Chapter

13

Software Testing and Reliability

Joseph R. Horgan
Bellcore

Aditya P. Mathur
Purdue University

\

13.1 Introduction

It is believed that there is an important relationship between the esti-
mation of reliability of a program, its structure, and the amount of test-
ing it has been subjected to. Though one can imagine several ways of
quantifying the amount of testing, we consider one or more measures
of code coverage as possible quantifiers. Statement coverage, decision
coverage, and data flow coverage are some of the code coverage mea-
sures. These measures are based on the structure, often detailed, of the
software. Several software reliability theorists observe that the struc-
ture of the software should be closely followed in the analysis of relia-
bility. [Broc90] suggests: “At some future time it may be possible to
match a reliability model to a program via the characteristics of that
program, or even of the software development methodology used.”

[Musa87] has suggested a similar possibility. The importance of dis-
tributing testing according to a user’s operational environment is a
central theme of reliability estimation. In this context, characteriza-
tion in [Goel85] is particularly apt: “To illustrate this view of software
reliability, suppose that a user executes a software product several
times according to its usage profile and finds that the results are
acceptable 95 percent of the time. Then the software is said to be 95
percent reliable for that user.”

As per the above quote, a program is tested according to its usage
profile and then one or more of several reliability models applied to the
failure data to obtain reliability estimates. Such an approach to relia-
bility estimation fails to account for the difficulties in assessing accu-

531

532 Emerging Techniques

rate usage profiles and in accounting for the structure of the software.
In this chapter we point out some of these difficulties and suggest two
approaches for reliability estimation. Our approaches make use of code
coverage explicitly in the estimation process, whereas the existing
time-domain approaches as outlined in [Musa87] do not.

The remainder of this chapter is organized as follows. In Sec. 13.2 we
present some concepts related to software testing. The problems
encountered in establishing an operational profile are addressed in
Sec. 13.3. The effect of nonavailability of an accurate operational pro-
file on reliability estimation is also discussed in this section. Our first
approach that combines the existing time-domain approaches of relia-
bility estimation with coverage information obtained during system
test is presented in Sec. 13.4. Another approach to viewing software
reliability is to consider the risk associated with a program. In Sec.
13.5.1 we outline a model to estimate the risk associated with a pro-
gram. This model does not use the time-domain approach in any form.
Instead it uses various measures of code coverage to estimate risk.

13.2 Overview of Software Testing

A key question we address in this chapter is: “How does the nature of
testing affect reliability estimation?” Below we lay the groundwork for
an answer to this question by examining white-box testing.

13.2.1 Kinds of software testing

There are many ways of testing software. The terms functional, regres-
sion, integration, product, unit, coverage, and user-oriented are only a
few of the characterizations we encounter. These terms are derived
from the method of software testing or the development phase during
which the software is tested. The testing methods functional, coverage,
and user-oriented indicate, respectively, that the functionality, the
structure, and the user view of the software are to be tested. Any of
these methods might be applied during the unit, integration, product,
or regression phases of the software’s development. In this context the
unit phase is the coding of small software components, the integration
phase puts units together into larger components, and the product
phase integrates the software into its final form. Regression testing
pertains to the re-release of a modified software product.

13.2.2 Concepts from white-box
and black-box testing

White-box, or coverage, testing uses the structure of the software to
measure the quality of testing. It is this structural coverage and its
measurement that we believe is of value in reliability estimation. We
describe two coverage testing methods: mutation testing and data and

Software Testing and Reliability 533

control flow testing. Subsequently, we discuss the use of these methods
in reliability estimation.

1. Statement coverage testing directs the tester to construct test
cases such that each statement or a basic block of code is executed at
least once.

2. Decision coverage testing directs the tester to constrict test cases
such that each decision in the program is covered at least once. A deci-
sion refers to a simple condition. Thus, for example, the C language
statement if (a < b||p > ¢q) . . . consists of two simple conditions, a < &
and p > ¢, and one compound condition. We say that a decision is cov-
ered if during some execution it evaluates to true and in the same or
another execution it evaluates to false. In the above example, the two
simple conditions must evaluate to true and false during some execu-
tion for the decision coverage criterion to be satisfied.

3. Data flow coverage testing directs the tester to construct test cases
such that all the def-use pairs are covered. Consider a statement S; : x
=f() in program P, where fis an arbitrary function. Let there be another
statement S, : p =g(x,*) in P, where g is an arbitrary function of x and
any other program variables. We say that S, is a definition and S, a use
of the variable x. The two occurrences of x constitute a def-use pair. If
the use of a variable appears in a computational expression, then such
a pair is termed as a c-use. If the use appears inside a predicate then the
pair is termed as a p-use. A path from S, to S, is said to be definition-
free if no statement along this path, other than §; and S,, defines x.
Such a path is considered feasible if there exists at least one d € the
input domain D such that when P is executed on d the path is traversed.

All statements in P that can possibly be executed immediately after
the execution of some statement S are known as successors of S. We say
that a c-use or a p-use is covered if the execution of P on some set of test
cases causes at least one definition-free path to be executed from the
defining statement to the statement in which the use occurs and to
each of its successors. Further details of data flow testing may be found
in [Horg90].

4. Mutation testing helps a tester design test cases based on a notion
very different from that of path-oriented testing strategies such as the
ones described above. Given a program P, mutation testing generates
several syntactically correct mutants of P. A mutant is generated by
making a change in P in accordance with a predefined set of rules. For
example, one mutant, say M, of P can be generated by removing a
statement from P. We say that a test case d distinguishes M from P if
P(d) # M(d). M is considered equivalent to P if Vd € D,P(d) = M(d).
Mutation testing requires a tester to generate test data that distin-
guish all nonequivalent mutants of P. Further details of mutation test-
ing may be found in [Chio89].

534 Emerging Technigues

Note that each of the four testing methods provides an adequacy cri-
terion against which a test set can be evaluated. We say that a test set
T consisting of one or more test cases is adequate with respect to the
decision coverage criterion if all the decisions in the program are cov-
ered when executed against elements of T' T is adequate with respect to
to the p-use criterion if all p-uses have been covered by T.* T is consid-
ered adequate with respect to mutation criteria if it distinguishes all
the nonequivalent mutants of the program. Each of the preceding ade-
quacy criteria is precise and measurable. Note that functional testing
does not provide any such precise and measurable criteria.

It can be shown formally that if a test set is p-use or c-use adequate,
then it is also decision adequate [Clar89]. We therefore say that data
flow coverage subsumes decision coverage. Similar relationships have
been investigated empirically among functional, data flow, and muta-
tion testing. Evidence available so far [Math91, Wong93] suggests that
test data which are mutation adequate are likely to be data flow ade-
quate whereas a data flow adequate test set is less likely to be mutation

dequate. Empirical evidence presented in Sect. 13.4.6 also suggests
that even after a significant effort has been spent in functional testing,
the test data so developed are not data flow adequate, and hence not
mutation adequate. On the contrary, it has been shown [Howd80] that
for several types of errors, structural testing is not sufficient, but func-
tional testing is. Further, functional testing appears to be a necessity in
any testing activity as it is the first step to verifying that the specific
functions that a program is supposed to perform are indeed performed
correctly.

Thus, taking empirical evidence, theoretical hierarchy [Clarg89], and
the practice of software testing into account, we justify the assumption
that testing is carried out using a commonsense method first, i.e., func-
tional testing followed by structure-based methods in the order of their
expected cost benefits. Despite the existence of various testing meth-
ods, it is of interest to note that according to the current industrial
practice, only functional testing is carried out in most environments.

13.3 Operational Profiles

A widely accepted definition of software reliability (R) is that it is the
probability of failure-free operation of a system. By system we refer to
the program (P) whose reliability is to be estimated. A variety of mod-
els have been proposed for estimating software reliability. Most of
these are based on probabilistic principles. The ones that are popular

* There are several other data flow criteria that we have not mentioned in this paper.
Definitions of the well-known data flow criteria are provided in [Clar89].

Software Testing and Reliability 535

among researchers and practitioners make use of software failure
data to estimate R. In reliability growth modeling, the failure data are
obtained by testing P on a stream of inputs also known as test cases.
Each test case (d) is a point in the input domain of P. To generate a test
case the input domain is sampled based on an operational profile. As
defined in Chap. 5, an operational profile is a list of occurrence proba-
bilities of each element in the input domain of 2. When P fails during
testing, the time of failure is recorded and the software repaired. This
process continues until some form of convergence of reliability esti-
mates is achieved.

