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10.1 Introduction

Generally, software reliability studies are based on the application of
reliability growth models to evaluate reliability measures. When per-
formed on a large base of deployed software systems, the results are usu-
ally of high relevance (see [Adam84, Kano87] for examples of such
studies). However, the utilization of reliability growth models during the
early stages of development and validation is much less convincing;
when the observed times to failure are in the order of minutes or hours,
the predictions based on such data can hardly predict mean times to
failure different from minutes or hours, which are far below any accept-
able level of reliability! In addition, when a program under validation
becomes reliable enough, the times to failure may simply be so large that
applying reliability growth models to data collected during the end of
validation is impractical due to the (hoped for) scarcity of failure data.
On the other hand, in order to become a true engineering exercise, soft-
ware validation should be guided by quantified considerations relating
to its reliability. Statistical tests for trend analysis provide such guides.

This chapter addresses the problem of reliability growth analysis; it
shows how reliability trend analyses can help the project manager con-
trol the progress of the development activities and appreciate the effi-
ciency of the test programs. Reliability trend changes occur for various
reasons. They may be desirable and expected (such as reliability growth
due to fault removal) or undesirable (slowing down of testing effective-
ness, for example). Timely identification of the latter allows the project
manager to make the appropriate decisions in order to avoid problems
that may surface later.

We introduce the notions of reliability growth over a given interval
and local reliability trend change, allowing a better definition and
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understanding of the reliability growth phenomena. The already exist-
ing trend tests are then revisited using these concepts. We put the
emphasis on the way trend tests can be used to help the management
of the testing and validation process and on practical results that can
be derived from their use. It is shown that, for several circumstances,
trend analyses give information of prime importance to the developer.
We also discuss their extension to software static analysis (e.g., specifi-
cation and code inspection or review).

It is worth noting that, generally, most companies are accustomed to
trend analysis during software testing (see e.g., [Grad87, Ross87,
Vale88]). However, trend analyses are usually applied intuitively and
empirically rather than in a quantified and well-defined manner.
Moreover, such analyses are commonly restricted to failures reported
during software execution. It is undoubtedly important to manage soft-
ware testing, but equally important to manage the earliest phases of
the verification and validation activities (for instance, static analysis
through inspections, walk-through or code review) since efficient early
static analyses significantly reduce subsequent development cost. We
will thus discuss the extension of the trend analyses to data derived
from static analysis before software execution (testing).

This chapter focuses on trend analysis. First, emphasis is placed on
the characterization of reliability growth via the subadditive property
and its graphical interpretation. Then we briefly present the Laplace
test, which is a conventional trend test, and outline its relationship
with the subadditive property. We then show how trend tests can be
used to help manage the validation process before illustration on sev-
eral data sets from real-life systems. Finally, the last section extends
the application of trend tests to trouble reports recorded during static
analysis of the software.

10.2 Reliability Growth Characterization

Lack of software reliability stems from the presence of faults. It is man-
ifested by failures which are due to fault sensitization (see Chap. 2).
Removing faults should result in reliability growth. However, this is
not always the case, due to the complexity of the relationship between
faults and failures, and therefore between faults and reliability, which
was noticed long ago (see e.g., [Litt79a]). Basically, complexity arises
from a double uncertainty: the presence of faults and the fault sensiti-
zation via the trajectory in the input space of a program.* As a conse-

* By way of example, the data published in [Adam84] concerning nine large software
products show that for a program with a mean lifetime of 15 years, only 5 percent of the
faults were activated during this period.
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quence, reliability trend changes can occur, which may be due to a wide
range of phenomena, such as

s Variation in the utilization environment. Variation in the testing
effort during debugging, change in test sets, addition of new users
during the operational life, etc.

® Dependence between faults. Some faults can be masked by others,

they cannot be activated as long as the latter are not removed
[Ohba84].

Reliability decrease may not, and usually does not, mean that the
software has more and more faults. It is just an indication that the soft-
ware exercises more and more failures per unit of time under the cor-
responding conditions of use. Corrections may reduce the failure input
domain, but more faults are activated or faults are more frequently
activated due to operational profile changes. However, during fault cor-
rection, new faults may also be introduced—regression faults—that
are likely to affect the ability of the software to deliver a proper service,
depending on the conditions of use. Last but not least, reliability
decrease may be due to specification changes, as exemplified by the
experimental data reported in [Kenn92].

10.2.1 Definitions of reliability growth

A common definition of reliability growth is that the successive inter-
failure times tend to become larger, i.e., denoting Ty, T, ..., the
sequence of random variables corresponding to interfailure times:

T.sT; for all i < (10.1)

where & stands for stochastically smaller than (that is, P{T; < v} 2
P{T; < v} for all v > 0). Under the stochastic independence assumption,
Eq. (10.1) is equivalent to Fi(x), denoting the cumulative distribution
function of T':

Frx) 2 Frx) foralli<jandx >0 (10.2)

An alternative to the (restrictive) assumption of stochastic indepen-
dence is to consider that the successive failures are governed by a non-
homogeneous Poisson process (NHPP). Let N(¢) be the cumulative
number of failures observed during time interval [0, t], H(¢) = E[IN(2)],
its mean value, and h(t) = dH(t)/dt its intensity, i.e., the failure inten-
sity. A natural definition of reliability growth is then that the increase
in the expected number of failures tends to become lower, i.e., that H(t)
is concave, or equivalently that A(¢) is nonincreasing. However, there
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are several situations where, even though the failure intensity fluctu-
ates locally, reliability growth may take place on average on the con-
sidered time interval.* An alternative definition allowing for such local
fluctuations is that the expected number of failures in any initial inter-
val (i.e., of the form [0, #]) is no less than the expected number of fail-
ures in any interval of the same length occurring later (i.e., of the form
[x, x + ¢]). The independent increment property of an NHPP enables us
to write the latter definition as

H(t,) + H(ty) 2 H(t, + £,) forall¢),t,20and 0<¢t, +£,<T (10.3)

where inequality is assumed strict for at least one couple (¢,, £,). When
Eq. (10.3) holds, the function is said to be subadditive (see e.g.,
[Holl74]). When Eq. (10.3) is reversed for all ¢,,£,>0and 0 < ¢ + £, < T,
the function is said to be superadditive, indicating reliability decrease
on average.

Equation (10.3) is very interesting, since it allows for local fluctua-
tions: locally subintervals of reliability decrease may take place with-
out affecting the nature of the trend over the whole time interval
considered. When A(2) is strictly decreasing over [0, T1, Eq. (10.3) is ver-
ified, but the converse is not true. This is detailed in the next subsec-
tion. The case where h(t) is strictly decreasing (respectively, increasing)
18 usually referred to as strict or monotone reliability growth (respec-
tively, decrease).

