

ResNet-34 Pre-trained  fully-connected

f(x)

on ImageNet layers

128
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Evaluation on Cars196

Time (s) / Recall@1 | Recall@5 | Recall@10
epoch

Triplet semi-hard [CVPR’15] 507 54.09 41.30 75.21 80.32
Lifted struct [CVPR’16] 530 56.90 53.70 75.98 83.30
Histogram [NIPS’16] 512 - 53.67 75.56 81.20
N-pairs [NIPS'16] 489 58.04 54.36 79.03 84.23
NMI-based [CVPR’17] 832 57.27 57.29 79.90 88.24
Spectral [ICML'17] 798 61.08 69.35 81.08 90.35
Ours (2 machines) 423 61.24 70.07 82.13 89.25
Ours (4 machines) 298 61.30 70.23 81.97 90.10
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Probabilistic

al
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A

Distance between Probability
Distribution

Distributed Primal Form of
Wasserstein Distance

Experiments
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Probability Distributions and Wasserstein Distance

f
~ A

Earth mover
distance

-----------
-'-.
-

-
-
-

-
“-
-——
-_
-
*-
-
S
~

« Optimal transport problem:

)

- Wasserstein—p distance: c¢(+,-) = |||

http://faculty.virginia.edu/rohde/transport/OTCrashCourse.pdf
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Generative Adversarial Nets (GANSs)

* Generator network: /\

* creates plausible data /

e Discriminator network

« distinguish between the
generator's fake output

v

v

and real data sample
P,

min max Ex,~p,[log(D(x,))]

+ IExg~Pg [log (1 — D(xg))]

Stability!

v

Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.
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Wasserstein Generative Adversarial Nets

* Introduce Wasserstein

distance to GAN t T

« Minimize the distance
between real
distributions and fake

distributions :
| . P, j
« Kantorovich-Rubinstein
dual form with 1-Lipschitz min W(IP’T, IPg)
constraint: 3 I
Wi (P, Pg) 5 2~ [P ()] — Ex_~p_[Dg(x4)] o
97 Tipel <1 9~"g g /. o
Q U o
We target primal Tormd | /p e °

v

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. 2017.
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Empirical Discrete Distributions

Ny
A r p4
Hr = Pi 6xir P2
iI=1,xER
P1 n D3 Ps
X2

]

X1 X3 X5

»
»

Higher accuracy BK e Y W |arge mini-batch
Multiple machines Koumd Limited GPU memory A
84
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Conventional Distributed Approach

Parameter Server

____________________________________

___________________________________

ey

RAIL fo- LSS 1
ii —.HQ? ¥
BE g gt
=
=

broadcast the generated data

* Distribute supervised real images into

multiple machines
P

» Discriminator is trained collaboratively | Synchronization is expensive

- Parameters is synchronized by *  Synchronization is frequent

parameter server
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Our Solution: Multiple Discriminators

Goal: No heavy communication

broadcast the generated data

Challenge

* Generator is more important

- Discriminator could be How to provide mathematically sound
inconsistent solution to compute Wasserstein
distance?
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Wasserstein Barycenter

4 ) 4 )

/ WC(F‘g'w ay

We(ug, u3) Hy We(kg, 2)

—)

Barycenter

We attempt to minimize:

K
1
£(pgr 13or) = 2 ) Welbg i)
k=1
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Primal Problem of Wasserstein Distance

« Semi-discrete Kantorovich's formulations of the primal problem:

(g )
W, (ug, pty) = max <Z<pjp;g + J @ Cer)dpy (xr) ¢
peR™I = Q )

\ —_—

* Minimize:

L(Hg: {H;}g: 1)

ng | & )
= max <F(§0) =2g0jp}q +Ezj§0c(xr)d.u£(xr)
\ j=1 k=1"1 )

~N"

p€eR"9
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Voronoi Cells

« F (@) is concave and derivative:

K

oF 1

Fyele p/ _EZJ ) d p (%)
Pj k=1 Vor<pj

« Voronoi cells:

Vo, = x5 ofsxf) 0y 5 (exf) - 0,9)

g
(] xl
e .9
X3 ® x‘zg
g g
X4 ® X5

Santambrogio, Filippo. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Vol. 87. Birkhduser, 2015.
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Optimization

OF
e When —
a<pj

= 0 and the optimal p; is

calculated as:

k

pP; =
P1 e x
* @ .9
X g
P X3 : ) ; p, © X5
(<]
%
P4
* g
Pe @ X6

SU, Yuxin
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K
> i)
K= Vork U\ Xy

%; [Exr~l~l£ [IxTEVor’q‘Dj]

T
K le

1
E z z Ix{‘EVor(p

k=1i=1
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Overall Algorithm: Generator

SU, Yuxin

Algorithm 1: Generator as Master Unit

Input: K: number of worker unit, n,: batch size in
generator, n,.: batch size in worker, 7": number of
iteration for the estimation of the probability
Dirac mass.

Output: GGy: the generator model.

while ¥ has not converged do

Sample Gaussian noise z1,. . ., z,, from N(0, 1)

Mg

Generate fake images {z9; 29 = Gy (zj)}j‘:l

1 K L\ _
i & T Zkzl QQ%I-_VJ € [1, ng
Broadcast {¥5, p;’.' ;‘il to workers
Receive {o, NF 3‘;1 from workers
9 YA k\/ .
P < % 2ok INj Vi € [1,ng]
end
Conduct back-propagation with the loss:

Loss({Df (Ga(23)) Y321, {p]})
end

Distributed Distance Learning Algorithms and Applications
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Overall Algorithm: Discriminator

SU, Yuxin

Algorithm 2: Discriminator as Worker Unit

Input: K: number of worker unit, n,.: batch size in
worker unit, 7 : learning rate for Kantorovich
potential, 7": number of iterations for the Dirac
mass estimation.

for all worker k € [1, K| do in parallel

Sample {z;}. ", a batch from the real dataset R,

Receive fake images {.L;’-'}j: ) from the master unit

Evaluate cost ¢;; = Hl)gk (II) — Dg, (:I:_?) || Vi €
[1 Ty ] J € [1:7?’!}]

fo

Receive {¢;, p7}72, from master

r—i,...,l u9v |

1,...,uquu

Compute Vofq,. from Eq. (10)
Nk — Z:— I, *E‘Jm‘h

Send {¢¥, NJ}77, to master |
emnct
Conduct back-propagation with the loss:
Loss({Dg (x9)};2,,{NF})
end

Distributed Distance Learning Algorithms and Applications
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Ssummary

Parameter Server

SU, Yuxin

broadcast the generated data
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Experiments
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Experimental Setting

 Datasets:
LSUN with bedrooms 128 x 128 3,000,000
CIFAR10 32 X 32 60,000
« Machines:

* 4 machines with 2 NVIDIA GTX 1080 each
* Network:

« 101-layer ResNet block for generator and discriminators
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Quantitative evaluations

| Method | LSUN with bedroom (FID) CIFAR10 (IS)

WGAN-GP (8 GPUs) 27.3 7.73
Ours (2 GPUs) 23.2 7.12
Ours (4 GPUs) 21.9 7.68
Ours (8 GPUs) 21.0 7.81

« Smaller Fréchet Inception Distance (FID) is better, larger Inception
scores (IS) is better
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Comparisons on Bedroom dataset

Wasserstein GAN with gradient penalty Ours (2 GPUs)
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Comparisons on Bedroom dataset

Wasserstein GAN with gradient penalty Ours (4 GPUs)

Distributed Distance Learning Algorithms and
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Comparisons on Bedroom dataset

Wasserstein GAN with gradient penalty Ours (8 GPUs)

Distributed Distance Learning Algorithms and

SU, Yuxin .
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Conclusions

Global * Semi-synchronous * localized GMML

parallel approach 0 . algorithm for the
* Theoretical bound ‘:ﬁ »‘,,‘Q qguery-independent
- Efficient distributed S g ranking framework
im | 1 ':;fl.. s.s.’-":ig.;:.':.
plementation T, A
ot A