For most software, the input domain is extremely large and may be
considered infinite for practical purposes. Thus, determination of the
operational profile becomes a task to reckon with. Nevertheless, the
operational profile is key to reliability estimation for most existing
models used in practice, e.g., the Musa-Okumoto model. Not surpris-
ingly, a significant amount of work has gone into developing proce-
dures for estimating an operational profile. Chapter 5 also provides a
dgﬁled methodology of how an operational profile can be built. This
methodology is dependent on input from the customer. In fact the first
step in this methodology is to identify a customer profile. This profile is
refined in a sequence of steps to obtain the operational profile, which in
turn is dependent on how the users are expected to use the software.

Once an operational profile has been determined, you need to sam-
ple test cases from the input domain as per the occurrence probabili-
ties. The software is then exercised against these test cases to obtain
failure data. These data are then input to one or more models to esti-
mate reliability.

In the procedure outlined above, the software is treated as a black
box. Test cases are generated to test for specific features of the soft-
ware. It has been suggested in [Musa93] that the number of test cases
should be limited to several hundred or several thousand. However,
neither the test case development nor the reliability estimates have
any explicit relationship with how the software is exercised during
testing; indeed, an implicit relationship exists. It is this lack of an
explicit relationship that forms the basis of our argument against a
purely black-box approach to reliability estimation.

13.3.1 Difficulties in estimating the
operational profile

As mentioned earlier, an operational profile is an estimate of the rela-
tive frequency of use of various inputs to the program. The frequency is
user dependent and is necessarily derived by some sort of usage analy-
sis. Below we identify situations under which deriving an accurate

536 Emerging Techniques

operational profile may not be possible and hence you may have to rely
on educated guesses. From our personal experience in software devel-
opment and discussions with various development groups, we have
come to believe that each of the scenarios described below is encoun-
tered by one or more developers and is not fictional. We also point out
problems that may arise when an operational profile is inaccurate. The
problems cited below are often encountered and discussed informally
by practitioners; we are not aware of documentation.

New software. When a new system is designed, as opposed to modify-
Ing an existing system, one may not have any customer base for this
system. As an example, consider the development of a system that will
control an instrument for experimentation aboard a spacecraft. The
experiment is one of its kind and has never been performed before.
Features in this system will correspond to the requirements derived
from an analysis of the instrument and the nature of its expected use.

t is therefore likely to have a list of features but no existing customer

ase. Thus, we have to necessarily rely on guesstimates of occurrence
probabilities for various features. If the system is designed to be fault
tolerant, then one needs to guess the probabilities of failure of the
application modules in the system. These probabilities will in turn
determine the probabilities of how certain features of the fault man-
ager will be exercised. Such failure probabilities may depend on a
variety of relatively well understood phenomena (such as hardware
failure) and not so well understood phenomena (such as data corrup-
tion due to cosmic rays). This is likely to add an extra degree of uncer-
tainty to the occurrence probability estimates of features of the fault
manager.

New features. New versions of an existing system may be continually
under development. A new feature is added to the system assuming
that one or more users will use it. Even though there exists a user base
for the existing version of the system, there is no user base for the new
version yet to be released. Once again the developer has to rely on
guesstimates of the occurrence probabilities of the new features. The
problem is further complicated by new features that might signifi-
cantly alter the usage pattern of the existing system. If the users like a
new feature they may not use an existing feature, thereby altering the
usage frequency of this existing feature. Such a change may be difficult
to anticipate, and the guesstimates of occurrence probabilities of vari-
ous features could be very inaccurate.

Feature definition. A feature is often not a well-defined entity. For
example, suppose that a system provides two features f, and f;. Then, is
the use of these features in different sequences also a feature? Adding

Software Testing and Reliability 537

all possible sequences of features into the operational profile might
result in a very large profile, which is difficult to build and manage. As
another example, suppose that a sort module is embedded in a large
system. The module is internal and the user cannot access it directly.
However, it supports two features f; and f,. The system provides a fea-
ture f that occasionally uses the sort module. Should the operational
profile treat only f as a feature or the combinations f£f;, and £/, as two
distinct composite features?

Feature granularity. Consider a program that has a total of N lines of
executable code. If the operational profile consists of £ features, then
the program has an average of k/N lines per feature. In practice there
may be more or less lines per feature than the average. For a system
with, for example, 100K lines of code and 100 features in the opera-
tional profile, we are likely to find features that correspond to more
than 1000 lines of code. In order to test the code well, it would be desir-
able to specify the features with finer granularity, resulting in lesser
lin%s of code per feature. However, if features are based on what a user
uses directly, it may not be possible to specify features with a fine
granularity.

Multiple and unknown user groups. An operational profile is intended to
model one or more users. It is assumed that these users belong to a rel-
atively homogeneous class. A reliability estimate given under such an
operational profile is at best valid for the class of users for which the
profile has been developed. A developer, such as the one who develops
an operating system, might prefer to provide reliability estimates for
the system independent of the user. 1t is not clear how to estimate an
operational profile to meet such a requirement.

The above discussion leads us to believe that estimation of operational
profiles is a difficult and error-prone task. Reliability estimation using
operational profiles is often projected as “customer or user-centered”
testing of a system. Based on arguments given above, we believe that it
is at best a “known user-centered” approach. If an unknown user uses
the system in a way that does not match with the operational profile,
then there is no guarantee that the projected reliability figures will hold.

13.3.2 Estimating reliability with inaccurate
operational profiles

As mentioned above, existing and popular models of reliability estima-
tion make use of black-box testing to generate failure data. Below we
argue that this approach might yield failure data leading to optimistic
reliability estimates. Experimental evidence in support of our argu-
ments appears in [Chen94b].

538 Emerging Techniques

Inadequate test set. When using black-box testing based on an opera-
tional profile, the input tests are based on the features in the profile. A
feature simply may not appear in an erroneous profile or the probabil-
ity of its occurrence may have been erroneously estimated to be too low.
This could result in not testing a feature or testing it scantily. The prob-
lem with such testing is that there is no program-based notion of the
adequacy of a test set. Thus, after a program has been tested and you
obtain the failure data, you have no way of determining how “good” the
set of test cases was. The notion of adequacy that is used in such test-
ing rests upon the reliability of statistical sampling from the input
domain using the operational profile. This notion does not account for
the fact that an inaccurate profile might result in a poor test set.

Thus, for example, if a feature is not tested at all, or tested but not
thoroughly, and if there are errors in the implementation of that fea-
ture, then the failure data may not contain failures resulting from these
errors. Such failure data might lead to an overestimate of reliability.

Coarse features. A feature could correspond to several lines of code.
While using black-box testing, we construct several test cases to exer-
cise the feature thoroughly. However, there is no measure of how well
the feature has been exercised. There might be parts of the code related
to this feature that never get exercised even though the feature occurs
with a high probability in the operational profile. This is likely to hap-
pen when test cases are being randomly sampled from the input
domain or a tester is generating them manually without a knowledge
of how well the code corresponding to this feature has been exercised so
far. Empirical data obtained from two applications that had been
tested extensively over several years have indicated that indeed tests
generated manually using a knowledge of program features and the
functions used to implement them is insufficient to obtain a high level
of code coverage [Horg92].

Inadequate testing of a feature is likely to result in misleading fail-
ure data and inaccurate reliability estimates. Note that we are assum-
ing an accurate operational profile in this case. We have pointed out
that despite this accuracy there is a possibility of obtaining misleading
failure data.

Interacting features. In large systems, features often interact in a vari-
ety of ways [Zave93]. A simple form of interaction occurs when, say, fea-
ture f; works correctly when exercised before exercising feature f;, but
not otherwise. In large systems we deal with several hundred features.
It is not clear how such interaction can be checked systematically when
performing black-box testing. Once again, failure to check for faulty
interactions may generate misleading failure data, leading to inaccu-
rate reliability estimates.

Software Testing and Reliability 539

Above we have listed several reasons why reliability estimates may
be inaccurate. Currently there is a lack of data suggesting the extent of
this inaccuracy. We are aware of one study which provides evidence in
favor of the conjecture that an inaccurate operational profile may have
a serious effect on reliability estimates [Chen94b]. Below we describe
an approach that incorporates knowledge gained during white-box
testing into reliability estimation, with the aim of reducing the effect of
operational profile errors on reliability estimates.