10.2.2 Graphical interpretation
of the subadditive property

Let C, denote the portion of the curve representing the mean value
function over [0, ¢] as shown in Fig. 10.1, and L, be the line joining the
two ending points of C, (i.e., the chord from the origin to point (¢, H(?))
of C,). Let Ay4(¢) denote the difference between (1) the area delimited by
C; and the coordinate axis and (2) the area delimited by L, and the coor-
dinate axis. With these notations, if H(¢) is subadditive over [0, 71, then

A1) >0 for all ¢ € {0, T (10.4)

This property can be shown as follows. Let us divide the interval
[0, ¢] in K small time intervals of length d¢, that is, £ = Kdt. K may be

* The NHPP assumption (more precisely, the property of independent increments) is
essential since a stationary process which is a non-Poisson process may undergo tran-
sient oscillations that cannot be distinguished from a trend in a nonstationary Poisson
process (see, for instance, [Asch84, Gned69] for renewal processes).
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even or odd. Let us consider the even case. In Eq. (10.3), let ¢, succes-
sively take the values {0, dt, 2dt, 3dt, . . . (K/2)dt} and ¢, =t — ¢,. Equa-
tion (10.3) successively becomes

H(0) + H(Kdt) = H(t)
H(dt) + H(K - 1)dt) 2 H®)
H2dt) + H(K - 2)dt) = H(t)

H( Edt) ¥ H(Edt) > H(t)
2 2
Summing over the (K/2) + 1 inequalities gives

J

K
H(jde) +H(£dt) > (5 + 1)H(t)
=5 2 2
Replacing K by t/dt and taking the limit when dt approaches zero lead to

f "‘Heode> LH®)
0 2

H(x)
il
Ct\ |
|
. V:\Lzt lI
P |
L |
' iy
|| .
0 T
Ak

_ . x Figure10.1 Graphical interpreta-
! I_-_ tion of the subadditive property.

0 Ti1 Tyo Tia T

i e L e




406 Practices and Experiences

The left term corresponds to the area delimited by C, and the coordi-
nate axis; the right term corresponds to the area between L, and the
coordinate axis.

Equation (10.3) implies Eq. (10.5):
t
[ Hex) dx - éH(t) >0 forallte [0,7] (10.5)
0

That is, A4(t) 2 0.

It can also be shown that Eq. (10.5) implies Eq. (10.3), which means
that Eqgs. (10.3) and (10.5) are equivalent. When K is odd, derivation
can be handled in a similar manner.

Throughout this chapter, A5(¢) is called the subadditivity factor.

With this graphical representation, the subadditive property is eas-
ily identified. For example, the function considered in Fig. 10.1 is sub-
additive over [0, T']; there is thus reliability growth over the whole time
interval.

10.2.3 Subadditive property analysis

It is worth noting that, for a subadditive function over [0, T] when ¢
varies from O to 7, the difference between the two areas, 24(t), may
increase, decrease, or become zero without being negative. The varia-
tions of 4,(¢) indicate local trend changes.

Let us consider a subadditive function; Ax(¢) is thus positive and
increasing at the beginning, and

m Without local trend change, the mean value function is concave, lead-
ing to Ay(¢) positive and increasing over the considered interval.
Such a situation is illustrated by case A in Fig. 10.2,

m In case of local trend change, the mean value function is no longer
concave and the difference between the two areas is not increasing

Hix)

X

Case A Case B

Figure 10.2 Subadditivity (left) and superadditivity (right) without local trend
variation.
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over the considered interval. Figure 10.1 gives an example of such a
situation. 4,(t) takes its maxima (minima) when its derivative is
null. Let T;; denote the time at which the first maximum takes place.
From Ty, Au(t) is decreasing (denoting local reliability decrease) up
to the next point where the derivative is null again (point T}, of Fig.
10.1). From Ty, A;(t) is increasing again (denoting local reliability
growth) and so forth.

In fact, Fig. 10.1 shows a situation with two subintervals of local reli-
ability decrease (namely, intervals [T, T12], and [T73, T'1) despite reli-
ability growth on the whole interval [0, T'], since the function is
subadditive over [0, T'].

Let 4,(t) denote the derivative of Ax(¢) given by

d dre ¢ 1
A0 = 2 Aalt) = E[ fo Hx) dx - EH(t)] = SIHO-¢-ho] (106

As for 4,(t), a simple graphical interpretation of 4,(¢) leads to the fol-
lowing results: 4,(#) corresponds to half the difference between (1) the
area delimited by A(¢), the failure intensity, and the coordinate axis and
(2) the area of the rectangle (£, h(#)). Local trend change takes place at
points 77, which are such that 7,(T.) = 0 (where both areas are equal).

For a subadditive function, taking the first point of local trend
change as the time origin would lead to a superadditive function from
this new time origin to the following point of local trend change (since
the curve giving the cumulative number of failures is concave over this
time interval).

The preceding remarks also hold for a superadditive function. At the
beginning, the difference between the two areas is negative and
decreasing, and

m Without local reliability fluctuation, the mean value function is con-
vex, leading to a negatively decreasing 44(¢) (Fig. 10.2, case B).

» In case of local reliability fluctuation, 44(f) takes its first minimum
at T} (such as 4,(T}) = 0). From T, Ay(t) is then increasing (indicat-
ing local reliability growth) up to the next point of local trend change,
and so on.

10.2.4 Subadditive property
and trend change

There exist more complex cases, however, where the cumulative num-
ber of failures is neither subadditive nor superadditive over the con-
sidered interval. Since the notion of subadditivity/superadditivity is
related to a given interval, a change in the time origin leads to subad-
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ditive or superadditive functions over the subintervals of the new con-
sidered interval. Two such cases are depicted in Fig. 10.3.

For case C, the function is superadditive before T, denoting reliabil-
ity decrease over [0, T;]. Ty corresponds to the point where Ag(#)
changes signs (Ax(T¢) = 0): the function is no longer superadditive. T,
denotes the point where 24(¢) is no longer decreasing (A,(7T%) = 0),
denoting local trend change. However, the function continues to be
superadditive up to point 7. On the subinterval of time between T
and T, the curve is concave, indicating reliability growth over [T}, T1.

Situation D is the converse of that of C. Up to point T, the cumula-
tive number of failures is subadditive, denoting reliability growth over
[0, T¢l; from T, it is no longer subadditive. On [T}, T'] the function is
superadditive, corresponding to reliability decrease over this time
interval. Combining C and D leads to situations where the trend may
change more than once.

10.2.5 Some particular situations

What precedes shows that the notion of reliability growth is related to
the interval of time considered and, thus, strongly associated with the
origin of the time interval. Two types of particular situations can there-
fore be found in practice: (1) when the subadditivity factor is constant
(or null) over a given interval and (2) when 4,(¢) varies but remains
positive over a given interval while the concavity of H(t) may change.
These two specific cases will be reviewed.

