Building Reliable Web Services:
Methodology,

Composition, Modeling and
Experiment

Pat. P. W. Chan
Supervised by Michael R. Lyu
Department of Computer

Science and Engineering
The Chinese University of

Hong Kong 29 November 2007

1

e
Outline

O Introduction

m Contribution
m Related Work
m Web Services

O Problem Statement
O Methodologies for Web Service Reliability
O New Reliable Web Service Paradigm

w Optimal Parameters

m Experimental Results
O Web Service Composition Algorithm
m Experimental Results
m Discussion
Modeling of the Paradigm
Conclusion and Future Work

O O

—!

Introduction

O Service-oriented computing 1s becoming a reality.

O Web Service 1s a promoting technique 1n the internet.

O The benefit of interoperability, reusability, and adaptability.
O The problems of service dependability, security and

timeliness are becoming critical.

O

Reliability 1s an important issue.

O

Existing web service model needs to be extended to assure
reliability:.

O We propose experimental settings and offer a roadmap to
dependable Web services.

Introduction

—!

Contribution

O Surveyed on reliability methodologies

O Surveyed on Web services reliability and Web service
composition techniques

O Proposed an architecture for dependable Web services
O Proposed an algorithm for Web services composition
O Developed reliability models for the proposed scheme

O Performed experiments for evaluating the reliability of the
system and the correctness of the algorithm

Introduction

——————————
Reliability

O "a measure of the success with which the
system conforms to some authoritative
specification”

» Guaranteed delivery
Duplicate elimination

Ordering
Crash tolerance

State synchronization

Introduction

—!
What are Web Services ?

O Self-contained, modular applications built on
deployed network infrastructure including

XML and HTTP

0 Use open standards for description (WSDL),
discovery (UDDI) and invocation (SOAP)

Introduction

Web Services

SEervice
Prowider

HTTP/SOAP

Introduction

Web Services Architecture

Reliable Messaging

Eventing @ lransactions

Directory

Inspection Referral

cription Folidny

HTTP/SMTP

Web Services

O Benefits of WS
Build common infrastructure

= Service-oriented reducing the barriers of

B Highly accessible business integration with
lower costs and faster speed.

» Open specification
» Easy integration

O Number of system using Simplicity
Web service including: \Web Services
shopping, e-banking... Dynamic

Introduction

Problems of Web Services

O Transaction
= Atomicity is not provided
O Security
» Insecure Internet transportation
O Reliability
» The internet 1s inherently unreliable

= No single underlying “transport protocols”
address all the reliability 1ssues.

10

Introduction

Problem Statement

O Fault-tolerant techniques
= Replication
= Diversity
O Replication is one of the efficient ways for providing reliable systems by time or
space redundancy.
» Increasing the availability of distributed systems
m Key components are re-executed or replicated
m Protect against hardware malfunctions or transient system faults

O Another efficient technique is design diversity

= Employ independently designed software systems or services with different
programming teams,

m Defend against permanent software design faults.

O We focus on the analysis of the replication techniques when applied to Web
services.

O A generic Web service system with spatial as well as temporal replication is
proposed and investigated.

11

Introduction

I —
Road Map for Research

0 Redundancy in time

m Retry
m Reboot

0 Redundancy in space
= Sequentially
m Parallel
» Majority voting using N modular redundancy
» Daversified version of different services

12

Introduction

—!
Proposed Paradigm

Invoke web service

> Web Service
s)
Replication Manage (Application)
e
[RR Algorithm /}
i Votin
Client 9 Webh Service
([Port] [WatchDog (s)
Application) (Application)
e . te th ~—
Register PR SDL
A A\ 4 A\ 4 .
UDDI
_ Keep check the)
[_Registry] availability of all Webh Service
Look up > [wspL) ’ltpsvwsb- _ { 1S]
ep service " .
Get WSDL failed, update (Application)
the list of —————
availability of 13