13.4 Time/Structure-Based Software
Reliability Estimation

An estimate of the probability of software failure within a specified
time of operation is an important and useful metric. Such a metric,
referred to as software reliability, is useful to both the software devel-
oper and its user. The developer can use this metric to decide whether
to régease the software or not. The user can decide whether to begin
using the software or not at a given time. The importance of software
reliability was realized several years ago and has been a major subject
of research in software engineering. A large number and variety of
models have been proposed to estimate software reliability. Often,
these models have also been applied to data obtained from working
software [Musa87]. The accuracy of these models, as measured against
the predicted versus actual software failure, has varied from one proj-
ect to another.

In the remainder of this chapter we describe two methods for esti-
mating software reliability and the underlying rationale. A key feature
of our methods is that they account for the fine structure of the soft-
ware under development. This feature distinguishes our methods from
the existing methods that employ time-domain models; it is also the
basis of our claim that structure-based reliability methods are likely to
provide more accurate reliability estimates than the existing time-
domain-based methods.

13.4.1 Definitions and terminology

Let P denote a program under test whose reliability is to be estimated.
During testing, P is executed on a test case d selected from the input
domain D. The output of P obtained by executing it on d is denoted by
P(d). Each execution of P requires a test case and some CPU time. We
assume that testing effort is measured either in terms of the number of
test cases on which P is executed or through the cumulative CPU time
for which P has been executed. The CPU time spent in executing P dur-
ing testing is used in time-domain reliability models based on execu-

540 Emerging Techniques

tion time. Let T, denote the time at which the kth failure occurs and N,
the number of test cases used by time T,. We define E,, the effort spent
in testing, as follows:

A T =Ty 1 for time-based model
B N,-N,_, for test-case-based model (13.1)

Let ¢, denote the effort spent during the ith execution of P, Then E, can
be expressed as

L
E,=> e (13.2)
i=1

where e, and e, respectively, denote the effort spent in the first and
last executions of P during the kth failure interval.

The reliability R of P is defined as the probability of no failure over
the entire input domain. More formally, we have

R =P{P(d) is correct for any d € D} (13.3)

This definition can be cast in terms of a time-based definition. Let the
cumulative effort S, be defined as

k
S,=> E, (13.4)
i=1

In the literature [Goel85], reliability is defined as the probability that
a software system will not fail during the next x time units during
operation in a specified environment. Here x is known as the exposure
period. A more precise definition is given in [Yama85] using E, and S,
as follows:

R(x|t)=PlE,>x|Si 1= 1) (13.5)

where R(x | t) denotes the reliability during the next failure interval of
x units, given the failure history during ¢ units. R(x |£) - R as x — oo if
the test inputs are operationally significant.

13.4.2 Basic assumptions

Most models rely on certain assumptions that are often not satisfied in
practice. Chapter 3 has identified these assumptions for various mod-
els. Several researchers have examined the validity of these assump-

Software Testing and Reliability 541

tions. Here we examine one fundamental assumption: namely, the
assumption that testing is carried out in accordance with the opera-
tional profile. This implies that the testers know and make use of the
operational profile of the inputs. A knowledge of the operational profile
implies knowing the frequency distribution with which test inputs are
expected to be encountered when the software operates in its intended
environment (Chap. 5). This frequency may presumably be used to
decide which test inputs must be used during testing and in what
order. Obviously, test cases not encountered during the monitoring of
the environment will correspond to a frequency of zero in the profile. In
Sec. 13.3 we have examined situations where an accurate operational
profile may not be available.

The reliability models proposed herein 1 impose a testing methodology
on the tester. Such a methodology ensures (1) improved data inpiit to a
reliability model and a better reliability estimate and (2) that the pre-
dictions%e{ess sensitive to the possible differences between the true
operational profile and its approximation derived during testing.

13.4.3 Testing methods and saturation
effect

We begin by describing a saturation effect that is associated with all
testing methods. An understanding of this saturation effect is a key to
the realization of the shortcomings of the application of existing mod-
els. A saturation effect refers to the tendency of an individual testing
method to attain a limit in its ability to reveal faults in a given pro-
gram. Figure 13.1 illustrates the saturation effect. As explained below,
it is this limit that may cause significant over- or underestimates
of reliability using existing models. The method presented herein
accounts for the saturation effect [Chen92b].

13.4.4 Testing effort

As testing progresses, data (including calendar time, CPU time spent
in executing the software under test, and the number of test cases
developed) become increasingly available. Here we refer to the later
phases of testing (e.g., the system test phase). A reliability model often
uses some of the failure data generated during this phase. Musa’s basic
execution time model (see Sec. 3.3.4), for example uses the total CPU
time spent executing the program under test; other researchers have
used the number of test cases [Cheu80]. In our discussion below, we
consider the CPU time and the number of test cases as indicators of
testing effort. Thus, as testing effort increases, faults are discovered
and removed. This results in an increase in program reliability. We
shall denote the testing effort by #, where x indicates the testing
method that was in use when the effort was measured.

542 Emerging Techniques

Mutation

Fy

Faults revealed

\ th tb!’ td\ td? I-f‘s t‘f‘é’ tm.i' tm[f

\Z

—» Testing effort (¢) Saturation region

Figure 13.1 Saturation effect of testing methods assuming that the testing methods are
applied in the following sequence: functional, decision, data flow, and mutation.

13.4.5 Limits of testing methods

At the start of testing, a program contains a certain number, say F, of
faults. As testing proceeds the number of remaining faults decreases.
However, when applied, each testing method has a limit on the number
of faults that it can reveal for a given program. As shown in Fig. 13.1,
we assume that for functional testing this limit is reached after ¢,,
units of testing effort has been expended. Also, functional testing has
revealed F, out of F' faults when its limit is reached. In general, ' > F,
2 0. Due to its imprecise nature, it is difficult, if not impossible, to
determine when functional testing has been completed. In practice, a
variety of criteria, both formal (e.g., a reliability estimate) and informal
(e.g., market pressure), are applied to terminate functional testing. If
no other form of testing is used, this also terminates testing of the
product. Note that [Dala90] has formulated a method to decide when to
stop testing.

It is reasonable to assume that as functional testing proceeds, the
reliability of the software being tested grows when faults found are
removed. However, once its limit has been reached, no additional faults
are found. A tester, not knowing that the limit is reached, continues
testing without discovering any more faults. If existing models for reli-
ability estimation are used, e.g., the NHPP model of Goel and Okumoto
[Goel79] then as functional testing proceeds beyond its limit the com-

Software Testing and Reliability 543

puted reliability estimate improves even though the reliability of the
program remains fixed. The reliability estimate can be improved to any
arbitrary limit by increasing the number of test cases executed in the
saturation region.

In accordance with the scenario charted earlier, let us suppose that
after #,, units of functional testing, we switch to decision-coverage-
based testing. New test cases are developed to cover the yet uncovered
decisions. Eventually, the limit of decision coverage is reached after a
total of £, units of testing. At this point F}_, faults have been revealed,
with F; being the number of faults revealed by decision coverage. Note
that at this point 100 percent decision coverage may not have been
achieved. However, the tester does not know that the limit has been
reached and continues testing until ¢,,, by which time all decisions have
been covered. Once again, empirical evidence suggests that 0 < F;, <
F bud <K

We assume that the next switching occurs at time ¢, to data flow
testing and then at time ¢; to mutation testing. As shown in Fig. 13.1,
the limits of data flow and mutation are reached at times ¢, and ¢,,,
respectively, with a total of Fy 4, and F a4 s faults revealed. We also
assume that in general 0 < F, < Fy g < Fyar € Fyoapom S F.

13.4.6 Empirical basis of the saturation
effect

It is possible to construct examples of programs to show theoretically
that every structure-based testing method will eventually reach its
limit and thus fail to reveal at least one or more faults. This saturation
effect has been illustrated for several structure-based methods by a
few empirical studies in the past [Budd80, Girg86, Wals85]. Due to its
imprecise nature, a proof that saturation effect holds for functional
testing does not appear to be feasible, although Howden’s work
[Howd80] does provide some empirical justification. Below we present
empirical justification based on another study with two relatively
larger programs than the ones considered by Howden.

