Efficient Layout Hotspot Detection via Binarized Residual Neural Network

Yiyang Jiang¹, Fan Yang¹*, Hengliang Zhu¹, Bei Yu³, Dian Zhou², Xuan Zeng¹*

¹State Key Lab of ASIC & System, Microelectronics Department, Fudan University ²University of Texas at Dallas ³Chinese University of Hong Kong

- What you see \neq what you get
- RETs: OPC, SRAF, MPL
- Still exists hotspots: low fidelity patterns
- Lithography simulation: time consuming

■ Characterize the hotspots as explicit patterns and identify the hotspots by matching these patterns

- Build implicit models by learning from existing training data
	- SVM, Bayesian, Decision-tree, Boosting, NN, ...
- [Ding+,ASPDAC'11] [Yu+,DAC'13] [Matsunawa+,SPIE'15] [Zhang+,ICCAD'16] [Wen+,TCAD'14]
- Possible to detect the unseen hotspots but may cause false alarm issues

Preliminaries

■ Drawback: not storage and computational efficient

Pattern Matching-based Hotspot Detection

- Belongs to ML-based hotspot detection but different from conventional ML models:
	- Feature Crafting v.s. Feature Learning
	- Stronger scalability

■ [Yang+,DAC'17]

Machine Learning based Hotspot Detection

The ratio of correctly predicted hotspots among the set of actual hotspots. $\#TP$

 $Accuracy =$ $\#TP + \#FN$

The number of incorrectly predicted non-hotspots. $False$ Alarm = # FP

Given a dataset that contains hotspot and nonhotspot instances, train a classifier that can maximize the $accuracy$ and minimize the $false$ alarm.

Deep Learning based Hotspot Detection

- Binarized neural network (BNN):
	- Extremely quantized to 1 bit
	- Inherently suitable for hardware implementation
- Layout patterns are binary images
	- BNN might be suitable for that

Definition

Let W be the kernel which is an n -element vector and X be the vector of the corresponding block in the input tensor, $n = w_k \times h_k$. Let W_B , X_B be the binarized kernel and input vector and α_W , α_X be the corresponding scaling factors. Here $W, X \in \mathbb{R}^n$, $W_B, X_B \in \{-1, +1\}^n$ and $\alpha_W, \alpha_X \in \mathbb{R}^+$.

Problem2: Binarization

Given the kernel and input vector W , X , find best W_B , X_B , α_W , α_X that minimizes the binarization loss L_i . $L_i(W_B, X_B, \alpha_W, \alpha_X) = ||W \bigodot X - \alpha_W W_B \bigodot \alpha_X X_B||^2$ where ⊙ means inner product.

■ Solving the minimization problem:

 $W_B^* = sign(W)$, $X_B^* = sign(X)$

Input: (\mathcal{T}_0, Y) : a minibatch of input tensors and labels; 1: $l(Y, Y_{out})$: loss function; 2: W^t : current real-valued weight; 3: L: number of layers; 4: *n*: kernel size of layers; 5: η^t : current learning rate; **Output:** W^{t+1} : updated real-valued weight; η^{t+1} : updated learning rate. 6: 1. Forward Process: 7: for $k = 1$ to L do $B_k^t =$ BinarizeWeight (W_k^t) 8: \mathcal{T}_{k+1} = BinarizeInput(BatchNorm (\mathcal{T}_k)) $\otimes \mathcal{B}_k^t$ 9: 10: end for 11: $Y_{out} = \mathcal{T}_{L+1}$ 12: 2. Backward Process: 13: for $k = L$ to 1 do $\frac{\partial l}{\partial \mathcal{T}_k}$ = BinaryBackward($\frac{\partial l}{\partial \mathcal{T}_{k+1}}$, \mathcal{T}_k) 14: $\frac{\partial l}{\partial \mathcal{B}_k^t}$ = BinaryBackward($\frac{\partial l}{\partial \mathcal{T}_{k+1}}, \mathcal{B}_k^t$) $15:$ $\frac{\partial l}{\partial W_i^t} = \frac{1}{n_l} (1 + ||W_k^t||_{l1} \mathbf{1}_{||W_k^t|| < 1}) \frac{\partial l}{\partial \mathcal{B}_i^t}$ 16: $17:$ end for 18: 3. Update Parameters: 19: $W^{t+1}, \eta^{t+1} = \text{Update}(W^t, \frac{\partial l}{\partial W^t}, \eta^t)$ 20: **return** W^{t+1} , η^{t+1}