Web services
Reliable Web Service Paradigm

Different Approaches

O Replication

» Round-robin scheduling algorithm
0O Design Diversity

» N-version programming

m Recovery block

14

Reliable Web Service Paradigm

Replication: Round-robin

T T~ T

Web Senvice Web Service Web Service Web Service

/

IS IS IS

Application Application Application Application

-

O
Ut

Database

Dafabase Dafabase Dafabase

— =1 =] =

Ut

15

Reliable Web Service Paradigm

8
Work Flow of the Replication Manager

Get reply

<—7 Do not get reply

RM sends
message
to the Web
Service

Update the
Web service
availability
ist

All Service failed

Map the new
address to
the WSDL
after RR

16

Reliable Web Service Paradigm

e —
Design Diversity:

Parallel N-Version Programming

WWeh Service Web Service Web Service Web Service

IS

Application Application

Database

Yoting

Application Application

Database Database

' Majority Result

Client

17

Reliable Web Service Paradigm

e —
Design Diversity:

Recovery Block

/ Primary version
! Recovery cache Alternate 1 \ Acceptance test |

Output
1 P
i

Input

Alternate N

18

Reliable Web Service Paradigm

Experiments Variations

O A series of experiments are designed and performed
for evaluating the reliability of the Web service.

11231456 7]8

Spatial replication o100 (O] 11 |1]1
Reboot oOlo|1[1]0}[0]|1]1
Retry O|l1 101]0]1|0]1

19
Reliable Web Service Paradigm

—!

Varying the parameters

Number of tries

Timeout period for retry in single server
Timeout period for retry in our paradigm
Polling frequency

Number of replicas

O O O 0O O O

[.oad of server

20

Reliable Web Service Paradigm

Number of tries

Number of tries Number of Number of
failures in Temp failures in Perm
0 95 76
1 2 2
2 0 0
3 0 0
4 0 0
5 0 0

Reliable Web Service Paradigm

21

Timeout period for retry in single
Server

Timeout period for retry | Number of failures in Number of failures in
(s) Temp Perm

0 95 7265

2 2 7156

5 0 7314

6 0 6890

7 0 189

8 0 82

9 0 11

10 0 2

12 0 0

14 0 0

16 0 0)

Reliable Web Service Paradigm 0 0

Timeout period for retry in single
Server

8000

7000 [
go00 |
5000 |
. 4000}
of failure

3000

2000

1000 |

0 1 1 1 1 L— 1

1 1
0 2 4 B 8 10 12 14 16 18

Timeout period 23

Reliable Web Service Paradigm

Timeout period for retry 1n our

paradigm
Timeout period for retry | Number of failures in Number of failures in
(s) Temp Perm

0 2 81

2 0 2

5 0 0

10 0 0

20 0 0

24

Reliable Web Service Paradigm

———————
Polling frequency

Polling frequency | Number of failures | Number of failures
(number of in Temp in Perm
requests per min)

0 0 7124

1 0 811

2 0 30

5 0 12

10 0 1

15 213 254

20 1124 1023

25

Reliable Web Service Paradigm

———————
Polling frequency

8000

7000
6000

5000

of failure 4000

3000
2000

1000 ¢

0 : 10 15 20 25
Polling frequency 26
Reliable Web Service Paradigm

————————
Number of Replicas

Number of replicas | Number of failures in Temp | Number of failures in Perm
No replica 91 8152
2 2 356
3 0 0
4 0 0

27

Reliable Web Service Paradigm

e
[.oad of Web Server

Load of the web server | Number of failures in Number of failures in
(%) Temp Perm
70 0 0
75 0 0
80 2 3
85 10 14
90 512 528
95 3214 3125
98 8792 8845
99 8997 8994

Reliable Web Service Paradigm

28

—!

Summary of Parameters

Number of tries = 2

Timeout period for retry in single server = 10s
Timeout period for retry in our paradigm = 5s
Polling frequency = 10 request per min

Number of replicas = 3

O
O
O
O
O
0 Load of server < 75%

29

Reliable Web Service Paradigm

—!