TEX [Knut86] is a widely used program in the public domain. It has
been tested thoroughly for several years by Knuth [Knut89] and, as a
result, a widely distributed test set [Knut84], named TRIPTEST, is
available for testing TEX. Prior to installation, it is recommended that
TRIPTEST be used to ensure that TEX indeed functions as intended by
its author. TRIPTEST has been devised by Knuth primarily to test the
functionality of TEX. As indicated in [Knut84], TRIPTEST exercises
TEX in several ways that may be highly improbable in practice. Knuth
has also documented [Knut89] all the errors discovered during the
debugging and use of TEX. An examination [Demi91] of this list of over

544 Emerging Techniques

850 errors of various kinds indicates that in spite of a fiendish amount
of functional testing, errors have persisted in TEX. The above observa-
tion 1s indeed true for yet another UNIX® utility, namely, AWK, which
has been tested for several years by Kernighan based on its function-
ality. However, errors continue to crop up, though with decreasing fre-
quency, in AWK.

We used TEX and AWK to determine how much structural coverage
is obtained using test data that has been derived from several years
of functional testing. Using a data flow testing tool named ATAC
[Horg94, Lyu94b], we decided to compute various coverage measures
when TEX, Version 3.0, is executed on TRIPTEST. Table 13.1 lists these
coverages. Notice that none of the four structural coverages is 100 per-
cent. It is indeed possible that many of the blocks, decisions, p- and
c-uses are indeed either infeasible or can be executed only under rare
run-time conditions. Knuth does mention the fact that some parts of
TEX that are related to such error conditions are not exercised by
TRIPTEST [Knut84].

To ensure that not all of the uncovered structural elements of TEX
correspond to error conditions, we examined the uncovered blocks and
decisions and identified a few that are not related to processing error
conditions arising at run time. Three such blocks, selected arbitrarily,
were then removed from the original TEX code and TEX rebuilt. The
rebuilt version was then executed against the TRIPTEST. The output
generated by the rebuilt TEX was identical to that of the original TEX,
thus showing that indeed TRIPTEST did not exercise the removed
blocks.

An analysis similar to the one described above for TEX was also
carried out for AWK. Several uncovered, though feasible, structural
elements were discovered. These analyses strongly suggest that (1)
intensive functional testing may fail to test a significant part of the
code and, therefore, (2) may fail to reveal faults in the untested parts of
the program. It is this empirical observation that justifies our claim
that the saturation effect is exhibited by functional testing and that
coverage data must be used during reliability estimation.

TABLE 13.1 Coverage Statistics of TEX and AWK

Coverages (%)

Program Block Decision p-use c-use

TEX 85 72 53 48
AWK 70 59 48 55

Software Testing and Reliability 545

13.4.7 Reliability overestimation
due to saturation

We now argue that the saturation effect can lead to overestimation of
the reliability. Figure 13.2 shows the reliability B as faults are
removed, and the estimate of R denoted by R. The testing effort axis is
labeled the same as in Fig. 13.1. Assuming that faults are independent,
R increases as faults are removed from the program. B may, however,
increase or decrease as faults are removed. This nonmonotonic behav-
ior of R is due to the time dependence of the input data used by most
models. Thus, for example, increasing interfailure times will usually
lead to increasing R obtained from the Musa basic model.

We assume that the R generated by a model is a stochastically
increasing estimate. This implies that even though R may fluctuate, it
will eventually increase if the number of remaining faults decreases.

In Fig. 13.2, we indicate that as functional testing progresses, and
faults are discovered and corrected, R increases. In general, however, it
is not possible to detect when the saturation point, #;, in this case, has
been reached. Thus, testing may continue well past the saturation
point. As shown in the figure, testing in the saturation region does not
increase R, though it does increase R. The increase in R is explained by
observing that the last value in the interfailure data, i.e., (¢t — ¢,), is
increasing without any new fault being detected. This increase in R,
while R remains constant, can lead to a significant overestimate of the

R _— _

N TN “
‘.““.I‘“ o ““T“‘I‘\ o “‘\'\\\\
TN LT T e
5 [| 3
o : L\
. g e1s \ | h
Reliability Rm ______ . ‘.:o__*, _________ L L S [{ .
'o' |I |' : : : : { ¢
2 A R R s o
Q. t : 1 |]]) :
R d R\ .: ---------- : ------ . : : : 1
L[]
! ' T Data filow | |
R Decision, 1 ' H 1
b W e t ! 1 1 !
! : t ! ' 1 :
] | \ : 1 1 ;
Functiondl ! ' L L
v i

t t t, 0t t ¢ t !

b.r be d.r dr L fe m.f mg

v Testing effort

emmsnnes TTUE reliability

ASCL LS SLCRY

Figure 13.2

Estimated reliability

Overestimation of reliability due to saturation effect.

546 Emerging Techniques

reliability. In Fig. 13.2, R, is the estimate of the true reliability R, at
the end of functional testing.

The above reasoning applies to other phases of testing as well when
white-box testing methods are being used. In each case, there exists a
period of testing when R increases even though R remains fixed. Such
an increase can lead to significant overestimates, as shown in Fig. 13.2.

Figure 13.2 indicates that R is a monotonically increasing function of
testing effort in the growth region. This may not be always true. In
general, the growth region will appear as in Fig. 13.3. Thus, for exam-
ple, if ¢ denotes CPU time spent in executing P, then R will grow dur-
ing periods when faults are found; otherwise it will remain constant.
This stepwise rise of R will cause R to fluctuate and increase stochas-
tically, as dictated by the underlying model.

13.4.8 Incorporating coverage in reliability
estimation

As mentioned earlier, during black-box testing we execute the system
against test cases developed using the operational profile. Each test
case has an effect on the coverage of various program elements. As a
simple example, when program P is executed against test case ;0 > 1, it
may cause some statements to be executed for the first time, thus
increasing the statement coverage. Below we outline an approach that

Fault found and removed at these points
Reliability

4|—r—‘

A

Growth region ———————m"

Saturation
— » Testing effort region

I_rc“, : Start of saturation region for testing technique x

i x, : End of saturation region for testing technique x

Figure 13.3 A realistic growth region.

Software Testing and Reliability 547

makes use of coverage measures in estimating reliability. Our approach
does not necessarily entail development of test cases using coverage
measures; however, it calls for measurement of coverage during testing.

The time-structure-based approach outlined below is a simple exten-
sion of the the existing approach based on time-domain models. We
emphasize that the use of time-structure-based approach does not
require a change in the method used for the development of a test set;
it does require the measurement of coverage such as block, decision,
or data flow coverage. The pure structure-based models remove the
notion of time in estimating the reliability and lead to another ap-
proach to reliability estimation. It is not yet clear which approach is
the best to use in practice.

13.4.9 Filtering failure data using coverage
information

We now describe an approach to incorporate coverage information in
estimating software reliability. We begin by defining the notion of use-
ful testing effort. A testing effort E; is useful if and only if it increases
some type of coverage. Note that the definition of usefulness does not
specify which coverage should be increased for a test effort to be useful.

We might argue that in practice every test case, against which P has
not been executed before, is useful. This argument is acceptable in
accordance with our definition of usefulness if input domain coverage is
considered to be one type of coverage. We know that there exist disjoint
subsets D;, 1 <i <n,n 2 0, of D, known as partitions, such that uD; =D,
that will cause P to behave identically. Thus, testing P on one element of
D, is equivalent to testing P on all elements of this partition. The prob-
lem, however, is that we cannot compute these partitions a priori.
Instead, we rely on various testing methods to provide us with the rele-
vant partitions. Therefore, we assume that input space coverage is not
one of the coverage types to be considered in determining whether an
effort is useful or not. Later we will explain how this assumption affects
reliability estimates based on time/structure models.

We have already defined three types of coverages, namely, decision,
data flow, and mutation. To illustrate the notion of usefulness, suppose
that the first 2 — 1 test cases have resulted in a decision coverage of 35
percent. Now if the kth test case increases this coverage to, say, 40 per-
cent, then we say that it is useful. In case the CPU time spent is the
measure of testing effort, then an execution of P that causes an
increase in decision coverage results in useful testing effort. Note that
there are several ways of measuring structural coverage. It is not clear
which is the best and should be used here. We return to this question
later, in Sec. 13.4.10.

548 Emerging Techniques

The effort E, defined in Eq. (13.2) consists of one or more atomic
efforts e;. However, an e¢; may be useless. To account for such useless
efforts, which may bias the interfailure effort, we define

lz
Ei=> oe (13.6)
i =1

where [/, and /, are as in Eq. (13.2) and ¢ is the compression ratio. The
quantity ¢ can be defined in several ways. Below we provide a simple
definition. We consider alternate definitions in Sec. 13.4.10.

