
Automatic Software Testing Via
Mining Software Data

Wujie Zheng

Supervisor: Prof. Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

August 17, 2011

2

Outline
• Introduction
• Part 1: Unit-Test Generation via Mining

Relevant APIs
• Part 2: Test Selection via Mining

Operational Models
• Part 3: Mining Test Oracles of Web

Search Engines
• Conclusions

3

Introduction

Google harms your computer Destruction of NASA Mariner 1

• Software bugs annoy users or even cause
great losses!

• Software failures cost the US economy
about $60 billion every year [NIST Report
2002]

• The primary way for removing bugs
• Three steps

– Generate test inputs
– Run test inputs
– Inspect test results (check actual outputs or

properties against test oracles)

4

Software Testing

• A system test

5

Software Testing

Test
Oracles

Test
Inputs

• A unit test

6

Software Testing

Test
Oracles

Test
Inputs

public void testSearch()
{

// test input
Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);
int var2 = var0.search(var1);

// test oracle
assertTrue(var2==1);

}

Software Testing

• Manual software testing
– Difficult to create a good set of test inputs

• Software systems become large-sized and
complex

– Tedious to inspect a large set of test results

7

8

Automatic Software Testing
• Test input generation

– Random testing, combinatorial testing,
model-based testing, grammar-based testing

• Test result inspection
– Model-based testing

Test Input Generation

Test Result Inspection

Specification

9

Automatic Software Testing
• Specification: a complete description of the

behavior of a software to be developed
– Constraints on test inputs

• socket->bind->listen->accept
• For a method f(int x, int y), x>0,y>0

– Constraints on program states
• From state s and action x, the next state should be t.
• There should be no memory errors, e.g., double free

– Constraints on test outputs
• For a method sort(x), the output is sorted

10

Challenges
• The specification is often unavailable or

incomplete

Test Input Generation

Test Result Inspection

Specification

11

My Thesis
• Mining specifications from software data

to guide test input generation and test
result inspection

Test Input Generation

Test Result Inspection

SpecificationSoftware Data

12

My Thesis
• Part 1: unit-test generation via mining relevant

APIs
– A unit-test is a method call sequence

Test Input GenerationSource Code Relevant APIs

f g
• Contribution

– Reduce the search space of possible method call
sequences by exploiting the relevance of methods

13

My Thesis
• Part 2: test selection via mining operational models

– Control rules, data rules

Operational ModelsExecution Traces Test Result Inspection

• Contribution
– Propose two kinds of operational models that can

detect failing tests effectively and can be mined
efficiently

Br1 => Br2

14

My Thesis
• Part 3: mining test oracles of Web search

engines

Program Outputs Test Result InspectionOutput Rules and
Classification Models

• Contribution
– Apply test selection techniques to Web Search

Engines
– Select failing tests by exploiting application-level

knowledge

P1 => P2

15

My Thesis

• Overview

Software Data Mined/Learned Specifications Testing Tasks

Source Code Relevant APIs
(Specifications about Program Inputs)

Test Input Generation

Execution
Traces

Operational Models
(Specifications about Program States)

Test Result Inspection
(Test Selection)

Program
Inputs and
Outputs

Output Rules
(Specifications about Program Outputs)

Test Result Inspection
(Test Selection)

Part 1

Part 2

Part 3

Part 1: Unit-Test Generation via Mining
Relevant APIs

17

Problem

• Given a set of methods under test
(MUTs), generate inputs (method-call
sequences) that explore different
behaviors of each method.

Existing Approaches
• Random

– Select parameters of methods randomly
A.f(B) means f is a method class A and it has an argument of class B

18

Stack var0 = new Stack(); String var1 = "hi!";

Stack.push(Object)

Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);

Stack.search(Object)

Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);
int var2 = var0.search(var1);

Existing Approaches
• Feedback-directed generation

– Discard sequences whose execution throw
exceptions

• Adaptive random generation
– Select sequences that are most different

from previous selected ones

• They do not consider how the specific
method under test is implemented

19

20

The Idea

• A method cannot affect the execution of the
method under test (MUT) if it does not mutate
an input’s fields accessed by the MUT.

– the size() method has no effect because it does not
change any fields that search() access.