?Hm , A Hx)
Cy

X X

- -
o W A ;
|

Case C Case D
Figure 10.3 Subadditivity/superadditivity and local trend variation.
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The first case (where 4y(t) is constant or null over a given interval,
say, [t1, £2]) is characterized by the fact that the derivative of Ax(¢),
4,(¢), is null over [¢,, t,]. Integration of H(¢) — th(t) = 0 leads to a linear
cumulative number of failures function, i.e., a constant failure inten-
sity over [¢y, £,]. The constancy of Ax(¢) thus indicates stable reliability
over this time interval.

Finally, the case of 4,(t) being positive over a given interval while the
concavity of H(¢) may change leads to the notion of transient or tempo-
rary behavior. Positive 4,(t) means that 44{¢) is not decreasing over the
considered interval. This is shown in the example in Fig. 10.4. H(?) is
subadditive, h(¢) is fluctuating, leading to H(f) concavity change;
whereas 44(t) is not decreasing (2,(¢) is not shown). The transient vari-
ations of A(z) cannot be detected by the sign of A4(¢) and do not corre-
spond to a trend variation as defined by the subadditive property. They
are due to the random nature of the process and are identified as a
transient or temporary behavior of the software.

Defining reliability growth through the subadditive property is thus
very attractive since it is not sensitive to the transient and temporary
behavior. The subadditive property constitutes a form of smoothing of
the software behavior, as shown in Fig. 10.4.

10.2.6 Summary

Reliability growth/decrease is entirely characterized by the subaddi-
tivity factor 4x(¢) and its derivative A,(¢). Ay(¢) gives information about
the trend on average over a given interval, whereas 4,(¢) informs about
local trend variation as follows:

m A4(¢) > 0 over [0, T] implies reliability growth on average over [0, T].
» A4() <0 over [0, T] implies reliability decrease on average over [0, T'].

m 44(¢) constant over [0, T] implies stable reliability on average over
[0, T'1.

» Changes in the sign of Ax(¢) indicate reliability trend changes.

4 Hi(x) h(x)

smoothed mean
value function

smoothed failure intensity
-~

X

0

0
Figure 10.4 Subadditivity and transient/temporary behavior.
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= 7,(¢) 2 0 over a subinterval [t,, £,] implies local reliability growth over
21, 221

m 2,(t) < 0 over a subinterval [¢,, ;] implies local reliability decrease
over [y, ts].

= Changes in the sign of 4,(¢) indicate local reliability trend changes.

» Transient variations of the failure intensity are not detected by the
subadditivity property.

10.3 Trend Analysis

Reliability growth can be analyzed by trend tests. In this section we
will present only the most often used and most significant trend tests
and place the emphasis on the relationship between the Laplace test
(the most common one) and the subadditive property. The presentation
of the tests is followed by a discussion of how they can be used to follow
up software reliability.

Failure data can be collected in one of two forms: interfailure times or
number of failures per unit of time. These two forms are related. Know-
ing the interfailure times enables us to obtain the number of failures
per unit of time (the second form needs less precise data collection).

The use of data in the form of number of failures per unit of time
reduces the impact of transient variations on software reliability anal-
ysis and evaluation. The unit of time is a function of the type of system
usage as well as the number of failures occurring during the consid-
ered units of time, and it may be different for different phases. For
instance, since more failures are likely to occur during development,
the selected unit of time may be smaller than the one selected for oper-
ational life.

10.3.1 Trend tests

There are a number of trend tests which can be used to help determine
whether the system undergoes reliability growth or decrease. These
tests can be grouped into graphical and analytical tests [Asch84].
Graphical tests consist of plotting some observed failure data such as
the interfailure times or the number of failures per unit of time versus
time in order to visually obtain the trend displayed by the data. As
such they are informal. Analytical tests correspond to more rigorous
tests since they are based on statistical considerations. The raw data
are processed to derive trend factors. The principle of analytical tests is
to test a null hypothesis H, versus an alternative H,. Usually, H, cor-
responds to one of the following assumptions for the underlying pro-
cess: 1t is assumed to be either (1) a homogeneous Poisson process
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(HPP) or (2) a stationary renewal process. Very often, H; corresponds to
“the process undergoes monotonic trend,” i.e., increasing (decreasing)
interfailure times or decreasing (increasing) failure intensity.

Theoretical definition and comparison of analytical trend tests have
given rise to several publications [Cox66, Asch84, Gaud90]. In the lat-
ter reference, detailed presentation, analysis, and comparison of some
analytical tests (e.g., Laplace, MIL-HDBK 189, Gnedenko, Spearman,
and Kendall tests) are presented. In particular, it is shown that

® From a practical point of view, all these tests yield similar results for
the detection of reliability trend variations.

m The Spearman and Kendall tests have the advantage of being based
on less restrictive assumptions (that is, Hy: the underlying process is
a renewal process).

m The Gnedenko test is interesting since it uses exact distributions.

® From the optimality point of view, the Laplace test is superior and rec-
ommended for use when the NHPP assumption is made (even though
its significance level is not exact and its pewer cannot be estimated).

These results confirm our experience in the processing of real failure
data. We have observed the agreement between the results of these
various tests and the superior efficiency of the Laplace test.

All the aforementioned tests are performed relative to a monotonic
trend. Linked with the subadditive property, a test for subadditivity
(referred to subsequently as the Hollander test) was derived by Hol-
lander and Proschan in [Holl74] and Hollander in [Holl78]. The Hol-
lander test deals with H;, and H,; defined by:

H,: the failure process is an HPP

H,: the mean value function is superadditive

It is thus more general than the previous ones and also more in line
with our definition of reliability growth/decrease. Further details on
the Laplace and Hollander tests will be provided in the following sub-
sections.

The trend can be analyzed using interfailure times data or failure
intensity data, both of which we will now examine.

10.3.1.1 Interfailure times. Two trend tests are commonly carried: the
arithmetical mean and the Laplace tests. The arithmetical mean of the
interfailure times is a popular test. It consists of calculating the arith-
metical mean 1(7) of the observed interfailure times 6, j=1,2,...,1 (6,
are realizations of T)):
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() = % > 6, (10.7)
=1

An increasing series of 1(i) indicates reliability growth and, con-
versely, a decreasing series suggests reliability decrease. This straight-
forward test is directly related to the observed data. A variant of this
test consists of evaluating the mean of interfailure times over periods
of time of the same length in order to put emphasis on the local trend
variation.