1 if ¢; increases coverage
(13.7)

0 otherwise

The use of compression ratio compresses the interfailure effort, E, to Ef
by ignoring the atomic effort that has been found useless. This process
1s illustrated in Fig. 13.4. Along the thick horizontal line, the testing
effort is indicated. The leftmost upward-pointing arrow indicates the
instant when testing began; subsequent upward arrows mark failure
points. Two consecutive downward arrows bracket the atomic effort.
The first atomic effort is bracketed by the leftmost upward arrow and
the first downward arrow. The sequence of total effort spent between
successive failures is indicated by the sequence of shaded boxes labeled
“Observed.” The sequence of shaded boxes, labeled “Useful” just below
this line indicates the filtered effort data obtained by applying the com-
pression ratio to the observed data.

The filtered effort data can now be used in any of the existing time-
based models. Thus, for example, if the Musa model is being used to
predict reliability, then the filtered data can serve as the modified
sequence of interfailure times. If R,, and R, are reliability estimates
generated by the Musa basic model using, respectively, the original and
filtered interfailure times, then R; < R,,. The example below illustrates
this relationship. Thus, filtering leads to a more realistic reliability esti-
mate than the approach that uses unfiltered data. The filtered data can
also be applied to any of the other models, such as the Goel-Okumoto
model [Goel85].

Example 13.1 To show that filtered interfailure data result in more realistic
reliability estimates, we generated hypothetical data corresponding to E,. These
data were filtered and reliability estimates computed using the Musa basic exe-
cution time model. The method for doing so is described below. Here we assume
that the effort is measured in terms of CPU time.

Software Testing and Reliability 549

s Testing effort

R e d—h» ,4—-—“——’- v

‘ ’ ‘ ’

Success ; i v;/ l .; l ,; l ’
7 d I 7 7

Failure T

iObserved NN I \\\\\\\\\\\\\\\
nter-failure tHimes

Useful OSSR AN

inter-failure times

Not to scale

o nnt;mprove -

Figure 13.4 Filtering failure data using coverage information.

1. Assume that the per-fault hazard rate ® = 0.05 and the total number of
expected failures V = 100.

2. The number of failures experienced by time ¢, denoted by u(#) is computed as
u®)=V(1-e") (13.8)
3. The time to the ith failure, t;, is computed from Eq. (13.8) as

t; = In(VAV —uw))d (13.9)

4. The failure interval between (i — 1)th and ith failure, Y, is ¢, — ¢, _,.

5. However, Y;, as computed above, is monotonically increasing due to the use of
Eq. (13.9). To obtain more realistic interfailure time data, we use Y; as the
mean of an NHPP process and generate the interfailure times. Let r be a uni-
form random number, 0 < r < 1. We compute the interfailure times from Y, as

E; =Y, In(1/1 -r) (13.10)

6. Assume that P requires a constant time to execute on each test case. Let this
time ¢p, arbitrarily chosen, be 0.01 time unit. We then obtain the number of
test cases n; used in the ith failure interval as E/ip.

7. Let r’ be a uniform random variate, 0 < 7’ < 1. The probability that a test case
used at time ¢ did not improve coverage is 1 — %"’ Using this information
we identify which test cases are useless and hence contribute to useless
effort. This information is used for compressing E; to E?.

8. Compute the new failure times ¢, = £/_1Ef, 1 < k < 100.
9. Compute the new per-fault hazard rate @’ for the uncompressed data and ®”

from the compressed data. Maximum likelihood estimation is used in both
cases.

550 Emerging Techniques

10. Apply the Musa basic model to the uncompressed and compressed interfailure
times to obtain the two reliability estimates, R(x/t) and R*(x/t), respectively.

Using the uncompressed and compressed interfailure time data, we computed
various reliability estimates. Figure 13.5 shows R(0.01|#) and R°(0.01|t), i.e., the
reliability for an exposure period of 0.01 time units at time ¢. Notice that both the
estimates are almost equal but in all cases R%(0.01[£) < R(0.01 |). Over the entire
time duration for 100 failures, we get 0.784 < R(0.01|¢) < 0.999 and 0.783 <
R°(0.01]£) < 0.998.

The difference in the two estimates is significant in Fig. 13.6 where the exposure
period is 10 time units. For this data set we obtained 0.0 < R(10|¢) < 0.65 and 0.0
< R<(10|#) < 0.445.

Reliability estimates were also obtained by fixing ¢ and varying the exposure
time, Figure 13.7 shows the estimates R(x | ¢) and R“(x | ¢) where the values of the
current time were set arbitrarily to the time at which the 84th failure occurred.
The range of estimates obtained is 0.01 < R(x|£) < 0.995 and 0.003 < R°(x|#) <
0.993. Figure 13.8 shows the estimates obtained by fixing ¢ to the time when the
99th failure occured. The range of estimates obtained is 0.562 < R(x |#) < 0.999
and 0.343 < R°(x |) £ 0.998. These data, and the data mentioned above, indicate

L0o |

0.98 4
Reilability f \ { . //\—f

I //V\J
i I
] |
e

0.82 L.

0.80

0.78 — —

20.00 40.00 60.00 80.00 100.00

R(0.01it).0ld Number Of Failures
-------------- R(0.01It).com >~

Figure 13.5 Variation in the reliability estimates with number of failures,
R(0.01]2).

Software Testing and Reliability 551

0.06 - e - : — T

0.05 , e .-

Rellability f
!
I

0.02 — — —— /\/ :
i
0.01 ot e e \j\/ o ——
0.00
t
20.00 40.00 60.00 80.00 100.00
R(10it).old Number Of Failures
-------------- R(10it).com

Figure 13.6 Variation in the reliability estimates with number of failures, R(10 | ¢).

that the estimates using the time structure model are conservative, as indicated
by the ratio R(x|t)/Rx|¢), which ranged from 1 to 3.33.

13.4.10 Selecting the compression ratio

The notion of useless effort stems directly from the fact that the input
domain of P can be partitioned into disjoint subdomains. Once such a
partition is available, it is necessary to select just one test case from
each subdomain. If two test cases are selected from one partition then
one of them leads to useless effort. Even though domain partitioning is
possible in theory, in practice it is difficult to determine such partitions
for nontrivial programs. The white-box testing methods provide, at
best, an approximation to such a partition. Thus, for example, if a test
set covers a decision, we assume that any other test case that once
again exercises the same decision is useless. It is easy to show by exam-
ples, and has also been shown empirically [Howd80], that such a test
case may indeed reveal faults. This implies that what we consider as a

552 Emerging Techniques

1.00

0.90 \
Reflability \

0.80 ‘

0.70 \

0.60 \

0.50 \

0.40 \

0.30 \

0.10 i
0.00 _____________________________________
0.00 5.00 10.00 15.00
R(tIT[84]).0ld
Exposure_Time
---------------- R(tiT[84]).com —_—

Figure 13.7 Variation in the reliability estimates with the exposure time, R(x| 84).

test case amounting to useless effort may indeed be a useful test case
that, when run successfully on P, has shown the nonexistence of a fault.
Such a test case should therefore improve our reliability estimate.
However, other than structural or mutation coverage, we do not have
any other criterion to test the utility of a test case.

The above reasoning leads us to reconsider the definition of ¢ as given
in Eq. (13.7). Toward this end, we make the following observations:

1. It is more likely for a test case to increase a coverage measure dur-
ing the initial phases of testing than later. Thus, as coverage
increases, it becomes increasingly difficult to construct a test case
that will further increase coverage.

2. Once one or more coverage criteria have been satisfied, the likeli-
hood of a test case, selected randomly, increasing coverage according
to any remaining criteria, decreases.

As an example, suppose that T} is a test set that covers all decisions
but does not provide 100 percent data flow coverage. If a test case d ¢

Software Testing and Reliability 553

1.00

Reliability g0

J 0.80
0.70 ", ‘ \

,
X
\
.
X
.
.
0.60
X
.
.

0.50
0.40
0.00 5.00 10.00 15.00
R(HIT[99]).0d Exposure_Time
----------------- R(tIT[99]).com —_—

Figure 13.8 Variation in the reliability estimates with the exposure time, R(x | 99).

T; is now selected randomly from the input domain, the likelihood of d
increasing data flow coverage is less than its likelihood of increasing
decision coverage when 100 percent decision coverage was not reached.

The above observations lead us to hypothesize that a test case d;
may be more important than another test case d,. We can modify Eq.
(13.7) to account for this importance. The compression ratio can be
made effort dependent. Thus, 6 = ¢(t) and 6(¢,} < 6(¢,) if £; < ¢5. Such a
definition of o will ensure that test cases that increase coverage during
the later phases of testing get more importance than those that
increase coverage during the early phases. Experiments carried out
using another filtering method are described in [Chen94a).

