Automatic Software Testing Via
Mining Software Data

Wujie Zheng
Supervisor: Prof. Michael R. Lyu

Department of Computer Science & Engineering
The Chinese University of Hong Kong

August 17, 2011

Outline

* |ntroduction

* Part 1: Unit-Test Generation via Mining
Relevant APls

« Part 2: Test Selection via Mining
Operational Models

» Part 3: Mining Test Oracles of Web
Search Engines

« Conclusions

Introduction

« Software bugs annoy users or even cause

great losses!

Webh

Google

This site may harm vour computer

The local version of this pre-eminer
world results
v, google.co uk! - S

1Google

Google harms your computer

Destruction of NASA Mariner 1

» Software failures cost the US economy
about $60 billion every year [NIST Report

2002]

Software Testing

The primary way for removing bugs

Three steps
— Generate test inputs
— Run test inputs

— Inspect test results (check actual outputs or
properties against test oracles)

Software Testing

* A system test

o . Test

TeSt testcases - : fx 5.0 smoketest - functionality

Inputs Oracles

1: [awesombar] address field and go button »

m

Steps to Perform: Expected Results:
1. Load a random page in the currently selected tab. 1. With step 2, when you type something in the loca
2. Type "www.google.com" into the location bar. Go button should appear.
3. Click the Go button (it is right facing triangle) on the right side 2. Clicking the Go button should load Google in the ¢

of the location bar.

This test is covered by Mozmill:
testawesomebar/testgobutton.js</p>

Result: Notes/Comments (optional):
@ NotRun
Pass
Fail
Test unclear/broken Associated Bug #s:

(bug #,bug #,...)

Software Testing

A unit test

Test public void testSearch()

Inputs \

// test input

Stack var0O = new Stack ()
String varl = "hi!";
varO.push ((Object)varl) ;

int var2 = var0O.search(varl);

// test oracle <« Test
assertTrue (var2==1); Oracles

Software Testing

* Manual software testing

— Difficult to create a good set of test inputs

« Software systems become large-sized and
complex

— Tedious to inspect a large set of test results

Automatic Software Testing

* Test input generation

— Random testing, combinatorial testing,
model-based testing, grammar-based testing

* Test result inspection
— Model-based testing

Test Input Generation

Specification o
L‘OOC";
Li%?ﬁ‘ 3
11l e i LL e 7‘9“[
Ruz o
'Y > .
> . Test Result Inspection

" |
Regulations

Automatic Software Testing

» Specification: a complete description of the
behavior of a software to be developed
— Constraints on test inputs
« socket->bind->listen->accept
* For a method f(int x, int y), x>0,y>0
— Constraints on program states

* From state s and action x, the next state should be t.
* There should be no memory errors, e.g., double free

— Constraints on test outputs
« For a method sort(x), the output is sorted

Challenges

* The specification is often unavailable or

Incomplete

Specification

Test Input Generation

Test Result Inspection

10

My Thesis

* Mining specifications from software data
to guide test input generation and test
result inspection

Test Input Generation
z_‘.?‘?gj
o 7

Rules £ | R
J o5
j \ (/ :>

R@gwlmwﬁ Test Result Inspection
A S ,\“/4

Software Data Specification

11

My Thesis

» Part 1: unit-test generation via mining relevant
APls

— A unit-test is a method call sequence

Source Code Relevant APls Test Input Generation

; a demo : L‘ OOC:Y-;I' :

public static void main(String[] args) L\X > »\
System.out.println("Hello World!™):; f @ g j LL“"‘S'QX)‘&??\

e Contribution

— Reduce the search space of possible method call
sequences by exploiting the relevance of methods

12

My Thesis

» Part 2: test selection via mining operational models
— Control rules, data rules

Execution Traces Operational Models Test Result Inspection

e Contribution

— Propose two kinds of operational models that can
detect failing tests effectively and can be mined

efficiently 1o

My Thesis

« Part 3: mining test oracles of Web search
engines

Proaram Outouts Output Rules and .
J P Classification Models €St Result Inspection