Stack var0 = new Stack(); Stack var0 = new Stack();
String var1 = "hi!";
var0.push((Object)var1);

Stack var0 = new Stack();
int var1 = var0.size();

Stack.search(Object)

X

21

Example

• openDatabase() calls setupDatabase() calls getAllowCreate()
accesses allowCreate

• setAllowCreate() accesses allowCreate
• To test openDatabse(), for sequences of DatabaseConfig objects,

we prefer the sequences that call setAllowCreate()

• Mining relevant APIs
– Use Eclipse JDT Compiler to analyze the

object fields accessed by each method
• Each method is represented as an itemset of the

object fields that it accesses

– Find relevant APIs that access the same
object fields

• openDatabase() is relevant to setAllowCreate()
22

Our Approach

Environment.envImpl, DatabaseConfig.allowCreate, ...openDatabase() :

setAllowCreate() : DatabaseConfig.allowCreate

• RecGen: recommendation-based test
generation
– For each parameter, recommend a method

call sequence from the existing sequences
• Assign more weights to short sequences with

more relevant APIs

Our Approach

23A.f(B)

Method Call
Sequences
of Type A

Method Call
Sequences
of Type B

Experiments
• Three subjects

– Berkeley DB Java Edition (BDB)
– Java Data Structure Library (JDSL)
– Science Computing Library (JScience)

• Compared with three representitive tools
– JCrasher
– Randoop
– ARTGen

• Metrics
– Code Coverage

24

Experiments

25

• With feedback is better
• With sequence recommendation is better

Experiments

26

• With feedback is better
• With sequence recommendation is better

Summary of Part 1
• Problem

– Unit-Test input generation (method call sequence)
• Our approach

– Mine relevant APIs that access common fields
– For each parameter, select short method call

sequences that have more relevant APIs
• Contribution

– Reduce the search space of possible method call
sequences by exploiting the relevance of methods

27

Part 2: Test Selection via Mining
Operational Models

Problem

• Given a large set of test results, find the
failing tests from them
– Without executable test oracles
– Manual test result inspection could be labor-

intensive

29

Solution

• Test selection for result inspection
– Select a small subset of tests that are likely to

reveal faults

Hey! Check only these tests!

30

• Code coverage based selection
• Clustering based selection
• Operational model based selection

Existing Approaches

31

Code Coverage Based Selection

• Select a new test if it increases some
coverage criteria, otherwise discard it
– Method, line, branch coverage

32

 Br1 Br2 Br3 Br4 …
Test1 1 0 1 1 …
Test2 1 0 1 1 …
Test3 0 1 0 0 …
Test4 1 0 1 0 …

Test1, Test3

Clustering Based Selection
• Use hierarchical clustering of execution profiles

and perform one-per-cluster sampling
– Failing tests are often grouped into small clusters

33

Operational Model Based Selection

• Mine invariants from passing tests (Daikon,
DIDUCE)

• Select tests that violate the existing invariants
(Jov, Eclat, DIDUCE)

34

Our Approach

• Mine common operational models from
unverified tests
– The models are often but not always true in

the observed traces

35

Our Approach

• Why is it difficult?
– The previous templates of operational models

generate too much candidates
– Examine all the candidates at runtime may

incur high runtime overhead
• For passing tests, we can discard any violation
• For unverified tests, we cannot!

36

Our Approach

• Effective mining of operational models
– Collect simple traces at runtime

• Branch coverage
• Data value bounds

– Generate and evaluate potential operational
models after running all the tests

• Control rules: implication relationships between
branches

• Data rules: implicit data value distributions

37

• Control rules: implication relationships
between branches

 Br1 Br2 Br3 Br4 …
Test1 1 0 1 1 …
Test2 1 0 1 1 …
Test3 0 1 0 0 …
Test4 1 0 1 0 …

Common Operational Models

38

Br1 => !Br2

Br1 => Br3

• Data rules: implicit data value distributions
 min(Var1) max(Var1) min(Var2) max(Var2) …
Test1 0 10 0 11 …
Test2 0 32 -1 1 …
Test3 0 1 1 3 …
Test4 0 23 2 6 …

Common Operational Models

39

The distribution of max(Var1)
Too large or too small values are suspicious

• Select tests for result inspection
– Sort the mined rules in the descending order

of confidence
– Select tests that violate the rules from the top

to bottom

Test Selection

40

Experiments
• Subject programs

– Siemens suite: 130 faulty versions of 7 programs
– grep program: 20 faulty versions