Testing system

O Best Route Finding.
0O Provide traveling suggestions for users.
O Starting point and destination.

0 The system needs to provide the best route
and the price for the users.

30

Reliable Web Service Paradigm

System Architecture

Checkpoint

AN SOAP

HTTP
>

Agent
Server
(bus)

i : Search
! / Query
i ' i Engine

SOA

AN
Agent
Server \ -
(railway) v | Web Services

Web Services Front-end (optional)

Best route finding system

31

Reliable Web Service Paradigm

—!

Experimental Setup

0 Examine the computation to communication
ratio

0 Examine the request frequency to limit the
load of the server to 75%

0 Fix the following parameters
Computation to communication ratio (e.g 10:1)
Request frequency

32

Reliable Web Service Paradigm

Experimental Setup

Communication time: 143:14 (10:1)
Computation time

Request frequency 1 request per min
Load 78.5%

Timeout period of retry 1 min

Timeout for Web service in RM | 1s (web service specific)

Polling frequency 10 requests per min
Number of replicas 5

Max number of retries 5

Round-robin rate ls

33

Reliable Web Service Paradigm

—!

Experiment Parameters

0 Fault mode
Temporary (fault probability: 0.01)
Permanent (fault probability: 0.001)

O Experiment time 5 days (7200 requests)

O Measure:
Number of failures
Average response time (ms)
O Failure definition:

5 retries are allowed. If there 1s still no correct result from
the Web service after 5 retries, 1t 1s considered as a failure.

34

Reliable Web Service Paradigm

Experimental Result with Round-robin

(failures / response time 1n ms)

Reliable Web Service Paradigm

1 2 3 4 5 6 7 8
Experiments Single server | Single Single Single Spatial Hybrid Hybrid All round
server with | server with | server Replication | approach approach approach
retry reboot with retry | RR RR+Retry | RR+ RR
(continues and Reboot spatial +
no response | reboot Retry
for 3 (5 times
requests) +
Reboots
Normal case 0/183 0/193 0/190 0/187 0/188 0/195 0/193 0/190
Temp 705 /190 0/223 723 /231 0/238 711/ 187 0/233 726 /188 | 0/231
Perm 6144/ -- 6337/ -- 1064 / - 5/2578 5637/ -- 5532/ -- 152/187) | 0/191
35

Experimental Result with N-Version

(failures / response time 1n ms)

1 2 3 4 5 6 7 8
Experiments Single server | Single Single Single Spatial Hybrid Hybrid All round
server with | server with | server Replication | approach approach approach
retry reboot with retry | Voting Voting+ Voting Voting
(continues and Retry Reboot spatial +
no response | reboot Retry
for 3 (5 times
requests) +
reboots
Normal case 0/183 0/193 0/190 0/187 0/189 0/190 0/188 0/188
Temp 705 /190 0/223 723 /231 0/238 0/190 0/190 0/189 0/187
Perm 6144/ -- 6337/ -- 1064 / - 572578 3125/191 | 3418/192|| 40/189 0/188

36

Reliable Web Service Paradigm

Experimental Result with Recovery
Block (failures / response time in ms)

1 2 3 4 5 6 7 8
Experiments Single server | Single Single Single Spatial Hybrid Hybrid All round
server with | server with | server Replication | approach [approac approac
retry reboot with retry | Voting Voting+ rollback|+
(continues and Retry Reboot rolll?ack
no response | reboot spatial +
for 3 Retry
requests) (5 times
+
reboots
Normal case 0/183 0/193 0/190 0/187 0/191 0/189 0/193 0/188
Temp 705 /190 0/223 723 /231 0/238 0/205 0/203 0/204 0/201
Perm 6144 / -- 6337/ -- 1064 / - 5/2578 3478 /215 | 3245/208|| 201/211 0/201
37

Reliable Web Service Paradigm

—!
Summary of the proposed paradigm

0 Temporal replication improves the reliability.

O Spatial replication further improves the
reliability of Web services.