Sf-tw tthkodthf ncyclopedia
wikipe j P ﬂw snnq a‘hﬂd

Sftw IJ esng onducted to provide stakeholder

the qu Ity fth e pro d t rvice undertest. -

Graphical user interface testin g - Portal - Category: Software testing l I _> l 2
S ftw T t ng s \
edui~koopman/des_s99/sw_testing/ - Cached A
Sﬁw ngis any a ttyamedt aluating an attribute or caps Y/
syst mand deter mining that it meets its required results. .. \\ 7 4
-
S ftw T t ng Tutori \ S _—
guru99. com/software-testing. htr ached

F dmen I fotw (M I)T J xplained used Real Life S
Tutarials that e ISTQE a dCSTE syllabus

Contribution
— Apply test selection techniques to Web Search
Engines

— Select failing tests by exploiting application-level
knowledge

14

My Thesis

« Overview

Part 1
Part 2

Part 3

Software Data

Mined/Learned Specifications

Testing Tasks

Source Code

Relevant APls
(Specifications about Program Inputs)

Test Input Generation

Execution
Traces

Operational Models
(Specifications about Program States)

Test Result Inspection

(Test Selection)

Program
Inputs and
Outputs

Output Rules
(Specifications about Program Outputs)

Test Result Inspection

(Test Selection)

15

Part 1: Unit-Test Generation via Mining
Relevant APls

Problem

» Given a set of methods under test
(MUTs), generate inputs (method-call
sequences) that explore different
behaviors of each method.

17

Existing Approaches

 Random
— Select parameters of methods randomly

A.f(B) means fis a method class A and it has an argument of class B

Stack var0 =_new Stack() String varl = "hil!";

7

Stack.push (Object)

Stack var0O "= new Stack();
String varl = "hi!";
var0.push ((Object)varl);

Stack.search (Object)

!

Stack var0 = new Stack();
String varl = "hi!";
var0O.push ((Object)varl);

int var?2 = var0O.search(varl);

Existing Approaches

* Feedback-directed generation

— Discard sequences whose execution throw
exceptions

* Adaptive random generation

— Select sequences that are most different
from previous selected ones

» They do not consider how the specific
method under test is implemented

19

The Idea

* A method cannot affect the execution of the
method under test (MUT) if it does not mutate
an input’s fields accessed by the MUT.

Stack var0O = new Stack(); Stack var0 = new Stack(); Stack var0 = new Stack();
String varl = "hi!"; int varl = varO.size () ;
ar(O.push

\w

Stack.search (Object)

— the size() method has no effect because it does not
change any fields that search() access.
20

Example

Private void setupDatabase(..., DatabaseConfig
dbConfig, ...}
throws DatabaseException {

/4 Environment.java
public synchronized Database openDatabase(
Transaction

String datgbaselame, if (databaseExists) {
Databasze

throws DatabaseException { } else {
checkHandlalsValid(); e
checkEnv(); J* No database.
try { _ Create if we're allowed to. */
if (dbConfig 5 mull) { if (dbConfig.getallowCreate()) {
dbConfig/~ DatabaseConfig. DEFATLT, s
¥
Database pdb = now Database(this);
setupDatabase(txn, db, databaselams,
dbConfig, ¥
falsa,
falsae, Ff DatabaseConfig. java
envImpl.isReplicated()); public boolean ge lowCraeated) {
return db; return allowlreate;
} catch (Error E) { ¥
envImpl.invalidate(E);]]
throw E; public woid setAllowlreate(boolean allowCreate) {
T this.allowCreate = allowCraatsa;
} }

« openDatabase() calls setupDatabase() calls getAllowCreate()
accesses allowCreate

« setAllowCreate() accesses allowCreate

« To test openDatabse(), for sequences of DatabaseConfig objects,

we prefer the sequences that call setAllowCreate() 1

Our Approach

* Mining relevant APls

— Use Eclipse JDT Compiler to analyze the
object fields accessed by each method

« Each method is represented as an itemset of the
object fields that it accesses

openDatabase() : Environment.envimpl, DatabaseConfig.allowCreate, ...

setAllowCreate() : DatabaseConfig.allowCreate

— Find relevant APIs that access the same
object fields

» openDatabase() is relevant to setAllowCreate()
22

Our Approach

« RecGen: recommendation-based test
generation

— For each parameter, recommend a method
call sequence from the existing sequences