Let N(T') denote the cumulative number of failures over the observa-
tion period [0, 7T']. The Laplace test [Cox66] consists of calculating
Laplace factor, u(T') which is derived as follows. The occurrence of
events 1s assumed to follow an NHPP whose failure intensity is
decreasing and given by

h(t)=e**? b<0 (10.8)

If 6 = 0, the Poisson process becomes homogeneous and the occurrence
rate is time-independent. Under this hypothesis (b = 0, that is, H,: the
failure process is an HPP), the test procedure is to compute:

NT) n

N(T) Z Z

w(T) = (10.9)

T _1_
Y 12N(T)

This factor may be evaluated step by step, after each failure occur-
rence, for instance. In this case T is equal to the time of a failure occur-
rence, say, failure i, and failure at time 7' is to be excluded. Equation
(10.9) thus becomes

n=1 j=1 2
u(@) = (10.10)
le 12 (z -1

Practical use of Laplace test in the context of reliability growth can
be summarized as follows:

m Negative values of the Laplace factor indicate a decreasing failure
intensity (b < 0).
m Positive values suggest an increasing failure intensity (b > 0).

® Values varying between —2 and +2 indicate stable reliability.
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These practical considerations are derived from the significance lev-
els associated with the normal distribution; e.g., for a significance level
of 5 percent,

» The null hypothesis “H,, : HPP” versus “H, : the failure intensity is
decreasing” is rejected for u(T') < —1.645.

» The null hypothesis “H, : HPP” versus “H, : the failure intensity
is increasing” is rejected for u(T) > 1.645.

® The null hypothesis “H, : HPP” versus “H, : there is a trend” is
rejected for |u(T)| > 1.96.

The Laplace test can be simply interpreted as follows:

w 7/2 is the midpoint of the observation interval.

m VIN(T) 25 37, 0] corresponds to the statistical center of the
interfailure times.

Under the assumption of failure intensity decrease (increase), the
interfailure times 0, will tend to occur before (after) the midpoint of the
observation interval; hence the statistical center tends to be smaller
(larger) than the mid-interval.

10.3.1.2 Failure intensity and cumulative number of failures. Two very
simple graphical tests can be used: the plots giving the evolution of the
observed cumulative number of failures and the failure intensity G.e.,
the number of failures per unit of time) versus time, respectively. The
inevitable local fluctuations exhibited by experimental data make
smoothing necessary before the reliability trend can be determined,
and favor the cumulative number of failures rather than failure inten-
sity. Reliability trend is then related to the subadditive property of the
smoothed plot, as seen in Sec. 10.2.

The formulation of the Laplace test for failure intensity (or cumula-
tive number of failures) is as follows. Let the time interval [0, 7] be
divided into & units of time of equal length, and let n(i) be the number
of failures observed during time unit i. Following the method outlined
in [Cox66], the expression of the Laplace factor is given by (for a
detailed derivation consult [Kano91a])

B-1) &

k
> G- DnG) - > > nG)
i=1

uk) = 1 (10.11)

2_1 k
\/klz Zn(i)

i=1
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The same results as previously stated apply: negative values of u(k)
indicate a decreasing failure intensity (reliability growth) whereas
positive values point out an increasing failure intensity (reliability
decrease).

The Hollander test for subadditivity [Holl74] consists of evaluating
the statistic @, based on the times of failures

i
Si:Z BJ'
Jj=1

Q. =2K,/nln—-1)n-2)
K,=>" [0S0+ Sazs T) — ®(Sas, So1 + Su2) * OSe1 + Sz, TV (10.12)

where n = N(T'), d(a, b) =1 if a < b, else ¢(a, b) = 0, and 3" is over all
%n(n — 1)(n ~ 2) choices of subscripts such that 1 < a1l < 02 < a3 < n.
Critical values of the K, statistic are given in the same reference for
various levels of significance.

10.3.1.3 Relationship between the Laplace test and the subadditive prop-
erty. The Laplace test may be used in the same way as any statistical
test with significance levels as indicated above. However, we derive a
relationship between the Laplace factor and the subadditivity factor
allowing extension of the properties of the latter.

Let n(i) denote the number of failures during the i:th unit of time (i.e.,
N(k) = 2%, n(i)). The numerator of Eq. (10.11) can be written as

S (- DN NG - 1 - e
i=1

which is equal to

[kN(k) -y N(i)] Lk —2 N = * 2 N -3 NG)
i=1 i=1
Equation (10.11) thus becomes
" NG - k‘z” N(k)
uk)=— "1 - (10.13)
k21-2 LGN

The u(k) numerator is nothing other than the subadditivity factor,
Ax(k). Therefore, testing the sign of u(k) leads to testing the sign of the
difference of areas between the curve plotting the cumulative number
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of failures and the chord joining the origin and the current cumulative
number of failures. This shows that the Laplace factor (fortunately)
integrates the unavoidable local fluctuations which are typical of
experimental data, because the numerator of this factor is directly
related to the subadditive property.

In the previous section certain features related to the subadditive
property were introduced (i.e., reliability growth over a given interval
and local trend change). We use a simple hypothetical example to illus-
trate the relationship between these features and the Laplace test. Fig-
ure 10.5 shows the failure intensity considered, the corresponding
cumulative number of failures, N(k), the derived subadditivity factor,
and the evaluated Laplace factor.

Considering the whole data set (Figure 10.5a) leads to the following
comments:

m Ag(k) is negative until point 9, thus indicating superadditivity and
hence reliability decrease up to this point.

m The trend of Ay(k) changes around point 6, indicating local trend
change. (This is also noticed when looking directly at the failure
intensity, which is decreasing from point 6.)

= The sign and variations of the Laplace factor follow the sign and
variations of (—Ay(k)).

If we consider the data set from point 6 and plot the same measures
(Fig. 10.58), the results of this time origin change are as follows:

m 7;(k) is positive for each point showing reliability growth over [6, 21].

8 The Laplace factor becomes negative.

To conclude, the denominator in the expression of the Laplace factor
(Eq. (10.13)) usually does the following:

s Amplifies the Laplace factor variations when compared to those of
Ayx(k), at the beginning of the time interval considered

» Reduces the scale variation of the Laplace factor when compared to
the variations of Ax(k) on the whole time interval, as it acts as a
norming factor

It is also worth noting that changes in the time origin similarly
impacts the subadditivity factor and the Laplace factor. However, the
change in the time origin does not result in a simple translation in all
situations.