41

Experiments
• Effectiveness

– The number of the selected tests
– The percentage of revealed faults

42

Experiments
• Our approach is more effective

43

Control Rules vs. Data Rules

44

• Control rules reveal more faults

Random Test Suites
• Our approach works well on automatically

generated test suites

45

Summary of Part 2

• Problem
– Test selection for result inspection

• Our approach
– Mining common operational models (control

rules, data rules) from execution traces of
unverified tests

• Contribution
– Propose two kinds of operational models that

can detect failing tests effectively and can be
mined efficiently 46

Part 3: Mining Test Oracles of Web
Search Engines

Background

• Find defects of Web search engines with
respect to retrieval effectiveness.
– Web search engines have major impact in

people’s everyday life.
– Retrieval effectiveness is one of the major

concerns of search engine users
• How well a search engine satisfies users’

information need
• Relevance, authority, and freshness

48

• An example
– Declaration from the PuTTY Website for Google’s

search result change

– This declaration suggests that Google’s search
results for “putty” at some time may not be
satisfactory and may cause confusions of the users.

Background

49

Problem

• Given a large set of search results, find
the failing tests from them
– Test oracles: relevance judgments

50

Problem
• It is labor-intensive to collect the relevance

judgments of search results
– For a large number of queries

• Previous relevance judgments may not be
reusable
– The desired search results may change over

time
51

Existing Approaches
• The pooling process

– Different information retrieval systems submit
the top K results per query

– The assessors judge for relevance manually
• The idea

– Inspect parts of search results for all queries
• Limitations

– Too costly, hardly reusable

52

Existing Approaches

• Click through data as implicit feedback
– Clicked results are relevant

• The idea
– Let users inspect all search results of all

queries
• Limitations

– Position bias, summary bias
• E.g., cannot find relevant pages that are not in the

search results
53

Our Approach

• Test selection
– Inspect parts of search results for some

queries by mining search results of all queries
– Exploit application-level knowledge

• Execution traces may not help
– Utilize the existing labels of testers

• The process needs to be repeated

54

• Mining and learning output rules

Our Approach

55

Queries and
Search Results

Feature Vectors
(Itemsets)

Association Rules

Failing/Passing
Labels

Classification
Models

Detecting
Violations

Predicting
Failing Tests

• Query items
– Query words, query types, query length, etc.

• Search result items
– Domain, domain’s Alexa rank, etc.

• Query-result matching items
– Whether the domain name has the query,

whether the title has the query, etc.
• Search engine items

– Search engine names

Mining Output Rules

56

• SE:bing, Q:boston colleges, QW:boston,
QW:colleges, TwoWords, CommonQ,
top10:searchboston.com, top1:searchboston.com,
top10:en.wikipedia.org, …, SOMEGE100K,
SOMELE1K

• SE:bing, Q:day after day, QW:day, QW:after,
ManyWords, CommonQ, top10:en.wikipedia.org,
top1:en.wikipedia.org, top10:dayafterday.org, …,
SOMEGE100K, SOMELE1K

Example Itemsets

57

Mining Association Rules
• Mining frequent itemsets with length constraint

– An itemset is frequent if its support is larger than the
min_support

{SE:bing, top10:en.wikipedia.org}
• Generating rules with only one item in the right

hand side
– For each item xi in Y, generate a rule Y-xi => xi

SE:bing=>top10:en.wikipedia.org

58

• Feature Vectors
– Can describe more general types of properties

Learning Classification Models

59

 wordLength queryType max(domainRank) google.com facebook.com …
Search Result List 1 2 common 900 1 0 …
Search Result List 2 3 hot 100000 0 1 …
Search Result List 3 1 hot 9782 1 1 …

Learning Classification Models

• Learn classification models of the failing
tests based on the training data

• Given new search results, use the learned
model to predict whether they fail.

60

Experiments

• Search engines
– Google
– Bing
These two search engines, together with many other
search engines powered by them (e.g., Yahoo!
Search is now powered by Bing and AOL Search is
powered by Google), possess more than 90 percent
search market share in U.S.