» Assign more weights to short sequences with
more relevant APls

Method Call
Sequences
of Type A

Method Call
Sequences
of Type B

A.f(B) 23

Experiments

* Three subjects
— Berkeley DB Java Edition (BDB)
— Java Data Structure Library (JDSL)
— Science Computing Library (JScience)

 Compared with three representitive tools
— JCrasher

— Randoop
— ARTGen

* Metrics
— Code Coverage

24

Experiments

Table 3.2: Statement coverage (%) on Berkeley DB (LOC: lines of code)

Package #LOC| JCrashen] Randoop ARTGen| RecGen
com.sleepycat.je 4755 9.8 36.6 32.5 44.3
com.sleepycat.je.cleaner 2850 1.6 30.6 8.5 52.8
com.sleepycat.je.config 764 89.1 95.9 95.5 95.2
com.sleepycat.je.dbi 4401 10.4 40.0 27.9 53.4
com.sleepycat.je.evictor 456 0.0 11.2 0.2 8.6
com.sleepycat.je.incomp 318 0.3 23.3 0.3 16.0
com.sleepycat.je.jca.ra 278 0.0 0.0 0.0 0.0
com.sleepycat.je.jmx 441 49.2 58.3 57.8 64.6
com.sleepycat.je.latch 215 27.0 74.9 67.4 76.7
com.sleepycat.je.log 3789 9.6 36.3 15.1 49.6
com.sleepycat.je.log.entry] 366 15.0 47.5 29.8 65.6
com.sleepycat.je.recovery| 1954 7.0 33.9 7.8 34.4
com.sleepycat.je.tree 4398 9.3 34.8 22.0 47.4
com.sleepycat.je.txn 2608 6.6 37.6 22.1 52.5
com.sleepycat.je.util 1564 5.9 22.9 22.5 34.6
com.sleepycat.je.utilint 678 19.3 63.7 50.7 64.5
Total 29835 11.0 374 24.2 48.4

* With feedback is better
* With sequence recommendation is better 25

Experiments

Table 3.4: Statement coverage (%) on JScience (LOC: lines of code; GEO.COOR:

geography.coordinates, MATH: mathematics)

Table 3.3: Statement coverage (%) on JDSL (LOC: lines of code) Package 41,00 JCrasherfRandoopARTGenRecCen
Package #L0O(| JCrasher | Randoop| ARTGen| RecGen
org.jscience. 396 3.0 4.5 4.8 4.8
jdsl.core.algo.sorts 91 24.2 48.4 24.2 48.4 o .]
org.jscience.economics.money | 55 43.6 87.3 85.5 96.4
jdsl.core.algo.traversaly 26 0.0 0.0 0.0 0.0
Jas.core.a7s0. traversas org jscience. GEO.COOR 667 | 174 | 61.9 | 609 | 21.9
* Al Anra e . 36 20) ¢ 514
idsl.core.api 62 694 93.5 90.3 28 org.jscience. GEO.COOR.crs | 198 | 525 | 64.1 | 61.6 | 61.1
jdsl.core.ref 2497 26.1 494 394 67.4 org.jscience. MATH.function 692 32.8 32.7 37.3 39.6
jdsl.core.util 60 30.0 6.7 6.7 1.7 org.jscience. MATH.number 1683 68.1 83.1 79.3 86.1
jdsl.graph.algo 602 8.7 40.0 20.1 41.4 org.jscience. MATH.vector 1551 22.0 39.8 46.1 82.8
jdsl.graph.api 46 47.8 89.1 82.6 37.0 org.jscience.physics.amount 614 36.5 67.4 57.8 | 70.5
jdsl.graph.ref 541 15.7 29.6 25.9 51.9 org.jscience.physics.model 60 58.3 96.7 96.7 100
Total 3925 23.2 45.5 35.2 58.9 Total 5916 37.7 56.1 56.0 | 64.9

* With feedback is better
* With sequence recommendation is better 26

Summary of Part 1

* Problem
— Unit-Test input generation (method call sequence)

* Our approach
— Mine relevant APIs that access common fields

— For each parameter, select short method call
sequences that have more relevant APls

 Contribution

— Reduce the search space of possible method call
sequences by exploiting the relevance of methods

27

Part 2: Test Selection via Mining
Operational Models

Problem

* Given a large set of test results, find the
failing tests from them
— Without executable test oracles

— Manual test result inspection could be labor-
Intensive

29

Solution

» Test selection for result inspection

— Select a small subset of tests that are likely to
reveal faults

&g%gﬁ Hey! Check only these tests!