O N-version programming approach 1s the most
reliable and efficient.

38

Reliable Web Service Paradigm

Web Service Composition Algorithm

O N-version programming
m Reliable
» Efficient
O Composition
= WSDL — Web Services Description Language
» WSCI — Web Services Choreography Interface
O Verification

» BPEL — Business Process Execution Language
» Petri-Net

39

Web Service Composition

e ————————————
WSDL

<?xml version="1.0" encoding="UTF-8"?>

<portType name=“BRF"'>
<operation name="shortestpath''>
<input message=""tns:startpointDestination' />
<output message=""tns:pathArray" />
</operation>

<operation name="“addCheckpoint''>

<input message="tns:pathArray"/>

<output message="tns:addAcknowledgement'' />
</operation>

</operation>
</portType> 40

Web Service Composition

e ————————————
WSCI

<correlation name=“pathCorrelation”
property="“tns:pathID”’></correlation>

<interface name="busAgent”>
<process instantiation=""message'">
<sequence>
<action name=""ReceiveStartpointDest* role="tns:busAgent”
operation="tns:BRF/shortestpath'>
</action>
<action name="Receivecheckpoint“ role=" tns:busAgent*
operation="tns:BRF/addCheckpoint'>
<correlate correlation="tns: pathCorrelation”/>
<call process="tns:SearchPath”/>
</action>
</sequence>
</process> 41

Web Service Composition

Algorithm 1 Algorithm for Web service composition

Require: [[n]: required input, O[n]: required output
1- C'P,: the n** Web services component
2: for all Of¢] do
3: Search the W5DL of the Web services, and find the C'F,, 's operation output
= O[i]. Then, msert C'F, into the tree.

4: if the input of the operation = I[j] then

5: Insert the input to the tree as the chuld of C'F,.

6 else

7- Search the WSCI of C'F,,, WSCI process.action = operation.
8: Find the previous action needing to be mnvoked.

9- Search the operation in WSDL equal to the action.
10: if input of the operation = I[¢] then

11: Insert input to the tree as the child of C'F,

12: else

13 Zo to step (§)

14: end if

15- end if

16: until reaching the root of WSCI and not finding the correct input, search
other WSDL with output = [[7], insert C'F,, as the child of C'F,, and go to
step (7)) to do the searching in W5Clof CF, .

17- end for

42

Web Service Composition

Web service composition

1. Output
2. Operationin WSDL @
3. Find the output information in CP1 (Web

service component)

4. If Input of the operation == required input @
5. Else

___, search in the WSCI of CP1 to find action ==
operation @ @

6. Get the pervious action involved
7. Search in WSDL to find operation == action
8. If Input of the operation == required input

— Else, till the root of WSCI

43

Web Service Composition

Web Service Composed Tree

Search Agent
Bus Agent Train Agent

44

Web Service Composition

Table 4.1: Petri-Net building blocks of basic activities

Bulding Block type

Description

Involke

The Invoke activity directs

a Web service to perform an operation.

Reply

The Reply activity matches a

Fecerve actvity. It has the same partner
link, port type. and operation as

1ts matching Recerve. Use a Reply to send

a synchronous response to a Recerve.

The Empty activity 1s a no operation

mstruction i the business process.

Assign

The Assign activity updates

the content of vanables.

Termunate

The Termunate activity stops

a business process.

Throw

The Throw activity provides one way

to handle errors in a BPEL process.

Wat

The Wait activity tells the business
process to wait for a grven tume peniod

or unfil a certain time has passed.

Web Service Composition

lable 4.2: Petri-Net building blocks of structure activities

Bulding Block type | Description
While Repeat the same sequence
of activities as long as some
condition 1s satisfied.
Switch Use “case-statement™ to
produce branches.
Sequence Definition of a series of
steps for the orderly sequence.
Link Link different activities
work together.
Flow A senes of steps should be
specified 1n parallel implementation.

