Layout Hotspot Detection with Feature Tensor Generation and Deep Biased Learning

Haoyu Yang¹, Jing Su², Yi Zou², Bei Yu¹, Evangeline F. Y. Young¹ ¹CSE Department, Chinese University of Hong Kong, Shatin, Hong Kong ²ASML Brion Inc., CA 95054, USA

- ► RET: OPC, SRAF, MPL
- Still hotspot: low fidelity patterns
- Simulations: extremely CPU intensive
- Hotspot Detection: Predicting patterns or regions with low printability

The Overall Detection Flow

Biased Learning Algorithm

Recall the training procedure

Minimize difference with ground truths

 $\mathbf{y}_{n}^{*} = [1, 0], \ \mathbf{y}_{h}^{*} = [0, 1].$ $\int N$, if **y**(0) > 0.5 $\mathcal{H}, \text{ if } \mathbf{y}(1) > 0.5$ Solutions to increase the detection accuracy 1. Shifting decision boundary

 $\mathbf{F} \in \begin{cases} \mathcal{N}, \text{ if } \mathbf{y}(0) > 0.5 + \lambda \\ \mathcal{H}, \text{ if } \mathbf{y}(1) > 0.5 - \lambda \end{cases}$

Straightforward At the cost of much false alarm penalties 2. Biased ground truth $\mathbf{y}_n^* = [1 - \epsilon, \epsilon]$

Preliminaries and Related Works

Accuracy

The ratio between the number of correctly predicted hotspot clips and the number of all real hotspot clips.

False Alarm

The number of non-hotspot clips that are predicted as hotspots by the classifier.

Pattern matching based hotspot detection

Define the Convergence

We refer the convergence as the state when the neural network achieves satisfactory performance on the validation set.

Feature Tensor Extraction

Feature Extraction

- Dimension reduction to speedup hotspot detection flow
- Density-based feature: Local pattern density affects the layout attribute
- CCS-based feature: Include prior knowledge of lithography
- Flatten into 1-D vector
- Spatial information loss

The Feature Tensor

Because the spatial relationships of mask layout patterns are important to determine the hotspot regions, it is necessary to consider layout features with higher dimension.

Extraction Procedure

- Sacrifice non-hotspot loss
- Reduce the prediction score of the non-hotspot samples when they are greater than $1-\epsilon$
- Do not affect the samples that are close to the decision boundary
- Expect to have minor false alarm penalties

Assumption of the Biased Ground Truth

Given a trained convolutional neural network with ground truth $\mathbf{y}_n^* = [1, 0]$ and $\mathbf{y}_{h}^{*} = [0, 1]$ and hotspot detection accuracy a on a given test set. Fine tune the network with $\mathbf{y}_n^{\epsilon} = [1 - \epsilon, \epsilon], \epsilon \in [0, 0.5)$, and obtain the hotspot detection accuracy a' of the new model. We have $a' \ge a$.

The training procedure

Algorithm: Biased Learning

Input: {**F**_t}, {**F**_v}, ϵ , $\delta\epsilon$, t, **W**, λ , α , k, \mathbf{y}_{h}^{*} , \mathbf{y}_{n}^{*} ; 1: $i \leftarrow 0, \epsilon \leftarrow 0, \mathbf{y}_h^* \leftarrow [0, 1], \mathbf{y}_n^* \leftarrow [1 - \epsilon, \epsilon];$ 2: if i < t then

- 3: $f_{\epsilon} \leftarrow \text{MGD}(\mathbf{W}, \lambda, \alpha, k, \mathbf{y}_{n}^{*}, \mathbf{y}_{h}^{*});$ 4: $i \leftarrow i + 1, \epsilon \leftarrow \epsilon + \delta \epsilon;$
- 5: **end if**

Effectiveness of the Biased Learning Algorithm

- Fast and accurate
- [Yu+,ICCAD'14] [Nosato+,JM3'14] [Su+,TCAD'15]
- Fuzzy pattern matching [Wen+,TCAD'14]
- Hard to detect non-seen pattern

Machine learning based hotspot detection

- Predict new patterns
- Decision-tree, ANN, SVM, Boosting, Bayesian, ...
- [Ding+,TCAD'12][Yu+,JM3'15][Matsunawa+,SPIE'15][Yu+,TCAD'15][Zhang+,ICCAD'16][Wen+,TCAD'14]
- Feature reliability and model scalability

Why Deep Learning?