30

Existing Approaches

» Code coverage based selection
» Clustering based selection
* Operational model based selection

31

Code Coverage Based Selection

e Select a new test if it increases some
coverage criteria, otherwise discard it

— Method,

line, branch coverage

Brl Br2 Br3 Br4 ...

Testl
Test2
Test3
Test4

1 0 1 1 ..

1 0 1 1 ..
o 1 o o Test1, Test3
1 0 1 0

32

Clustering Based Selection

* Use hierarchical clustering of execution profiles
and perform one-per-cluster sampling
— Failing tests are often grouped into small clusters

33

Operational Model Based Selection

* Mine invariants from passing tests (Daikon,
DIDUCE)

i, 5 := 0,0,
doi#n—

i,8:=1i+ 1,5+ b[i
od

Precondition: n > 0

Postcondition: s = (> j:0<j < n:blj)
Loop invariant: 0 <i<nands=(>_ j:0<j<i:b[j])

« Select tests that violate the existing invariants
(Jov, Eclat, DIDUCE)

34

Our Approach

 Mine common operational models from
unverified tests

— The models are often but not always true in
the observed traces

35

Our Approach

* Why is it difficult?
— The previous templates of operational models
generate too much candidates

— Examine all the candidates at runtime may
iIncur high runtime overhead
» For passing tests, we can discard any violation
 For unverified tests, we cannot!

36

Our Approach

 Effective mining of operational models

— Collect simple traces at runtime

« Branch coverage
« Data value bounds

— Generate and evaluate potential operational
models after running all the tests

« Control rules: implication relationships between
branches

« Data rules: implicit data value distributions

37

Common Operational Models

« Control rules: implication relationships
between branches

Brl Br2 Br3 Br4 ...

Testl
Test2
Test3
Test4

ool Brl => |Br2

1 0 1 1 ...
o 1 0 0 ..

38

Common Operational Models

« Data rules: implicit data value distributions

min(Varl) max(Varl) min(Var2) max(Var2) ...

Testl
Test2
Test3
Test4

0 10 0 11
0 32 -1 1
0 1 1 3
0 23 2 6

The distribution of max(Var1)

Too large or too small values are suspicious

39

Test Selection

» Select tests for result inspection

— Sort the mined rules in the descending order
of confidence

— Select tests that violate the rules from the top
to bottom

40

Experiments

* Subject programs
— Siemens suite: 130 faulty versions of 7 programs
— grep program: 20 faulty versions

Program LOC | Test Cases | Faulty Versions | Failed Tests (Avg.) | Program Description
print_tokens 539 4130 7 69 lexical analyzer
print_tokens2 | 489 4115 10 224 lexical analyzer

replace 507 5542 31 106 pattern replacement

schedule 397 2650 9 88 priority scheduler
schedule2 299 2710 9 33 priority scheduler
tcas 174 1608 41 39 altitude separation
tot_info 398 1052 23 83 information measure
Siemens suite | 404 3115 130 92 -
grep 13358 809 20 177 pattern matching

Experiments

o Effectiveness
— The number of the selected tests

—Thep

3]
S + + +
© O +
w 08F ’ + —
ko] [> + w x X -
o X
8 + x -
o e
3 01 e ~ —Random
o X .]
- O Our Approach
o 04F ¥ > Control Rules |
g < Data Rules
© / x Coverage
So02t / + Clustering
o Operational
\ / .
° Difference
00 50 100 150
#Tests

a) the Siemens suite

ercentage of reve

%Percentage of Revealed Faults

aled faults

T @) X X % T -_*:‘k -
) 8 ><> _ -_.x__.{_&.--f — ‘XL
0.8+ //'4-
0.6} /
“ —Random
O Our Approach
> Control Rules
0.2+ <l Data Rules
x Coverage
+ Clustering
00 100 200 300 400 200
#Tests