■ Data preprocessing

Definition: Accuracy

Definition: False Alarm

- Problem with deep neural networks:
	- Enormous computational and storage consumption
- To alleviate this problem:
	- Parameter Quantization
	- 32-bit floating-point weights not necessary: quantized to fixed-point of 8-bit, 3-bit, 1-bit…
	- [Arora+,ICML'14] [Hwang+,SiPS'14] [Soudry+,ANIPS'14] [Rastegari+,ECCV'16]

Problem Formulation

Problem1: Hotspot Detection

- Propose a BNN-based architecture to speed up the neural networks in hotspot detection
- Our architecture outperforms previous hotspot detectors and achieves an 8× speedup over the best deep learningbased hotspot detector.

Binarization Approach

Training BNN

Gradient for $sign$ function [Hubara, 2016]

 $disign(x)$ ∂x $= 1_{\|W\| < 1}$

■ Back propagation through the Binarized Layer

Definition: ODST

Abbreviation of Overall Detection and Simulation Time. The sum of the lithography simulation time for layout patterns detected as hotspots (including real hotspots and false alarms) and the learning model evaluation time.

where t_{ls} is lithography simulation time per instance and t_{ev} is the model evaluation time per instance. $\overline{ODST} = (\# FP + \# TP)$ t_{ls} $+$ $\left(\#TN + \# FN + \# FP + \# TP\right)t_{ev}$

Network Architecture

Residual block-based architecture

Typical BNN block structure

- - Down-sampled to 128×128
- Training hyper-parameters
	- Batch size:128
	- Learning rate: Initial 0.15, exponentially decay each time loss plateaus
	- Optimizer: NAdam optimizer [Dozat, 2016]
	- Initializer: Xavier initializer [Glorot, 2010]

Parameter Quantization

Experimental Results

■ Benchmark: ICCAD 2012 Contest

■ Performance Comparisons with Previous Hotspot Detectors

■ Experimental Results on ICCAD 2012 Contest Conclusions

- Accuracy improved from 84.2% to 99.2%
- Least False Alarms: 2787
- Lowest Runtime: 60s, 8x faster

$$
\alpha_W^* = \frac{1}{n} ||W||_{l1}, \ \alpha_X^* = \frac{1}{n} ||X||_{l1}
$$

■ The estimated weight and corresponding input vector \widetilde{W} , \widetilde{X} are:

> $\widetilde{W} =$ 1 \overline{n} $sign(W)$ $\|W\|_{l1}$ $\tilde{X} =$ 1 \overline{n} $sign(X)$ $\left\Vert X\right\Vert _{l1}$

$$
\frac{\partial l}{\partial W} = \frac{\partial l}{\partial \widetilde{W}} \frac{\partial \widetilde{W}}{\partial W}
$$

=
$$
\frac{\partial l}{\partial \widetilde{W}} \frac{\partial (\frac{1}{n} ||W||_{l1} sign(W))}{\partial W}
$$

=
$$
\frac{\partial l}{\partial \widetilde{W}} (\frac{1}{n} + \alpha_W^* \mathbf{1}_{||W|| < 1})
$$

Algorithm 1 Training a BNN

- [Yu+,ICCAD'14] [Nosato+,JM3'14] [Kahng+,SPIE'06] [Su+,TCAD'15] [Wen+,TCAD'14] [Yang+,TCAD'17]
- Fast but hard to detect unseen patterns