Feature Crafting v.s. Feature Learning \blacktriangleright Manually designed feature \rightarrow Inevitable information loss

 $\mathbf{C}_{i,j}^* = [\mathbf{D}_{i,j}(0,0), \mathbf{D}_{i,j}(0,1), \mathbf{D}_{i,j}(1,0), ..., \mathbf{D}_{i,j}(B,B)]^\mathsf{T}$

 $\begin{bmatrix} \mathbf{C}_{n1} \ \mathbf{C}_{n2} \ \mathbf{C}_{n3} \ \dots \ \mathbf{C}_{nn} \end{bmatrix}$

4. Discarding High Frequency Components

Feature Tensor Properties

► k-channel hyper-image

The above neural network is trained with $\epsilon = 0$ to obtain an initial model, and is fine-tuned with $\epsilon = 0.1, 0.2, 0.3$ on Industry3. Then we perform boundary shifting

on initial model to achieve

three fine-tuned models.

the same test accuracy with

-Shift-Boundary-Bias

Experimental Results

- Using Python on Intel Xeon Platform with Nvidia K620 Graphic card. Based on Tensorflow library
- Benchmarks from ICCAD Contest 2012 and Industry

Benchmark Statistics

Ronchmarke	Training Set		Testing Set	
Dencimains	HS#	NHS#	HS#	NHS#
ICCAD	1204	17096	2524	13503
Industry1	34281	15635	17157	7801
Industry2	15197	48758	7520	24457
Industry3	24776	49315	12228	24817

▶ Learned feature→Reliable

2. Scalability

- More pattern types
- More complicated patterns
- Hard to fit millions of data with simple ML model

3. Mature Libraries

- Caffe [Jia+,ACMMM'14]
- Tensorflow [Martin+,TR'15]

Deep Learning Issues on Hotspot Detection

- Layout image size is large ($\approx 1000 \times 1000$)
- Compared to ImageNet ($\approx 200 \times 200$)
- Associated CNN model is large
- Not storage and computational efficient

Hotspot detection accuracy is more important

- Hotspot \rightarrow Circuit Failure
- False Alarm \rightarrow Runtime Overhead
- Consider methods for better trade-off between accuracy and falsealarm

- Compatible with CNN
- Storage and computional efficiency

The Architecture

The CNN contains two convolution stages and two fully connected layers. Each convolution stage consists of two convolution layers and one max pooling layer. 50% dropout is applied in fc1 during training.

Layer	Kernel Size	Stride	Output Node #
conv1-1	3	1	$12 \times 12 \times 16$
conv1-2	3	1	$12 \times 12 \times 16$
maxpooling1	2	2	$6 \times 6 \times 16$
conv2-1	3	1	$6 \times 6 \times 32$
conv2-2	3	1	$6 \times 6 \times 32$
maxpooling2	2	2	$3 \times 3 \times 32$
fc1	N/A	N/A	250
fc2	N/A	N/A	2

Convolution + ReLU Layer Max Pooling Layer Full Connected Node

- ICCAD contains all the 28nm clips in the original contest benchmark
- Industry1-Industry3 are from industry design and correspond to difference **OPC** level

Result comparison with two state-of-the-art hotspot detectors

Conclusions

- Propose the feature tensor representation of layout clips
- Propose the biased learning algorithm
- Demonstrate the feasibility of deep learning solutions for advanced DFM research

Haoyu Yang – CSE Department – Chinese University of Hong Kong – Shatin, Hong Kong

E-Mail: hyyang@cse.cuhk.edu.hk

WWW: http://www.cse.cuhk.edu.hk