The preceding statements are now illustrated by a more complex
case corresponding to the experimental data of the TROPICO-R
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switching system studied in [Kano91a]. Figure 10.6 gives the Laplace
factor for the whole data set from validation to operation. At the
beginning of validation, a reliability decrease took place, due to the
occurrence of 28 failures during the third unit of time, whereas only 8
failures had occurred during the first two time units, and 24 failures
occurred during the next two time units. This is a common situation
at the start of validation: reliability decrease is due to the activation
of a large number of faults. Applying the Laplace test without the
data belonging to the two first units of time leads on average to reli-
ability growth from unit time 3 despite local trend changes (Fig.
10.7). The evolution of the subadditivity factor A;(%) is shown in Fig.
10.8, which also depicts the influence of the first two data items. Even
though only two data items were removed, the comparison of Figs.
10.6 and 10.7 (and of the curves of Fig. 10.8) confirms the previous
remarks, that is,

m The curve’s shape is preserved when suppressing the first data
items, which cause the reliability decrease at the beginning and
preservation of the local trend change points.

m 44(k) seems less sensitive to the local trend variations when com-
pared to the Laplace factor. This difficulty may be overcome by con-
sidering, for instance, a reduced data set as indicated in Fig. 10.9,
which depicts 4;(k) over the validation phase only.

uk)

12 1 Validation Field test Operation

44 L

Figure 10.6 Laplace factor for the TROPICO-R considering the
whole data set.
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Figure 10.9 Subadditivity factor
for TROPICO-R for the valida-

tion phase.

10.3.2 Example

By way of example, we illustrate the features of the Laplace factor
introduced in the previous paragraph. The data are those collected on
system 2 presented in [Musa79], denoted S2 in this chapter. Fifty-
four failures occurred during the observation period covering system
testing.

The left column of Table 10.1 gives the number of failures, i; the sec-
ond column lists the execution time (in seconds) from system restart
after failure i — 1 to failure i. We use Eq. (10.10) to evaluate the Laplace
factor, u(i), from i = 2 up to i = 54. Numerical values of u(i) are given in
the third column of Table 10.1. Certain values are worth commenting
upon. Time to failure 2 is larger than time to failure 1. As a result u(2)
is negative, indicating reliability growth. The times to failures are still
increasing up to failure 8, and the Laplace factor is also negative and
decreasing, indicating reliability growth over [1, 8]. Time to failure 9 is
smaller, thus evidencing local variation which leads to an increasing
but still negative Laplace factor, indicating reliability growth over
[1, 9], and so on. The Laplace factor is indeed negative over all the
period considered. It is illustrated in Fig. 10.10a. This figure shows
that from failures 31 to 41, u(i) is increasing, indicating a local reliabil-
ity decrease over this time interval despite a global reliability growth.
If we consider data items from failure 31 only and evaluate again u(i)
for : = 32 to 54, the Laplace factor becomes positive up to i = 42, con-
firming reliability decrease over this period of time. The numerical
results are given in the right column of Table 10.1, and the corre-
sponding curve in Fig. 10.10b.

Consider the failure intensity for the same system. It is obtained by
computing the number of failures over periods of time of equal length
(called units of time). Cumulative execution time obtained by summing
all the times to failures is 108,708 s. The unit of time considered is 5000
seconds of execution time, which leads to 22 units of time. This choice
is a trade-off. Indeed, if a small unit of time (2000-3000 s) were consid-
ered it would lead to several units of times during which zero failure
would be observed mainly during the last period of observation, and, on
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TABLE 10.1 Times to Failures and Laplace Factor for System S2

(In seconds of execution time)

Failure no. Time to failure Laplace factor Laplace factor

@) (seconds) (i) {(from 31)

1 191 0.00

2 222 -0.13

3 280 -0.31

4 290 -0.36

5 290 -0.36

6 385 -0.55

7 570 -0.93

8 610 -1.15

9 365 -0.97
10 390 -0.86
11 275 -0.64
12 360 —0.57
13 800 -0.99
14 1,210 -1.59
15 407 -14
16 50 -0.95
17 660 -1.07
18 1,507 -1.73
19 625 -1.67
20 912 -1.78
21 638 -1.72
22 293 -1.47
23 1,212 -1.75
24 612 -1.67
25 675 -1.64
26 1,215 -1.86
27 2,715 -2.6
28 3,551 -3.35
29 800 -3.19
30 3,910 -3.79
31 6,900 —4.68 0.00
32 3,300 -4.78 1.88
33 1,510 -4.62 2.07
34 195 —-4.28 2.62
35 1,956 —4.22 2,41
36 135 -3.89 2.88
37 661 -3.65 3.07
38 50 -3.33 3.47
39 729 -3.14 3.53
40 900 —2.99 3.50
41 180 -2.71 3.79
42 4,225 -3.19 2.44
43 15,600 —4.97 -0.59
44 0 —4.65 —-0.09
45 0 -4.34 0.38
46 300 —4.07 0.76
47 9,021 —4.77 -0.31
48 2,519 —4.72 -0.23
49 6,890 -5.06 -0.69
50 3,348 ~-5.06 -0.67
51 2,750 -5.00 -0.58
52 6,675 -5.25 -091
53 6,945 -5.48 -1.19
54 7,899 -5.73 -1.49
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the other hand, a larger unit of time would lead to a smaller number of
units of time and hence to less detailed information.

The first three columns of Table 10.2 list, respectively, the number of
time unit, the corresponding number of failures during this time unit,
and the Laplace factor evaluated using Eq. (10.11) or Eq. (10.13), which
are equivalent. The Laplace factor is also displayed in Fig. 10.10c and
shows a reliability decrease between unit times 7 and 9. Failure 31
occurred during unit of time 7, and failure 42 during unit of time 9. The
comparison of Fig. 10.10a and ¢ shows that the Laplace factor gives
similar results when considering failure intensity or times to failure.
Application of the Laplace test to failure data from the 7th unit of time
(last column of Table 10.2 and Fig. 10.10d) leads to results similar to
those obtained when considering data items from failure 31.

10.3.3 Typical results that can be drawn
from trend analyses

Trend analyses are a great help when it comes to appreciating the effi-
ciency of test activities and controlling their progress. They are partic-
ularly helpful for following up the software development. Indeed,
graphical tests are often used in the industry [Grad87, Ross87,

TABLE 10.2 Number of Failures Per Periods of 5000 s and Laplace
Factor for System 52

Unit of time Failure Laplace factor Laplace factor

(k) intensity ulk) {from 7)

1 12 0.00

2 7 -1.15

3 6 -1.47

4 2 -2.67

5 2 -3.28

6 1 -3.96

7 1 —4.40 0.00

8 4 -3.73 1.34

9 6 -2.66 1.85
10 1 -3.22 0.26
11 0 -3.95 -1.02
12 0 -4.56 -1.86
13 4 -3.90 -0.62
14 0 —4.46 ~1.42
15 2 -4.38 -1.19
16 0 -4,85 -1.81
17 2 -4.71 -1.48
18 1 -4.84 -1.61
19 1 —4.96 -1.71
20 0 -5.34 -2.17
21 1 -5.40 -2.17
22 1 -5.45 -2.17
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Vale88]-—even though they are referred to differently (e.g., descriptive
statistics or control charts).