13.4.11 Handling rare events

For a given test case d € D, the failure of P on d, indicated by incorrect
P(d), is considered a rare event if Prob = P{P(d) is incorrect} < ¢ for
some arbitrarily small e. If the operational profile is used during test-

554 Emerging Techniques

ing, then Prob is dependent on the profile itself. If the profile does not
contain d, and hence P was most likely not exercised on d, then the fail-
ure might occur after a significant amount of effort has been spent dur-
ing program operation. Such a failure is likely to be considered as a
rare event arising due to the occurrence of a possibly rare input d dur-
ing operation. If the profile is not used during testing, then Prob is the
same as the probability of occurrence of d during operation.

In either of the two cases mentioned above, it seems impossible to
determine such a test case during testing. This is specially true when
only a negligible fraction of the input domain is accounted for during
testing. Inclusion of coverage in reliability estimation helps decrease
the likelihood of a failure-generating input arising in operation. Such a
decrease takes place in two ways.

First, as mentioned above, coverage-based reliability estimates have
been found to be more realistic compared to the ones that ignore cover-
age data. This is expected to lead to increased testing effort to raise the
estimated reliability up to a cutoff level that may have been set by the
management. Second, an examination of coverage helps the tester con-
struct new test cases in addition to the ones constructed during func-
tional testing. Such test cases are likely to reveal faults in code that
remained uncovered during functional testing, based perhaps on the
operational profile. Thus, failures that may have proved to be rare
events during operation may in fact occur during testing.

13.5 A Microscopic Model of Software Risk

In this section we present a risk model for computing and/or interpret-
ing the reliability numbers in conjunction with coverage data obtained
during testing.

13.5.1 A testing-based model of risk decay

The computational basis for the risk model is the control and data flow
measures. For purposes of discussion below we consider measures sup-
ported by ATAC, a data flow testing tool which reports various data
flow coverages for a given test set. To fully capture the intuitive notion
of the risk of untested code, other testing-based notions of risk that are
intuitively independent of the data flow concept might also be consid-
ered. One such notion is provided by mutation testing [Choi89] and
another by domain testing. By counting risk on three intuitively inde-
pendent testing scales we might capture much of the notion of risk. For
instance, during testing with ATAC we may be able to reduce the data
flow risk of tested code to zero. The remaining mutation and domain
risk would now provide a measure of residual testing risk, which could
be taken into account in reliability and safety assessment.

Software Testing and Reliability 555

Data flow testing measures the adequacy of a set of tests according
to how well the tests exercise the statements, branches, and variable
definition/use pairs in a program. For a given program P in the C lan-
guage and a test set T for use with P, ATAC reports, among other data,
a coverage score like

% blocks % branches % All-lUses
33(169/516) 21(86/414) 15(277/1852)

The above scores can be interpreted to mean that T exercised 33 per-
cent of the 516 basic blocks, 21 percent of the branches, and 15 percent
of the variable definition/use pairs in the program P. Having executed
P on each element of 7, one might view the above score as a multi-
faceted risk profile of P. A simple interpretation of these measures,
assuming that all discovered faults have been repaired, is that by run-
ning the tests in 7, we have reduced the risk associated with the
untested blocks of P by 33 percent, that associated with untested
branches by 21 percent, and of untested variable definition/use pairs
by 15 percent. If another test set T, yields the coverage score

% biocks % branches % All-Uses
100(516/516) 100(414/414) 100(1852/1852)

we might say that P is risk-free when measured by block, branch, and
all-uses testing. The conclusion of this sort of simple “risk” interpreta-
tion of coverage testing is that a set of tests that visit all blocks,
branches, and def/uses in P eliminates all risk associated with P

We now examine the notion of risk that originates from data flow
coverage testing in the following examples. For simplicity, we restrict
our examples to consideration of coverage of basic blocks; the model
can be used to compute risk by including other data flow coverage
statistics as well.

13.5.2 Risk assessment: an example

The program of Fig. 13.9 contains 12 basic blocks. These basic blocks
are the indivisible units of control execution; every statment or expres-
sion in a basic block will be executed if any is executed. The simplest
testing-based notion of risk is: basic blocks (or statements) which
remain untested are risky. This dictum is simple, easily assessed, but
seldom observed. Very few software organizations require every state-
ment of code under test to actually be executed by some test. Occasion-
ally, such an omission is justified. Some code is defensive code that
cannot be executed, and some code can be executed only under condi-
tions impossible to reproduce in a testing environment, but, often,
statement coverage is simply not assessed.

556 Emerging Techniques

1int first, last, found, index; :
| int exit (); :
Ifirst = O 1
2 |last=size 1; '

}

Figure 13.9 Basic blocks of a simple program.

Typically, we would run a set of tests like those displayed in Table

13.2.
Subsequent to running these tests we can calculate the coverage of
the tests. Test t.1 yelds the following coverage:

> atac -s -n t.l binary.atac
% blocks 7 decisions % C-Uses % P-Uses

83(10/12) 70(7/10) 70(7/10) 61(17/28) == total ==

Tests t1, t2, t3, and t4 together yield the following:

> atac -s -n t.[1-4]7 binary.atac
% blocks % decisions % C-Uses % P-Uses

92(11/12) 90(9/10) 80(8/10) 71(20/28) == total ==

The set of all 16 tests give the following coverage:

> atac -s -n t.* binary.atac
% blocks % decisions % C-Uses % P-Uses

100(12) 100(10) 100¢10) 93(26/28) == total ==

Software Testing and Reliability 557

TABLE 13.2 Sixteen Tests for binary.c
Llo] L] Li2]

Variables

Test t.1 values
Test t.2 values
Test t.3 values
Test t.4 values
Test t.5 values
Test t.6 values
Test t.7 values
Test t.8 values
Test t.9 values
Test t.10 values
Test t.11 values
Test t.12 values
Test t.13 values
Test t.14 values
Test t.15 values
Test t.16 values

WWWWNNNNHFRHEEE,OOOO | X

1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2

OO OHROQOOHOOOROOCO
o Co GO OO WN WWWDH Wl

Table 13.3 gives the number of visits to each block by each of the 16
tests as computed by ATAC. |
Based on research in the fault-detection ability of coverage mea-
sures, we assume that statement coverage alone is not a good measure
of risk reduction [Girg86]. Data flow testing measures the coverage of
branches and various definition/use relationships [Horg91]. Covering
these more complex aspects of code can be shown to reduce the expo-
sure of code to faults, and thus risk. For instance, Fig. 13.10 displays

TABLE 13.3 Test Visit to Blocks

Blocks 0 1 2 3 4 5 6 7 8 9 10 11
t.1 visits 1 1 3 3 1 2 1 1 1 0 0 1
t.2 visits 1 1 3 3 1 2 1 1 1 0 0 1
t.3 visits 1 1 3 3 1 2 1 1 1 0 0 1
t.4 visits 1 1 3 2 1 2 0 2 2 0 1 1
t.5 visits 1 1 2 2 1 1 1 0 0 0 0 1
t.6 visits 1 1 2 2 1 1 1 0 0 0 0 1
t.7 visits 1 1 3 2 1 2 0 2 1 1 1 1
t.8 visits 1 1 3 3 1 2 1 1 1 0 0 1
t.9 visits 1 1 3 3 1 2 1 1 0 1 0 1
t.10 visits 1 1 3 2 1 2 0 2 1 1 1 1
t.11 visits 1 1 2 2 1 1 1 0 0 0 0 1
t.12 visits 1 1 2 2 1 1 1 0 0 0 0 1
t.13 visits 1 1 3 2 1 2 0 2 0 2 1 1
t.14 visits 1 1 3 3 1 2 1 1 0 1 0 1
1.15 vigits 1 1 3 3 1 2 1 1 0 1 0 1
t.16 visits 1 1 3 3 1 2 1 1 0 1 0 1

558 Emerging Techniques

data from an experiment in which our colleagues compared the state-
ment coverage of unit tests for 28 modules of a single system to the
number of system test faults found for each module. There is a clear
relationship between high statement coverage in unit testing and low
system test faults [Dala93].