45

Petri-Net— Basic Activities

Input transition

|

|

Receive

Ficure 4.3: Basic Petri-Net building block — Receive.

Input
Condition —
True
Input iy Input T
Input trgnsition P
message
Repeat False

Figure 4.5: Basic Petnn-Net building block — Wait.

Web Service Composition

Finish

Y

Finish

Petri-Net— Structure Activities

Sequence finish
Condition false

While rea
dy P1 P1 done Done transition

Repeat -
P1 repeat Condition True

Figure 4.11: Structure Petri-Net building block — While.

Web Service Composition

Finish

Message 1

\ 4

M1 transition

P1 ready

Input

M2 transition

Figure 4.10: Structure Petri-Net building block — Pick.

v

P2 ready

P1

P2

Finish

47

e —
Composed Petri-Net

J

Finish
{output to block 3)

Input

Input transition Operation

~

Block 2 Finish
{output to block 4)

Figure 4.15: Composed Petri-Net building block graph.

48

Web Service Composition

Bus ASSI!;IH Irvioke Revaive

Figc:gn.rg ImpLt transition (/d—\
. ,/ - N

Train Assign Invaoke Reveiva

Saquenca

Tarminate

N

Saquenca Faphy

Figure 4.16: The Petri-Net of a BRF.

Web Service Composition

Table 6.16: Program metrics of the 15 versions

ID | Lines | Line without | Number of | Complexity time for Deadlock free | Acceptance
comment function composition (s) test
01 | 3452 3052 59 64 - yes pass
02 | 2372 1982 47 87 - yes pass
03 | 2582 2033 26 45 - yes pass
04 | 3223 3029 78 124 - yes pass
05 | 2358 2017 34 89 - yes pass
06 | 4478 3978 56 107 - yes pass
07 | 1452 1320 38 46 - yes pass
08 | 5874 5275 80 124 - yes pass
09 | 3581 3214 45 74 - yes pass
10 | 4578 4187 47 113 - yes pass
11 | 2364 2015 36 76 - yes pass
12 | 2987 2336 65 147 1.48 yes pass
13 | 4512 3948 75 155 1.74 yes pass
14 | 3698 3247 60 192 1.58 yes pass
15 | 4185 3856 34 88 1.62 yes pass

50

Web Service Composition

—!

Summary of the Web Service
Composition Algorithm

O The composition algorithm 1s proposed with the use of
WSDL and WSCL

The BPEL of the composed Web services are generated
Petri-Net 1s employed to avoid deadlock

Acceptance tests are set for checking the correctness

O O 0O 04

Experiments are performed

Efficient
Accurate
Deadlock-free

51

Web Service Composition

Experimental Setup

O Same as the previous setting
0 Employ the composed Web services (BRF)

0 Fault Injection
w Temporary
= Permanent
» Byzantine failure
N

Network failure

52

Web Service Composition

Experimental Result (1)

Table 6.18: Experimental results without spatial redundancy

Experiments
(number of failure / 1 2 3 4
response time(s))

Normal case 3/186 3/192 2/190 3/187
Temporary 1025/190 4/223 1106/231 4238
Permanent 8945/3000 | 8847/3000 | 1064/3 UDOl 3/1978

Byvzantine failure 315/188 322/208 314/186 | 326/205
Network failure 223/187 2/227 239/193 3/231
Average 21027730 | 1833/770 | 541/220 | 68/368

Web Service Composition

53

———
Experimental Result (2)

Table 6.19: Experimental results with Round-robin

Experiments
(number of failure / 3 6 7 8
response time(s))

Normal case 5/216 3/225 3/224 1/220
Temporary 1114/215 2/281 1072/218 | 3/284
Permanent 5682/3000 | 5362/3000 | 222/21 7| 3/224

Byzantine failuge 142/219 6/259 177/222 | 2/224
Network failure 229/223 2/253 211/227] | 2222
Average 1434/775 | 1075/804 | 328/222 | 2/235