* Distributed ACIETIENEE -« Primal form

approach for smart * Master-slave
! distributed

sampling —
* Hybrid solution

communication Fiay
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Optimization for Distance Learning

mﬂ}n L(M,S,D,R) + A-Reg(M)

* L is aloss function associated with training constraints
« Ais aregularization parameter

- Reg(M) is some regularizer term
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Global Distance Learning
Appendix
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Multivariate Gaussian Distribution

* Probability density function:

1 1
p(x; A) = 7 exp(—5 da(x, 1))

* Minimizing difference relative entropy:
min  KL(p(x; Ao)|lp(x; 4))
S. t. dA(Xi,Xj) <u (l,]) ES
da(x;,x;)) =1 (i,j)€D

Where

_ p(x|uo, Ao)
KL(p(x|uo, Ao)lIp(x|u, A)) = fp(xl,uO,AO)log (x|, A) dx
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Bregman Divergence

« KL divergence:

1 1
KL(p(xlto, A)|Ip (eIt 4) = = Dy (A, Ag) + 7 dy-1 (b0, 1)
* Bregman divergence:

Dy (4, Ag) = ¢p(A) — p(4g) — tr(Vp(4g)T (4 — Ap))

where ¢(A) = —logdet(4)
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Performance on Running Time
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Performance on Accuracy

I

150 |
1
— 1 5
=4
0.5

#lteration
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Performance on Accuracy

0.25 —— ITML H 03} —— ITML i
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Local Distance Learning
Appendix
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Experiments: Questions

e |s the proposed method a correct
extension to the global GMML?

Correctness <

e Does our solution outperform any
Accuracy < state-of-the-art LtR algorithm on
accuracy?

e Does our solution enjoy high
Scalability < computational efficiency and good
scalability for scaled datasets?
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Datasets

Query-dependent Dataset: CAL10K

Audio 1,024 5,419
Lyrics-128 128 2000
Lyrics-256 256 2000

Query-independent Datasets (Query-document pairs)

Train Test Train Test Levels Features

Yahoo! Set | 19,944 6,983 473,134 165,660 5

Yahoo! Set I 1,266 3,798 34,815 103,174 5 596
MSLR-WEB10K 6,000 2,000 723,412 235,259 5 136
MSLR-WEB30K 31,531 6,306 3,771k 753k 5 136
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Global GMML vs Local GMML

Synthetic-2 Synthetic-10
| : | | | |
0.42 |- —— -GMML
—=— GMML 0.5 /\—- -
0.41 |- B
< / < ounl —— L-GMML
= = Yo
0.4 » ] .- —=— GMML
0.39 | | | o T | | _|
2 4 0 5 10 15
# of metrics # of metrics
Synthetic-50 Synthetic-100
I I I I
0.45 |- | 0.34 -
o o 29
= < 0.32
= g4l ——L-GMML | = .
—=— GMML 0.3
0.28 |-
035 | | | [ | | |
0 20 40 60 0 50 100
# of metrics +-0of metrics
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Number of Local Metrics

Audio Audio with PCA Lyrics128 Lyrics256
0.68[ T e e 07 T Tel " ' '/i\ | | |
- I._.-"—— . ~ | ._ -
o 0.66 ,/' 1o 068 \‘_ o - “or ,/\,
< / < < 062/ 1< .
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0.62 | / 4 064f/ - | / 0551 )
| | b | | | | 0.58 | | L] e |
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Scalability: Training Time of L-GMML on Different
Scaled Synthetic Datasets

10%
N 103
N
Q
£ 102
oY)
=
-E 101
|_
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Comparison with R-MLR [Lim et al., ICML13]

- _ 0o MLR
S lo GMML [}
- Audio N/A 38
0.7 H -
T o B Audio with PCA 607 4.7
1l | Lyrics-128 302 2.6
0.6 ]| | J( | Lyrics-256 1241 7.8
0.5
[ | |
Audio Lyrics-128 Lyrics-256
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Conclusions

« Developed a localized GMML algorithm for the query-independent
ranking framework