13.5.3 A simple risk computation

Our model computes the risk of a code fragment by computing the risk
of the constituent testable attributes of the code fragment. For the pro-
gram binary.c these attributes are the 12 basic blocks, the 10 deci-
sions, the 10 c-uses, and the 26 p-uses. We consider each of these
attributes as carrying a unit of static risk. Each of these attributes is
considered as a receptor of a potential defect. Of course, we do not know
whether a given c-use, for example, is defective or not, but we do asso-
ciate risk with it to account for the possibility of it being defective.
Another way of looking at static risk in our model is to view it as a
method of disproportionally distributing expected defects throughout
the code. Using o,(/;),1 £ £ £ N to represent the static risk for all
attributes of type & (e.g., c-uses) constituent in locus I; (e.g., a line of
code), we compute the static risk p(/;) for a given program for locus /; as

N
pd =>" (1) (13.11)
1

k=

Considering {, defects per attribute as prior information, (p(,) is
defined to be the expected defects on prior information for locus [;:

L SEEEE LR (EERLEE L REELED | EEEPEPS [REEEE +-,

§ 1.00 "o -:'

S j

090 = e

g ‘e :

0(8 L ,

. 050 +8 -

2 e :

Bomte -

= ie :

~ : . :

5060 + . . =

- (R | ™ . H

=Y e . '

W 0.50 = . -

=Y []

g ! . * * H

0T . H

0 : ! Figure 13.10 Relationship of
030 + . = unit coverage testing to system

i L I------ tr-o--- (ORPEEE Breneee LR 1-- test faults for one system.
0 i 2 3 4 5 6

number of faults found in system tests

Software Testing and Reliability 559

N

Lol = > oGl (13.12)

k=1

Using o,(/;) to represent blocks, o,(/;) decisions, os(/;) c-uses, and o,(/;)
p-uses, the static risk, p(/;), for locus /; of binary.c is given by

P(li) = oy(l;) + oe(ly) + oslly) + (L))
The expected defects on prior information is given by
Cp(l) = ouGaldy) + Oﬁzéz(li) + oCslls) + agla(l)

To be more concrete, suppose from prior project experience we believe
that binary.c has 0.5 faults per 1000 noncommented source lines.
Then, as binary.c has 17 noncommented source lines, it should have
8.5 x 1073 faults. If we weigh all testable attributes equally (58 in this
case), then there are approximately 1.47 x 10™* faults per attribute.
Relating that to a line of code is done through basic blocks. Line 13 of
binary.c,“else first=1index+1", is involved in 1 basic block, 0 deci-
sions, 1 c-use, and 5 p-uses. Therefore, we have

o;(line 13)=1 ox(line 13) =0,
os(line 13) =% oy(line 13) =%

As each c-use participates in 2 basic blocks and each p-use participates
in 3 basic blocks, we assign % of a c-use and % of a p-use for each occur-
rence in line 13. Then the static risk, p(line 13), for locus line 13 of
binary.c is given by

p(line 13)=1+0+ %+ % =3.17

As {;, is 1.47 x 107 per attribute in our example, the expected defects on
prior information is given by

{p(line 13) =1.47 x 10™ x 3.17 = 4.66 x 107

The expected defects on prior information for line 13 reflects our view
that testable attributes are markers for defects. Therefore, when we
calculate the static risk for line 13 as a portion of the static risk for the
entire program, we distribute the expected defects of binary.c accord-
ing to that risk. Thus, 5.5 percent (3.17/58) of the total static risk and
the expected number of defects of binary.c are attributed by our model
to line 13 of binary.c.

560 Emerging Technigues

13.5.4 A risk browser

We have developed a tool named Risk Browser that allows a user to
browse through the source code of a program displaying the risk associ-
ated with individual parts of the code. As an example, Fig. 13.11 shows
the detailed display of static risk for the program binary.c. Thatis, the
risk as measured by our model based upon the distribution of testable
data flow attributes to the individual lines of binary.c before any tests
are run. This fine-grained report of risk forms a baseline of the relative
risk of the individual lines. Surprisingly, the 10th and 11th nonblank
lines are considered most risky because they involve the highest num-
ber of data flow relations when compared with other lines in the code.
In this respect, our static measure of risk is considerably different than
control-flow-based measures such as cyclomatic complexity.

In a large software system the risk browser can present cumulative
risk for various units of the system. In Fig. 13.11, the background win-
dow shows the relative cumulative static risk for the two files main.c
(not presented here) and binary.c. As main.c is a simple driver pro-

[] crb: C Risk Brouser
File | Selected | View | Options | i Help

fs/21/m/259 14/ewk/risk/binary.c

fs/21/m/25914/ewk/risk/main.c

(] crb: main.c
Selected | View | Options | Help

[crb: binary.c
fie | Selected | View | Options | i Help
A [binary(x, size)

fint x, size;

{
extern int L[];
int first, last, found, index;
int exit(};

first = found = 0;
last =size — 1;

while{first <-last && 'found) {
index = (first +last)/ 2;

if (@ == L{index]) found =~ 1; N
else if (x < L[index]) last =index — 1; HiS

else first =index + 1;
} Rlive Risk max
if (found) index = -1;
printf("index = %d\n" index);

* min Relative Risk max

Figure 13.11 Static risk for binary.c.

Software Testing and Reliability 561

gram, binary.c is shown to be considerably more risky. In all displays
of risk we normalize against the most risky component of the display
window. So lines 10 and 11 in the foreground window are shown with
maximal risk, while binary.c in the background window is displayed
with maximum risk.

Static risk is the start, and risk decays as testing progresses. Figure
13.12 shows the interaction of the risk browser and ATAC as the pro-
grammer attempts to reduce dynamic risk. The left foreground window
shows the dynamic risk for binary.c after t.1 through t.8 have been
run. The top right foreground window shows an ATAC display of uncov-
ered blocks and the bottom foreground window shows an ATAC display
of uncoverd decisions which remain in binary.c at this point in testing.
The programmer crafts tests t.9 through t.16, which test these uncov-
ered attributes, and the result is the final display of risk in Fig. 13.13.
Here we see the original static risk (outlined) and the residual risk

(darkened).

13.5.5 The risk model and software

reliability

As ATAC collects visitation rates by test for each testable attribute, a
more complex model of risk is possible. Rather than allowing the risk
associated with an attribute to vanish once covered, we can allow the
risk to asymptotically decay as visitation increases. We can construct

{# crb: C Risk Browser
Selected | View | Options | | Help

1d/ewk/risk/binary.c
5/21/m/259 14/ewk frisk/main.c [#] crb: binary.c - Uncovered Blocks
------------------- > binary.cibinary 2 blocks not covered <(———-——-
last = size - 1;

8 erb: main.c
while{(first ¢= last & !found) {
Fie | Sulsciad | view | options | index = (First + last) ~ 2;
3 l if (x == L[index]) found = 1:
else 1f (x < L[index1) last = indsx - 1:
ﬁﬁ crb: binary.c 3 clse Ll :
{ e | Selected | view | Options | ;
if (! Found
inary(x, size) printf ("index = fdwn".1ndesxs:
nt x, size; ﬁ
¥ 1
externint L[]; {8 crb: binary.c - Uncovered liecisions
int first, last, found, index: @~} @ |TttTTTTTTTmmmmoememe—es > binarg.cibinary at line 7 {---r==—==—---
, last, s 3
i it(): first = Found = O
int exit(); last = size - 1;
. [t] while (NN oo ffound) {
first = found = 0; index = (First + last) / 2
last =size — 1; if {x == LLindex1) Found = 1:
else if {x < LLindex1) last = index - 1:
AL > binatu.cibinary at Line 1§ <=--=---io
while{first <= jast && Yound) { else 4F O CLlindex]) last = index - 13
index - {first +last)/ 2; 3 :
o] 1f (NEMED index = -1}
if (x == Lfindex]) found = 1; , printf{("index = Zd\n".index);
5
i - 1 ML= e e > binary.c:binary at line 11 <==——--—-—
else if (x<L1"1n.da(]).lan index - 1; while(first ¢= last sa |found) {
else fivst =index + 1; index = (first + last) / 2:
} if (x == Llindsx]} Found = 13
etse if (DENNIEEE last = index - 1:
alse first = index + 1:
if (found) index = - 1; H 3
printf("index = %d\n",index); l:] 0 if (!found) index = -1:
Pppfoun Retative Risk max]

Figure 13.12 Dynamic risk for binary.c after execution on t.1 through t.8.