54

Web Service Composition

————————
Experimental Result (3)

Table 6.20: Expenimental results with N-version programnung

Experiments
(number of failure / 3 6 7 8
response time(s))

Normal case 0/219 0/220 0216 | 07217
Temporary 0/221 0/222 0219 [0/216
Permanent 3136/221 | 3427/223 | 1 ES‘.-"EE& 0/221

Byvzantine failure 0/221 0/219 0220 | /218
Network failure 0/220 0/222 0218 | 07217
Average 627/220 | 683/221 | 38/218 | /217

55

Web Service Composition

Experimental Result (4)

Table 6.21: Experimental results with recovery block

Experiments
(number of failure / 3 6 7 2
response tume(s))

Normal case 0/22 0/219 0/224 | 0/219
Temporary 0/235 0/231 0/237 | 0/231
Permanent 3473/241 | 3250/238 | 201/242 | 0/231

Byzantine failure 0/22 0/230 0/225 | 0/224
Network failure 0/225 0/226 0/228 | 0/224
Average 693/231 | 650/229 | 40/231 | 0/228

Web Service Composition

56

———
Modeling

0 Modeling can check the reliability,
correctness, deadlock-free and performance of
the system

0 We employed
» Petri-Net

= Markov chain model

57
Web Service Composition

Petri-Net (Four 1dentical replicas)

SErVEr_up faiture SETV er_down repair

58

Modeling

Petri-Net (N-version Web service with
voting)

59

Modeling

—————————
Petri-Net (Recovery Block)

LS LS | b ._:-'_“'- [| i
i | L ol T I I I L
ot service il el St
job_sooece ol vl lele Frlsheed pab %1 i .___.#.r.n:epl:ur_lm COerect Pl Arighed

o
- ey ¥
III I .-'I"---":I ."I
Fase

-~ Theckpint

| W
1 Fl _._1;"'\ 1 .-"”'“h."'f camecl?

1
. I
I' I-'II mrace_vd fimshed job_v]] .ﬁrtq:imr!_lesl..i"“:l
|" _.--"'"-. falsed
i St
/ 2
\] 2 ----
1 / _-"'J--
koo e
| =
—~
o
il iy | |
u | J |
o k.
serder 1y falure P2 ti aemer_down r

60

Modeling

Reliability Model

Modeling

61

—!
Reliability Model

PE= A X+ A,
AF =4 x(1=C)py + 4, x(1-C,)

ID Description Value
A, Network failure rate 0.02

A* Web service failure rate 0.025

A Resource problem rate 0.142

A, Entry point failure rate 0.150

M* Web service repair rate 0.286

M4 Resource problem repair rate 0.979

M, Entry point failure repair rate 0.979

C, Probability that the RM response on time 0.9

C, Probability that the server reboot successfully 0.9 62

Modeling

Outcome (SHARPE)

- Reliability over Time with repair rate 0.286

.
'

Failure Rate

Reliability

& 0.025
@ 0.01
0.005

20000

0 4000 8000 12000 16000
t seconds 63

Modeling

—!

Conclusion

O Surveyed replication and design diversity techniques for reliable
services and the state-of-the-art Web service composition algorithm.

O Proposed a hybrid approach to improving the reliability of Web
Services.

0 Optimal parameters are obtained.

O Proposed a Web service composition algorithm and verified by
Petri-Net.

O Carried out a series of experiments to evaluate the availability and
reliability of the proposed Web service system.

0 Employ Petri-Net and Markov chain to model the system to
analysis the reliability and performance.

64

Conclusion and Future Work

—!
Future Work

O Improve the current fault-tolerant techniques

Current approach can deal with hardware and software
failures.

How about software fault detectors?
O N-version programming
Different providers provide different solutions.

There 1s a problem 1n failover or switch between the Web
Services.

O Application

Different requirements
Realize in the Internet.

65

Conclusion and Future Work

Q&A