b) the grep program

42

Experiments

« Our approach is more effective

Program Manual Test Suite | Our Approach | Random | Coverage(k=1) | Clustering OD
#T #F #T %F #T | %F | #T %F #T | %F | #T | %F
print_tokens | 4130 7 25 89 37 139 | 6 61 40 | 84 | 9 | 37
print_tokens2 | 4115 10 41 100 37 | 78 | 4 90 40 | 100 | 6 | 51
replace 5542 31 75 80 37 | 45 | 12 33 40 | 57 | 18 | 45
schedule 2650 9 31 86 37 | 48 | 7 26 40 | 60 | 10 | 33
schedule2 2710 9 32 62 37 | 34 5 26 40 | 47 | 13| 30
tcas 1608 41 26 74 37 | 46 | 11 31 40 | 84 | 26 | 55
tot_info 1052 23 29 84 37 | 75 5 53 40 | 82 | 9 | 72
Siemens 3115 130 37 82 37 | 52| 7 46 40 | 73 | 13| 46
grep 809 20 218 98 219 | 90 | 100 91 250 | 89 - -

43

Control Rules vs. Data Rules

 Control rules reveal more faults

Program Original Test Suite | Our Approach Control Rules Data Rules
#Tests | #Faults | #Tests | %Faults | #Tests | %Faults | #Tests | %Faults
print_tokens | 4130 7 25 89 17 88 8 50
print_tokens2 | 4115 10 41 100 30 100 10 61
replace 5542 31 75 80 60 73 16 37
schedule 2650 9 31 86 24 70 7 49
schedule2 2710 9 32 62 24 61 9 25
tcas 1608 41 26 74 15 68 12 23
tot_info 1052 23 29 84 21 71 9 74
Siemens suite | 3115 130 37 82 27 76 10 46
grep 809 20 218 98 178 96 75 96

Random Test Suites

* Our approach works well on automatically
generated test suites

Program Automated Test Suite | Our Approach
#Tests #Faults #Tests | %Faults

print_tokens 1000 2 21 100
print_tokens2 | 1000 7 32 86
replace 1000 10 31 100
schedule 1000 3 26 33
schedule2 1000 4 17 100
tcas 1000 23 18 83
tot_info 1000 15 18 93
Siemens suite | 1000 64 23 85
grep 1000 12 116 100

Summary of Part 2

* Problem
— Test selection for result inspection

* Our approach

— Mining common operational models (control
rules, data rules) from execution traces of
unverified tests

e Contribution

— Propose two kinds of operational models that
can detect failing tests effectively and can be
mined efficiently 46

Part 3: Mining Test Oracles of Web
Search Engines

Background

* Find defects of Web search engines with
respect to retrieval effectiveness.

— Web search engines have major impact in
people’s everyday life.

— Retrieval effectiveness is one of the major
concerns of search engine users

 How well a search engine satisfies users’
information need

« Relevance, authority, and freshness

48

Background

 An example

— Declaration from the PuTTY Website for Google’s
search result change

2010-05-17 Google listing confusion

Several users have pointed out to us recently that the top Google hit for
"putty” is now not the official PuTTY site but a mirror that used to be listed
on our Mirrors page.

The official PuTTY web page is still where it has always been:

http//www_chiark_greenend.org uk/~sgtatham/putty/

— This declaration suggests that Google’s search
results for “putty” at some time may not be

satisfactory and may cause confusions of the users.
49

Problem

* Given a large set of search results, find
the failing tests from them

— Test oracles: relevance judgments

50

Problem

* ltis labor-intensive to collect the relevance
judgments of search results

— For a large number of queries

p—"

-

» Previous relevance judgments may not be
reusable

— The desired search results may change over
time

51

Existing Approaches

* The pooling process

— Different information retrieval systems submit
the top K results per query

— The assessors judge for relevance manually

* The idea
— Inspect parts of search results for all queries

 Limitations
— Too costly, hardly reusable

52

Existing Approaches

 Click through data as implicit feedback
— Clicked results are relevant

 The idea

— Let users inspect all search results of all
gueries

 Limitations

— Position bias, summary bias

« E.g., cannot find relevant pages that are not in the
search results

53

Our Approach

 Test selection

— Inspect parts of search results for some
queries by mining search results of all queries