562 Emerging Techhiques

[¢] crb: C Risk Brouser
File | Selected | View | Options | { Help
A /(5/21/m/259 14 /ewk/risk/binary.c
fs/21/m/259 14/ewk/risk/main.c

[crb: main.c
Selected | View | Options | Help

[*] crb: binary.c
File | Selected | View | Options | { Help
A binary(x, size)
‘Wlint x, size;
{
extern int L[];
int first, last, found, index;
int excit();
i
first = found = 0;
last =size — 1; g :
while{first <~last && 'found) {
index - (first +last)/2;]
if (x = L[index]) found = 1;]E
else if (x < L[indext]) last = index — 1;
else first = index + 1;
} Elive Risk wax,

if (Mfound) index =~ -1;
printf("index = %d\n",index);

V4 Pfom Relative RISk max

Figure 13.13 Dynamic risk for binary. ¢ after t.1 through t.16.

confidence growth models similar to reliability growth models. Cur-
rently, the pragmatic value of such models is not known.

A more important relationship between coverage testing and reliabil-
ity modeling involves the saturation effect explained earlier. Suppose
that we calculate the reliability of binary.c based on the sequence of
tests t.1 through t.16. This would be a trivial exercise, but we can ask
“Should all the tests be counted as a measure of effort?” Surely, a
sequence of 16 consecutive runs of t.1 would not count as 16 units of
time or effort. An exact analysis using ATAC tells us that tests t.1, t.2,
t.3, and t.8 define exactly the same computation pathsin binary.c. The
same 1is true of the sets {t.4}, {t.5,t.6,t.11,t.12}, {t.7,t.10}, {t.13}, and {t.9,
t.14, t.15, t.16}. Thus, if our notion is that only testing which reveals
something new about a program should be used in measuring reliabil-
ity growth, we could restrict the reliability calculation to {t.1, t.4, t.5,t.7,
t.9}. Moreover, if our notion is that only testing which reveals new cov-
erage should be considered in reliability assessment, then only {t.4,t.13,
t.16} need be considered. ATAC permits such measurements.

Software Testing and Reliability 563

There is a problem of scale in these sorts of calculations. ATAC is
used to monitor moderately large programs (up to 100,000 lines) dur-
ing product testing. However, run-time overhead is sometimes several
times the ordinary runtime. The data collection for exact analysis of
path redundancy among tests is an additional burden. For large sys-
tems, the measurements required for our models may require off-line
reprocessing of the tests so as not to interfere with the normal testing
process.

13.6 Summary

In this chapter we have pointed to the problems encountered in relia-
bility estimation in the presence of an inaccurate operational profile.
To overcome these problems we have described two different methods
of accounting for code coverage in software reliability estimation. The
first method makes use of code coverage data to filter the failure data
input to time-domain models. Any of the traditional time-domain mod-
els is then used to obtain reliability estimates. The coverage informa-
tion can be obtained during the system test phase. Experiments
conducted on small programs and on large simulated programs show
that this method leads to more realistic estimates when compared with
estimates obtained using the unfiltered data.

In the second method, code coverage measures and the program
structure are used to assess the risk associated with a program. Highly
reliable software is considered as software associated with low risk.
Given visitations and coverage data for a program and a set of tests, a
method of calculating risk has been described.

Problems

13.1 a. How does white-box testing differ from black-box testing?

b. What in your experience is the likelihood of obtaining 100 percent
statement coverage from a test set derived using black-box testing?

c. Is it possible to test all functions from a test set that is derived to
obtain 100 percent statement coverage?

d. For some program P, a test set T'is adequate with respect to the state-
ment coverage criterion. Give an example P for which T is not ade-
quate with respect to the decision coverage criterion.

13.2 Consider the following program that inputs two integers o and b and
computes y.

begin
integer x,y,a,b;
input(a,b);
x=0; y=10;

564 Emerging Techniques

\ end

13.3 a.

if a>0 then
n=1
else
n=2
endif;
if b>0 then
y=(n+1)*a
else
y=(n=1)*b
endif;
output (y);

Construct a test set T, adequate with respect to the statement cover-
age criterion.

Construct T; by adding test cases to T, such that T is decision ade-
quate.

Construct 7,. by adding test cases to T, such that T, is p-use and
c-use adequate.

A test set T is considered minimal with respect to some criterion C if
removal of any test case from 7 will cause the remaining test set to be
inadequate with respect to C. Which of the test sets constructed
above are minimal?

Assume that program P’ is constructed from P of Prob. 13.2 by replac-
ing the statement n = 2 by n = 3. Consider P’ to be an erroneous ver-
sion of P. Which of the test sets constructed in Prob. 13.2 will cause P
to fail?

Let T be some test set that is adequate with respect to the statement
coverage criterion for P’. Is T guaranteed to reveal the error in P’ by
causing P’ to fail?

How does your answer to item 6 change if the statement coverage cri-
terion is replaced by decision coverage? p-use coverage? c-use cover-
age?

Suppose that the input domain of P consists of all values of ¢ and b
such that -5 <a <5 and -5 < b < 5. Let (a,,b,) be a randomly selected
pair from the input domain. Let P’ be executed on (a,,b,). What is the
probability that P’ will fail? How does this probability change as the
range of a and b (i.e., the size of the input domain) increases?

13.4 For some user of program P’ of Prob. 13.3, the operational profile has
been specified as shown in Fig. 13.1. Suppose that P’ is tested by randomly
selecting a pair from the input domain using the operational profile given in
Table 13.4.

a.
b.

With what probability will P’ fail?

How does the probability in item a change as the probability of a test
case, which satisfies @ < 0 and & < 0, reduces?

Suppose that each time P’ fails, the user incurs a cost C. What
approximate cost will the user incur after 100 executions of P'?

Software Testing and Reliability 565

TABLE 13.4 Sample Operational
Profile for Prob. 13.4

Input Probability
1 (@=0,b0>0) 0.1
2 (¢=0,06=0) 0.005
3 (a>0,6>0) 0.7
4 (@>0,b=0) 0.1
5 (a<0,b<0) 0.05
6 All others 0.045

|

d. Suppose that P’ was tested with respect to the operational profile
given in Table 13.4 and that the error in P was not revealed. P’ is now
delivered to a user whose operational profile is different from the one
given in Table 13.4. The difference is in entries 3 and 6. These entries
for our user are

(@>0,b>0) 0.4
All others 0.345

Recompute your answer to item ¢ for the modified operational profile.
e. Now suppose that P’ was tested to achieve 100 percent statement cov-
erage. How will your answer to item d change? For decision coverage?
For p-use and c-use coverage?

13.5 ¢. Why and how does the saturation effect affect the reliability estimate
of a program?

b. Why is it that the use of code coverage in reliability estimation using
random testing is likely to improve the estimates?

c¢. When using a “white-box” based approach to reliability estimation
when is a test case considered useful?

d. Suppose that while testing for reliability measurement, we measure
statement coverage. Now, suppose that a test case £ does not increase
the statement coverage. Will ¢ be considered useful? Will it be consid-
ered useful if some other coverage were measured?

13.6 During the execution of a program P, we say that a rare event has
occurred if P has been executed on an input that occurs with a very low proba-
bility. Which of the two testing methods—random or coverage-based testing—
is more likely to cause this event to occur during testing? Provide a sample
program to illustrate your answer.

13.7 Let P be a program with three features: fi, f5, and f;. The program con-
sists of 300 lines of executable source code. We test P by providing exactly three

566

Emerging Techniques

test cases, one to exercise each feature. Do you expect these test cases to pro-
vide 100 percent statement coverage? How does your answer change as the size
of the program is increased and the number of features remains fixed? Explain
your answer.

13.8 a.

13.9

b.

b.

What is the basic difference between the approaches outlined in the
chapter for reliability estimation using code coverage versus the risk
decay model?

Why is it that statement coverage alone is not a good measure of risk
reduction?

How is the static risk measure affected by increase in code coverage?

Obtain ATAC program from the following Internet ftp address.

ftp site: flash.bellcore.com, login: anonymous, password: your address,
directory: atac

Get the README file and the archive file“atac3.3.13.tar.7” or the latest ver-
sion. Read the README file and get familiar with the atac package.

a. Type up the program binary.c shown in Fig. 13.9. Apply atac to

count its blocks, decisions, c-uses, and p-uses. Verify that there are
indeed 1 block, 1 c-use, and 5 p-uses in line 13. You need to write a
simple main.c program to call the binary routine.

Apply atac to the program in Prob. 13.2 and measure the coverages
obtained from your test sets.

Apply atac to the mutated program in Prob. 3.13 and determine
which of your test cases detect the error.