61

Experiments

• Queries
– Common queries

• Queries in KDDCUP 2005, 800 queries
– Hot queries

• 3432 unique hot queries from Google Trends and
Yahoo! Buzz from November 25, 2010 to April 21,
2011

62

Experiments

• Search results
– Use the Web services of Google and Bing to
collect the top 10 search results of each query
from December 25, 2010 to April 21, 2011
– 390797 ranked lists of search results (each

list contains the top 10 search results)

63

The Mined Rules
• Mining from one search engine' results in one

day
– Google's search results on Dec. 25, 2010
– minsup = 20, minconf = 0.95, and maxL = 3

64

The Mined Rules
• Mining from multiple search engines' results in

one day
– Google and Bing's search results on Dec. 25, 2010
– minsup = 20, minconf = 0.95, and maxL = 3

– Rules 9-12 show the different opinions of search
engines to certain Websites

65

The Mined Rules
• Mining from one search engine' results in

multiple days
– Google's search results from December 25, 2010 to

March 31, 2011.
– minsup = 20, minconf = 0.95, and maxL = 2

– Rules 13-18 show the rules about the top 1 results for
the queries 66

Example Violations
• Search results of Bing on April 1st, 2011 violate

the following rule

• The actual result of Bing
http://www.jcu.edu/index.php
points to the homepage of the John Carroll University,
not easy to get the answer of the query

67

Learning Classification Models
• Conduct experiments with the following classes

– Unexpected top 1 change
• the other search engines oppose the change (they returned

the same top 1 result and do not change)
– Normal top 1 change

• the other search engines do not oppose the change

• Task
– Given a top 1 change of the search engine under test,

predict whether it is an unexpected change

68

Learning Classification Models
• Data

– Training data: December 26, 2010 to March 31, 2011
– Testing data: April 1, 2011 to April 22, 2011

• Results of predicting unexpected top 1 changes

– Decision Tree is more accurate, but Naive Bayes is
faster

69

Summary of Part 3
• Problem

– Search engine testing
• Our Approach

– Mine and learn output rules to find suspicious search
results automatically

• Contribution
– Apply test selection techniques to Web Search

Engines
– Select failing tests by exploiting application-level

knowledge

70

Conclusions

72

Conclusions

• Mining specifications from software data to
guide test input generation and test result
inspection
– Part 1: unit-test generation via mining relevant

APIs
• Reduce the search space of possible method call

sequences by exploiting the relevance of methods

73

Conclusions
– Part 2: test selection via mining operational

models
• Propose two kinds of operational models that can

detect failing tests effectively and can be mined
efficiently

– Part 3: mining test oracles of web search
engines

• Apply test selection techniques to Web Search
Engines

• Select failing tests by exploiting application-level
knowledge

74

Publications
p Wujie Zheng, Hao Ma, Michael R. Lyu, Tao Xie, and Irwin King, “Mining Test Oracles

of Web Search Engines”, To appear in the 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), Short Paper, Lawrence, Kan., US,
November 6-10, 2011.

p Wujie Zheng, Qirun Zhang, and Michael R. Lyu, “Cross-library API Recommendation
using Web Search Engines”, To appear in ESEC/FSE 2011, New Ideas Track,
Szeged, Hungary, September 5-9, 2011.

p Qirun Zhang, Wujie Zheng, and Michael R. Lyu, “Flow-Augmented Call Graph: A
New Foundation for Taming API Complexity“, Fundamental Approaches to Software
Engineering (FASE'11), Saarbrücken, Germany, 26 March - 3 April, 2011.

p Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie, “Random Unit-Test
Generation with MUT-aware Sequence Recommendation”, In Proceedings of the
25th IEEE/ACM International Conference on Automated Software Engineering (ASE
2010), Short Paper, Antwerp, Belgium, September 2010.

p Wujie Zheng, Michael R. Lyu, and Tao Xie, “Test Selection for Result Inspection via
Mining Predicate Rules”, In Proceedings of ICSE Companion 2009, pp. 219-222,
Vancouver, Canada, May 2009.

p Xiaoqi Li, Wujie Zheng, Michael R. Lyu, “A Coalitional Game Model for Heat
Diffusion Based Incentive Routing and Forwarding Scheme”, In Proceedings of IFIP
Networking 2009, pp. 664-675, Aachen, Germany, May, 2009.

Q&A

Thanks!

75