— Exploit application-level knowledge
» Execution traces may not help

— Utilize the existing labels of testers
* The process needs to be repeated

54

Our Approach

* Mining and learning output rules

Queries and
Search Results

Failing/Passing
Labels

Feature Vectors
(Itemsets)

ssociation Rulesf—>

Detecting
Violations

Classification
Models

Predicting
Failing Tests

95

Mining Output Rules

* Query items

— Query words, query types, query length, etc.

« Search result items
— Domain, domain’s Alexa rank, etc.

* Query-result matching items

— Whether the domain name has the query,
whether the title has the query, etc.

« Search engine items
— Search engine names

56

Example Itemsets

« SE:bing, Q:boston colleges, QW:boston,
QW:colleges, TwoWords, CommonQ,
top10:searchboston.com, top1:searchboston.com,
top10:en.wikipedia.org, ..., SOMEGE100K,
SOMELE1K

« SE:bing, Q:day after day, QW:day, QW:after,
ManyWords, CommonQ, top10:en.wikipedia.org,
top1:en.wikipedia.org, top10:dayafterday.org, ...,
SOMEGE100K, SOMELE1K

Y

Mining Association Rules

* Mining frequent itemsets with length constraint

— An itemset is frequent if its support is larger than the
min_support

{SE:bing, top10:en.wikipedia.org}

* Generating rules with only one item in the right
hand side
— For each item x; in Y, generate a rule Y-x; => x;

SE:bing=>top10:en.wikipedia.org

58

Learning Classification Models

* Feature Vectors
— Can describe more general types of properties

wordLength queryType max(domainRank) google.com facebook.com ...

Search Result List 1
Search Result List 2
Search Result List 3

2 common 900 1 0
3 hot 100000 0 1
| hot 9782 1 1

59

Learning Classification Models

» Learn classification models of the failing
tests based on the training data

 GGlven new search results, use the learned
model to predict whether they fail.

60

Experiments

» Search engines
— Google
— Bing

These two search engines, together with many other
search engines powered by them (e.g., Yahoo!
Search is now powered by Bing and AOL Search is

powered by Google), possess more than 90 percent
search market share in U.S.

61

Experiments

e Queries

— Common queries
* Queries in KDDCUP 2005, 800 queries

— Hot queries

« 3432 unique hot queries from Google Trends and
Yahoo! Buzz from November 25, 2010 to April 21,
2011

62

Experiments

* Search results
— Use the Web services of Google and Bing to

collect the top 10 search results of each query
from December 25, 2010 to April 21, 2011

— 390797 ranked lists of search results (each
list contains the top 10 search results)

63

The Mined Rules

* Mining from one search engine' results in one
day
— Google's search results on Dec. 25, 2010
— minsup = 20, minconf = 0.95, and maxL = 3

1.topl0:starpulse.com,HotQ, => topl0:imdb.com, : 22/22=1.0
2.topl0:starpulse.com,TwoWords, => topl0:imdb.com, : 22/23=0.96

64

The Mined Rules

* Mining from multiple search engines' results in
one day

— Google and Bing's search results on Dec. 25, 2010
— minsup = 20, minconf = 0.95, and maxL = 3

6.topl0:starpulse.com,HotQ, => topl0:imdb.com, : 24/24=1.0
7.HotQ,topl0:movies.yahoo.com, => topl0:imdb.com, : 20/20=1.0
8.TwoWords,toplO:tvguide.com, => toplO:imdb.com, : 23/24=0.96
9.topl0:absoluteastronomy.com, => SE:bing, : 63/63=1.0
10.topl10:thirdage.com, => SE:bing, : 40/40=1.0
11.TwoWords,topl0:youtube.com, => SE:google, : 137/143=0.95
12.0neWord,toplO:twitter.com, => SE:google, : 28/29=0.97

— Rules 9-12 show the different opinions of search
engines to certain Websites

The Mined Rules

* Mining from one search engine' results in
multiple days

— Google's search results from December 25, 2010 to
March 31, 2011.