Also worth pointing out here is that the role of the trend analysis is
only to draw attention to problems that might otherwise pass unno-
ticed until it is too late, thus providing an early warning likely to speed
up the search for a solution. Trend analysis can be used to enrich the
interpretation of someone who knows the software from which the data
are derived, as well as the development process and the user environ-
ment.

In the following, three typical situations are outlined: reliability
decrease, reliability growth, and stable reliability.

Reliability decrease at the beginning of a new activity is generally
expected and considered normal. Examples of such activities are

» New life cycle phase
» Change in the test sets within the same phase
» Addition of new users

® Activation of the system in a different profile of use

Also, reliability decrease may result from regression faults. Trend
analysis allows this kind of behavior to be noticed. If the duration of
the decrease period seems long, there may be cause for alarm. In some
situations, if it continues to decrease there may be some problems
within the software. Analyzing the reasons for this decrease as well as
the nature of the activated faults is of prime importance in these kinds
of situations. Such analysis may result in the decision to reexamine the
corresponding software part.

Reliability growth following reliability decrease is usually welcomed,
since it indicates that, after removal of the first faults, the correspond-
Ing activity reveals fewer and fewer faults. When calendar time is used,
mainly in operational life, sudden reliability growth may result from a
period of time during which the system is less used or not used at all;
it may also be due to some failures that are not recorded. When this is
noticed, particular care must be taken and, more important, the rea-
sons for this sudden increase have to be analyzed.

Stable reliability indicates that either (1) the software does not
undergo corrective maintenance or (2) the corrective actions performed
have no visible effect on reliability. When the software is under valida-
tion, stable reliability with almost no failures means that the corre-
sponding activity has reached a saturation: the application of the
corresponding test sets does not reveal new faults. One has to either
stop testing, introduce new test sets, or proceed to the next phase. More
generally, it is recommended that the application of a test set continue
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as long as it exhibits reliability growth and end when stable reliability
with almost no failures is reached. Thus, in practice, if stable reliabil-
ity has not been reached the validation team (and the manager) may
decide to continue testing before software delivery (since it will be
more efficient and cost-effective to do so) and to remove faults during
validation rather than during operation.

Finally, trend analyses may greatly help reliability growth models to
give better estimations, since they can be applied to data displaying
trends in accordance with their assumptions rather than blindly.
Applying reliability growth models blindly may lead to nonrealistic
results when the trend displayed by the data differs from that assumed
by the model. Failure data can be partitioned according to the trend:

m In case of reliability growth, most of the existing reliability growth
models can be applied.

m In case of reliability decrease, only models allowing an increasing
failure intensity can be applied.

m When the failure data exhibit reliability decrease followed by reli-
ability growth, an S-shaped model [Ohba84] can be applied.

» When stable reliability is noticed, a constant failure intensity model
can be applied (HPP model); reliability growth models are in fact not
needed.

10.3.4 Summary

In this section, we have presented a few trend tests and tried to keep
the presentation as simple as possible by skipping mathematical devel-
opments and giving graphical and practical interpretations. The
Laplace and the Hollander tests can be used as conventional statistical
tests with significance levels. However, the graphical interpretation of
the subadditive property and the link between the Laplace factor and
the subadditivity factor enable both local trend change and trend on
average to be identified at a glance. In practice, we will mainly plot the
Laplace factor and possibly the subadditivity factor in order to follow
up the software reliability. Processing of the failure data from system
S2 showed the benefit of using the Laplace factor to identify local trend
changes as well.

10.4 Application to Real Systems

This section is intended to illustrate the type of results that may be
expected from trend analysis during development and operational
phases, as well as from the application of reliability growth models.
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Since the previous section showed the link between the Laplace factor
and the subadditivity factor, we will use both. The aim of this section is
simply to illustrate some of the points introduced in the previous sec-
tion, and not to make detailed analyses of the data sets considered. For
further details about the systems considered, you may consult the pub-
lications referenced. We will analyze the trend of five data sets, some of
them being in the form of times to failures and the others being in the
form of failure intensity. In order to show the consistency of the results
derived from the various trend tests, more than one test will be applied
for some data sets.
The considered software systems are as follows:

1. System SS4 of [Musa79]
2. The system also considered in [Musa79] referred to as S27

3. The system corresponding to the switching system of section 2 in
[Kano91lal, called SS?

4. The so-called SS2 system, corresponding to the switching system
observed during validation and part of operational life {Kano93b]

5. The system corresponding to an avionic application, referred to as
SAV

For each one, we give the results of the trend analysis and comment on
the type of reliability growth models that could be (or has been) used.
The analyses are performed using SoRel, a tool for reliability analysis
and evaluation presented in App. A.

10.4.1 Software of system SS4

Failure data gathered on SS4 correspond to operational life. Applica-
tion of the arithmetical mean test in Fig. 10.11a shows that the mean
time to failure is almost constant: about 230,000 units of time. The cor-
responding Laplace factor given in Fig. 10.115 oscillates between —2
and 42, also indicating stable reliability for a significance level of 5
percent.

As for system S2 considered in Sec. 10.3, we evaluate the failure
intensity considering a unit of time of 10° seconds of execution time.
The application of Laplace test to the failure intensity (displayed in
Fig. 10.11c) also indicates stable reliability at the same significance
level. For this system, a constant failure rate (i.e., HPP model) is well
adapted to model the software behavior and is simpler to apply than a
reliability growth model. This is not surprising since the software was
in operational life without corrective maintenance. The behavior of the
software is thus similar to that of the hardware:
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Figure 10.11 Trend tests for 8S4. (a) Arithmetical mean of the times to failure. ()
Laplace factor of the times to failure. (¢) Laplace factor of the failure intensity.

m For the hardware, the repair actions are intended to replace the

failed part by another one which is identical.

m For nonmaintained software, the system is restarted with an input

pattern different from the one having led to failure.

In both cases the system’s ability to deliver a proper service is pre-

served (i.e., stochastic identity of the successive times to failure).
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10.4.2 Software of system $27

S27 is an example of systems that exhibit two phases of stable reliabil-
ity. The transition between them took place around the 24th failure, as
indicated in Fig. 10.12. This system was under test and the reasons of
this sudden change (which may be due to a singular behavior of the
software) must be investigated. Unfortunately, the published data did
not allow us to identify the reasons of this behavior. In this case, data
may be partitioned into two subsets, each one being modeled by a con-
stant failure rate: the failure rate of the second subset (from 24 to 42)
being lower than the failure rate of the first. If we remove failure data
up to failure 23 and again apply the Laplace test, the corresponding
factor shown in Fig. 10.12¢ confirms the stable reliability over [24—41],
except for two points.