Distance Learning

Ideal Candidate Document

Query-dependent Query-independent
Learning to Rank Learning to Rank

Abstracted as Query-
document pair

Query, Doc € R%

« Experiments show proposed method outperforms the state-of-
the-art
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Deep Distance Learning
Appendix
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Facility Location (NMl-based) [Song et al, CVPR'17]

SU, Yuxin

CNN

Ay, y*){

A(yn, ¥7) <

\_

SCore
A
(T F(y*=
T F(yl=
\ T F(yn:

00®
OO0

< 0o
&
S————

ome o060
OO <oO0O

oo m oomj
Se— Se—

Learn to rank the clustering score
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The Average of the £, Norm of All Parameters in CNN

0.4 — | |
—e— Birds
—m— CARS196
0.38 | —e— Products |
= 0.36 | —
5
=
=034 .
0.32 | N
03 | | | | |
0 5 10 15 20

Epoch
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Datasets: CUB-200-2011

Anchor Positive Negative

11,788 images of birds from 200 different categories
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Datasets: Cars196 [Krause et al, CVPR'13]

Anchor Positive Negative

16,185 images of cars from 196 categories
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Datasets: Stanford Online Products [Song et al,
CVPR’16]

Anchor Positive Negative

120,253 images from 22,634 categories
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Computation Time vs Communication Time

| | |
1L [J Communication i
[l Computation
0.8 B
g 06 |
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The Training Loss of the Averaged DML model in
proposed framework with 4 machines

1,000 | —
—e— Birds
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3 600 [~ B
2
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0 |
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The Average of

{> norm
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Evaluation on CUB-200-2011

Time (s) / Recall@1 | Recall@5 | Recall@10
epoch

Triplet semi-hard [CVPR’15] 424 56.12 40.46 58.15 69.28
Lifted struct [CVPR’16] 536 56.30 43.24 66.73 79.61
Histogram [NIPS’16] 520 - 49.34 68.61 80.58
N-pairs [NIPS’16] 413 58.87 44.29 67.26 79.18
NMI-based [CVPR’17] 617 60.19 48.38 72.47 82.25
Spectral [ICML'17] 702 58.13 50.28 76.80 85.79
Ours (2 machines) 378 61.19 52.45 77.08 84.24
Ours (4 machines) 234 61.56 52.40 77.19 85.07
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Evaluation on Stanford Online Products

Time (s) / Recall@1 | Recall@5 | Recall@10
epoch

Triplet semi-hard [CVPR’15] 4,097 88.38 67.12 77.97 82.28
Lifted struct [CVPR’16] 3,814 88.19 65.50 78.23 81.08
Histogram [NIPS’16] 3,856 - 65.55 78.73 81.56
N-pairs [NIPS'16] 3,701 89.01 67.12 79.15 84.09
NMI-based [CVPR’17] 6,238 90.27 66.98 77.06 82.15
Spectral [ICML'17] 5,713 87.38 66.09 78.98 83.12
Ours (2 machines) 3,028 89.77 68.02 78.34 85.45
Ours (4 machines) 2,356 89.56 67.79 78.49 84.73
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Convergence Speed
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Speedup

Speedup
8 - - - Ideal
——  Proposed
—— WGAN-GP
6
4
2

2 4 6 8
Number of GPUs

Speedup(N)
B The execution time of one unit

" The execution time of N units

 To the first checkpoint where
Wasserstein distance is less
than 5.
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Comparisons on CIFAR10 dataset

Wasserstein GAN with gradient penalty Ours (8 GPUs)
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Quantitative evaluations

| Method | LSUN with bedroom (FID) CIFAR10 (IS)

WGAN-GP (8 GPUs) 27.3 7.73
Ours (2 GPUs) 23.2 7.12
Ours (4 GPUs) 21.9 7.68
Ours (8 GPUs) 21.0 7.81

* Smaller FID is better, larger IS is better
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Conclusion

* We introduce a novel parallel architecture to speedup Wasserstein
GAN.

« We develop an efficient stochastic algorithm to approximate the
Wasserstein distance with higher accuracy.
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