— minsup = 20, minconf = 0.95, and maxL = 2

13.Q:hulu, => topl:hulu.com, : 91/91=1.0
14.Q:facebook, => topl:facebook.com, : 91/91=1.0
15.Q:youtube, => topl:youtube.com, : 91/91=1.0
16.Q:rosenbluth, => topl:rvacations.com, : 91/91=1.0
17.Q:espn picks, => topl:espn.go.com, : 91/91=1.0
18.Q:stock futures, => topl:bloomberg.com, : 91/91=1.0

— Rules 13-18 show the rules about the top 1 results for
the queries 56

Example Violations

« Search results of Bing on April 1st, 2011 violate
the following rule

Q:where to login to john carroll university email, =>
topl:mirapoint.jcu.edu, : 172/180=0.96

* The actual result of Bing
http.//www.jcu.edu/index.php

points to the homepage of the John Carroll University,
not easy to get the answer of the query

67

Learning Classification Models

« Conduct experiments with the following classes

— Unexpected top 1 change

 the other search engines oppose the change (they returned
the same top 1 result and do not change)

— Normal top 1 change
 the other search engines do not oppose the change

« Task

— Given a top 1 change of the search engine under test,
predict whether it is an unexpected change

68

Learning Classification Models

 Data

— Training data: December 26, 2010 to March 31, 2011

— Testing data: April 1, 2011 to April 22, 2011
* Results of predicting unexpected top 1 changes

Models Data | Abnormal Data | Accuray | Precision | Recall
Decision Tree | 3429 921 0.72 0.47 0.42
Naive Bayes | 3429 921 0.66 0.36 0.38

— Decision Tree is more accurate, but Naive Bayes is

faster

69

Summary of Part 3

* Problem
— Search engine testing

* Our Approach

— Mine and learn output rules to find suspicious search
results automatically

« Contribution
— Apply test selection techniques to Web Search
Engines

— Select failing tests by exploiting application-level
knowledge

70

Conclusions

Conclusions

* Mining specifications from software data to
guide test input generation and test result
iInspection
— Part 1: unit-test generation via mining relevant

APls

» Reduce the search space of possible method call
sequences by exploiting the relevance of methods

72

Conclusions

— Part 2: test selection via mining operational
models

* Propose two kinds of operational models that can
detect failing tests effectively and can be mined
efficiently

— Part 3: mining test oracles of web search
engines

« Apply test selection techniques to Web Search
Engines

« Select failing tests by exploiting application-level
knowledge

73

Publications

O Wujie Zheng, Hao Ma, Michael R. Lyu, Tao Xie, and Irwin King, “Mining Test Oracles
of Web Search Engines”, To appear in the 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), Short Paper, Lawrence, Kan., US,
November 6-10, 2011.

O Wujie Zheng, Qirun Zhang, and Michael R. Lyu, “Cross-library APl Recommendation
using Web Search Engines”, To appear in ESEC/FSE 2011, New Ideas Track,
Szeged, Hungary, September 5-9, 2011.

O Qirun Zhang, Wujie Zheng, and Michael R. Lyu, “Flow-Augmented Call Graph: A
New Foundation for Taming APl Complexity“, Fundamental Approaches to Software
Engineering (FASE'11), Saarbricken, Germany, 26 March - 3 April, 2011.

O Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie, “Random Unit-Test
Generation with MUT-aware Sequence Recommendation”, In Proceedings of the
25th IEEE/ACM International Conference on Automated Software Engineering (ASE
2010), Short Paper, Antwerp, Belgium, September 2010.

O Wujie Zheng, Michael R. Lyu, and Tao Xie, “Test Selection for Result Inspection via
Mining Predicate Rules”, In Proceedings of ICSE Companion 2009, pp. 219-222,
Vancouver, Canada, May 20009.

O Xiaoqi Li, Wujie Zheng, Michael R. Lyu, “A Coalitional Game Model for Heat
Diffusion Based Incentive Routing and Forwarding Scheme”, In Proceedings of /FIP
Networking 2009, pp. 664-675, Aachen, Germany, May, 2009.

74

Q&A

Thanks!

75