Figure 10.12q and b illustrates the link between a graphical test (the
mean of the interfailure times) and the results of the Laplace factor.
Both of them point out the discontinuity in software behavior.

10.4.3 Software of system SS1

Trend tests accounting for the whole data set collected on this system
are displayed in Figs. 10.6 and 10.7. Applying the Laplace test sepa-
rately to each phase (ignoring data collected during the previous
phases) is illustrated in Fig. 10.13.

The following comments apply to both Figs. 10.6 and 10.13:

» Reliability decrease from % = 14 to k = 25 was induced by the changes
in the nature of the tests within the validation phase. This period
corresponds to the application of quality and performance tests after
functional tests in the previous period. This decrease is due to their
dynamic nature (traffic simulation) which has activated new parts of
the program.

® Transitions from validation to field test and from field test to opera-
tion did not give rise to a reliability discontinuity, which means that
the tests applied during the end of validation are representative of
operational conditions.

» Figure 10.6 indicates that from % = 55 up to £ = 70 reliability tends to
be stabilized: u(k) is almost constant, suggesting stable reliability.
However, when considering the trend results obtained for opera-
tional data only in Fig. 10.13 we notice in fact a reliability decrease
over this time interval. The difference in perception of the reliability
variation (from reliability growth to stable reliability or reliability
decrease) is related to the interval of time considered. When consid-
ering the whole data set, a relative stable reliability is observed, and
when considering only operational failure data, a relative reliability



428 Practices and Experiences

T
120000

100,000

80,000 -

60,000 -

40,000

'y

20,000
i number of failures

0+ttt
1 83 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
(a)

i: number of failures

19 21 23 25 27 29 31 33 35 37 39 #1

9 11 13 156 17

(b}

PR TR N N TR WY W W TRV S 1

O 'l I T ey El
24 26 28 30 32 34 36 38 4
41
(¢)

Figure 10.12 Trend tests for S27 considering the times to failure. (a) Arithmetical mean
of the times to failure. (b) Laplace factor of the times to failure. {¢) Laplace factor from
the 24th failure.

decrease is observed. It can also be noted that the trend change
points do not vary from Fig. 10.6 to Fig. 10.13.

s From %k = 70, the trend is reversed. This failure behavior is directly
related to the number of installed systems over the periods consid-
ered, during which about 12 systems were installed and the number
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Figure 10.13 Laplace factor of SS1 for each phase.

of failures reported by the users increased. By time unit 70, a new
generation of systems had been released and no additional former
system had been installed, which corresponds to the period of reli-
ability growth from time unit 70.

Applying the reliability growth models blindly to this data set would
have produced no significant results. However, taking into account the
increasing number of installed systems and using the trend analysis
results led to trustworthy predictions from reliability growth models.
These results [Kano91a] are in agreement with those observed later.

10.4.4 Software of system SS2

The subadditivity factor, 4,(k), for this system is given in Fig. 10.14.
SS2 displayed a reliability decrease during validation; reliability
growth took place during operational life only. This is confirmed by Fig.
10.15, where the subadditivity factor for operational life is applied to
the data collected during operation only. It can also be seen that
some reliability fluctuations took place starting from unit time 15; this
fluctuation is due to the introduction of new users. Clearly, no reliabil-
ity growth model can be applied during validation. Nonetheless, an
S-shaped model can be applied to the whole data set. Also, any reliabil-
ity growth model with a decreasing failure rate can be applied to the
data collected during operation (from unit of time 9) [Kano93b].

10.4.5 SAV

We consider the data collected during 70 units of time including the
end of validation and operational life. Only a few failures were discov-
ered during operation (which started at unit time 28), and even these
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Figure 10.15 Subadditivity factor for SS2 considering each phase separately.
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failures were detected by the software manufactu: »r during introduc-
tion of new functionalities (specification changes). The Laplace factor
for this system is given in Fig. 10.16. The reliability decrease around
the 24th unit of time is due mainly to the introduction of new versions
corresponding to changes in the specifications. It can be seen that a sig-
nificant reliability improvement took place during operation (when
considering the whole data set).

10.5 Extension to Static Analysis
10.5.1 Static analysis conduct

It is well known that software fault-fixing in the earlier development
phases is much less expensive than fault-fixing at a later stage of
development and during operation [Boeh81]. It is also well known that
static analysis (carried out either by means of walk-through or code
review or inspections) substantially reduces the corrective mainte-
nance. Thus it is important to provide the software developer with
some statistical criteria to guide the decision to drop from one phase to
the following phase of the inspection process or testing.

The figures published in [Faga76, Ross87, Bush90, and Saye90] show
that, for systems undergoing thorough walk-throughs or inspections,
the majority of faults are detected before software execution (75 to 95
percent of the faults being found before software testing). For these
systems, the analysis of data collected during testing can be advanta-
geously preceded by analysis performed on data related to the trouble
reports recorded during walk-throughs or inspections.

Generally, walk-throughs and code review vary greatly in terms of reg-
ularity and thoroughness, whereas inspections have well-established

at 1
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Figure 10.16 Laplace factor for the observed failures of SAV,
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and rigorous procedures [Faga76]. During inspections, exit from one
operation to the following one is based on criteria that are checkpoints in
the development process through which every programming project
must pass. The sets of exit criteria are defined for each project and
should be as objective as possible so as to be repeatable [Faga86]. For
walk-throughs, such criteria do not exist and exit from the different
operations is left to responsible judgment.

Faults detected during static analysis of the code and during testing
in the absence of static analysis are faults located in the code; using the
same approach in both phases seems natural. For design-level inspec-
tions, even though the nature of the detected faults may differ from
those detected later, data analysis may be conducted as the analysis of
failure reports recorded during testing and operation. Inspection
progress can thus be monitored using trend analysis results (in addi-
tion to the exit criteria already used for exit between operations)* as
for testing. However, due to the differing nature of the faults detected
during the various inspection levels (or phases), each level has to be
monitored separately to handle data of the same nature (note that this
is common practice when processing data from different test phases).

As far as we know, statistical processing of information that can be
derived from troubles reported during inspection or walk-through
phases is seldom used to guide the management of these phases; the
work published in [Grad86] constitutes an exception. Generally, these
data are either processed together with data from software testing by
application of reliability growth models, as carried out in [Ross89], or
processed by a tracking model based on the results related to previous
similar projects as in [Kan91] in order to approximate the final quality
index of the software and not to guide its management as proposed here.

Theoretical aspects and practical results presented in Secs. 10.2 and
10.3 can thus be adapted to faults detected by static analysis. Data in
the form “number of faults detected per unit of time” is better suited to
these phases, since the supplier is more interested in the process of
removing faults than in evaluating intervals between two fault detec-
tions. The choice of unit of time duration is determined by the duration
of the inspection phases and the number of faults detected. The unit of
time may range from a few hours to one day when several faults are
detected during such periods, or a few days when less faults are
detected; and the unit of time can be changed from one phase to the

* It is worth noting that exit criteria for software inspection and monitoring criteria
using trend tests are not contradictory. The first one has to be applied to internal opera-
tions within an inspection level, whereas the second constitutes a criterion based on the
number of troubles detected by this activity and helps make the decision to exit the
inspection level considered.




Trend Analysis 433

next. However, since the software is not executed during inspection,
talking about reliability growth or decrease is meaningless. We are
interested in the evolution of the number of troubles reported versus
time and not in the evolution of the interfailure times or number of fail-
ures. Nevertheless we will abusively use “reliability growth” (respec-
tively, decrease) to characterize situations where the number of trouble
reports is decreasing in time (respectively, increasing).

10.5.2 Application

Consider again SAV, the software of the avionic application studied in
the previous section. For this system, troubles detected during specifi-
cation and code review have been recorded in trouble reports analo-
gous to failure reports. Since the system specifications kept changing
during the life cycle, trouble reports were drawn up even when the sys-
tem was 1n operation (while adding new parts to the software). For this
system, more than 50 percent of faults were detected by specification
and code review.

The Laplace factor corresponding to the trouble reports is given in
Fig. 10.17 which, as in the case of software execution, reveals an almost
steady reliability growth from unit of time 16. Reliability fluctuation at
the beginning is due to the review of new specifications and the corre-
sponding software code. From unit of time 25, it is interesting to note
that the very local fluctuations of the Laplace factor corresponding to
trouble reports (indicated by the arrows in Fig. 10.18) are also followed
by local fluctuations of the Laplace factor corresponding to software
failures. The time lag corresponds to the time interval between the
review of the new part of the software (either specification or code) and
the execution (testing) of this part of the software.

10.6 Summary

In this chapter, we have characterized reliability growth using the
notion of the subadditive property. Then a graphical interpretation of
this property was derived and we have shown the equivalence between
this property and the Laplace factor, thus allowing for the Laplace test
to be extended to local trend-change identification.

We have shown (1) that trend analyses constitute a major tool during
the software development process, from static analysis to system inte-
gration and (2) how the results can guide the project manager to con-
trol the progress of the development activities and even to make the
decision to reexamine the software for specific situations. Extension of
trend analyses to trouble reports from static analysis is all the more
useful as the majority of faults are detected by design and code inspec-
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Figure 10.18 Laplace factor for the trouble reports and for the
observed failures related to SAV.

tion; monitoring the inspection activities is thus of prime importance in
these situations.

Trend analyses are also helpful when reliability evaluation is
needed. They allow periods of reliability growth and reliability
decrease to be identified in order to apply reliability growth models to
data exhibiting trends in accordance with their modeling assumptions.
Trend analysis and reliability growth models are part of a global
method for software reliability analysis and evaluation which is pre-
sented in [Kano88, Kano93b] and which has been successfully applied
to data collected on real systems [Kano87, Kano91a].
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Problems

10.1 The table in Fig. 10.19 gives the successive interfailure times observed
during the validation test of an application software (read from left to right).
Which trend tests can you apply to this data set? Apply at least one of them.
Does this curve or the results of the trend test application reveal a possible
abnormal behavior?

10.2 Assuming that Fig. 10.19 represents the observed failure intensity (num-
ber of failures per week), answer the same questions as in Prob. 10.1.

10.3 The Laplace factor calculated from the failure intensity data collected
during testing is plotted in Fig. 10.20. Identify the various periods of reliability
growth/decrease. Can you think of some reasons for this reliability decrease?
Comment on this and recommend one or more reliability growth models which
could be applied according to the trend.

10.4 After three months of software testing without specification changes,
the observed failure intensity is given in Fig. 10.21. Identify the period(s) of
reliability decrease. What could be the reasons for this decrease? (Give some
reasons that seem acceptable from a tester’s point of view, and others that
could help improve the validation procedures.)

10.5 Repeat Prob. 10.4 assuming two new versions of the software have been
introduced due to specification changes. Locate approximately the times of the
introduction of the new versions. Comment on this.

10.6 In the text (Sec. 10.2.2), we have shown how Eq. (10.3) implies Eq. (10.5)
in the case where K is even. Show this implication when K is odd.

Figure 10.19
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Figure 10.20
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Failure intensity

month

Figure 10.21

10.7 The observed failure intensity during the last six months of software
testing is given in Fig. 10.22a (number of failures per week). It is assumed that
there are no quantified reliability objectives. Our aim in this exercise is to use
qualitative and informal criteria from trend test results and the observed fail-
ure intensity to guide the development process. The informal criteria for soft-
ware delivery is the following: “the software has reached a stable reliability
behavior with a few failures per week—more precisely, less than 10 failures per
month.”

a. Plot the failure intensity and the corresponding Laplace factor. Deliv-
ery of the software is planned for the end of the year. Does this aim
seem reachable?

b. The failure intensity observed during the following three months
(months 7 to 9) is given in Fig. 10.22b (number of failures per week).
Comment about the trend. Do you think that it is still reasonable to
plan delivery for the end of the year?

c. The failure intensity observed during the following three months
(months 10 to 12) is given in Fig. 10.22¢ (number of failures per
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Figure 10.22(a)
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Figure 10.22(c)
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week). At the end of the 10th month do you think that it is still rea-
sonable to plan delivery for the end of the year? Plot the overall fail-
ure intensity and the Laplace factor. What could be the reasons for
the failure intensity increase at the beginning of the last quarter?

10.8 The average failure intensity observed during four weeks of testing is
{assuming seven working days):

5 failures per day the first week

3 failures per day the second week

2 failures per day the third week
0.2 failures per day the fourth week

Plot the failure intensity and the cumulative number of failures. Show that the
latter is subadditive over the considered period. Plot the Laplace factor.

10.9 After 12 weeks of testing, the observed failure intensity can be approxi-
mated as follows:

®» For0<t<3,ht)=2+3t
s For3<t<7, h(#)=17-2¢
For7<t<9,h(t)=10-1¢
m For9<t<12, h(t)=1

Plot the failure intensity and the cumulative number of failures. What about
the subadditive property? Locate approximately the region of trend change.
Plot the Laplace factor.

10.10 The failure intensity (i.e., the number of failures per week) observed
during the validation of a software system is given in Fig. 10.23 (read from left
to right). Plot the failure intensity and the Laplace factor. What conclusions
can be drawn for the trend? Partition the data according to the trend and plot
the Laplace factor for the subset displaying reliability growth.
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Figure 10.23
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