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Motivation and Problem

I Layer assignment assigns segments to metal layers after 2-D global routing.
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Figure: General Global Routing Flow.

Wires and vias on top layers are wider and much less resistive.
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M10 1.00
M9 1.00
M8 3.26
M7 3.26
M6 3.26
M5 3.26
M4 5.58
M3 23.26
M2 19.30
M1 23.26

Figure: The cross section of IC interconnection stack in advanced technology nodes. The normalized
resistance values of different metal layers are listed in the table (source: [1] Hsu. et al. ICCAD’2014 [2]
Yu. et al. ICCAD’2015).

Timing critical segments prefer higher metal layers.
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Figure: Incremental layer assignment example, (a) initial assignment, (b) assignment after timing
optimization (source: [2] Yu. et al. ICCAD’2015).

Problem: Critical Path Layer Assignment
Given a 3-D grid graph, edge and layer information, initial routing and layer
assignment, and set of critical nets, layer assignment re-assigns layers among
critical and non-critical nets onto layers in order to minimize their maximum path
timing and satisfy the edge capacity constraints.

Model Description

Elmore Delay Model
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Figure: Net critical path timing considering segment and via delays.

I Segment delay depends on its assigned layer and its downstream capacitance,
while via delay depends on the connecting two segments and their assigned
layers.

Capacity Constraints
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Figure: Example illustrations of capacity constraints, (a) edge capacity, (b) via capacity.

I Edge capacity constraint – the maximum number of routing tracks along the edge.
I Via capacity constraint – the maximum number of allowable vias in this grid.

CPLA Algorithms

ILP Formulation

min
∑

i∈S(Nc)

L∑
j

ts(i , j) · xij +
∑

i ,p∈Sx(Nc)

L∑
j

L∑
q

tv(i , j ,p,q) · yijpq

Binary variables: xij represents segment i assigned on layer j ;
yijpq represents the via connecting segment i and p from layer j to q, which is equal
to the product of xij and xpq.

Constraints
Each released segment has to be assigned.

∑
j

xij = 1; ∀i ∈ S(Nc) j ∈ L

Edge capacity constraint:

∑
i∈S(e)

xij ≤ cape(j); ∀e ∈ E

Via capacity constraint:

∑
(i ,p)∈Sx(Nc)

yijpq + nv · (xij + xpq) ≤ capg(l), ∀l , j < l < q.

Self-adaptive Quadruple Partition

K × K Partition supports parallel scheme.
I Incremental layer assignment can be solved in each partition separately.
I Multithreading is applied to provide further speed-up.
I The most recent updated results by peer threads can be taken into accounts.

Figure: Example of grid partition, (a) nets partition, (b) routing density for benchmark adaptec1 by
NCTU-GR.

Self-adaptive Quadruple Partition
I Uniform division by K × K may lead to unbalanced resource allocation.
I Self-adaptive partition provides similar number of segments in each partition.
I Through multi-threading, each thread deals with a workload in a well-balanced

manner.
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Figure: Sub-grid partition illustration, (a) sub-grid partition, (b) sub-grid partition tree.

Semidefinite Programming Relaxation

The proposed self-adaptive partition provides an opportunity for further speed-up.
Semidefinite programming (SDP) is solvable in polynomial time while providing a
theoretically better solution than Linear Programming (LP).

I The objective function:
min(T · X ).

I Matrix T - |S · L|-dimension symmetric matrix representing timing costs
I Matrix X - |S · L|-dimension symmetric matrix representing variables

T =

 ts(i , j) . . . tv(i , j ,p,q)
. . . . . . . . .

tv(i , j ,p,q) . . . ts(p,q)

 , X =

 xij . . . yijpq
. . . . . . . . .
yijpq . . . xpq

 .

Semidefinite Programming Example
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Figure: Example of layer assignment through solving SDP.

I Cost matrix T and solution matrix X of this example

T =


35.2 0 5.8 6.7

0 15.6 2.3 3.5
5.8 2.3 47.8 0
6.7 3.5 0 23.9

 , X =


0.01 0 0 0

0 0.99 0.09 0.89
0 0.09 0.10 0
0 0.89 0 0.90


I Segment S2 overlaps with other segments, resulting in continuous solutions.
I Therefore, post mapping is required to provide integer solutions.

Overall Algorithm Flow

Post mapping transfers continuous solutions into discrete assignment result.
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Figure: Iterative incremental layer assignment algorithm flow.

Experimental Results

Experimental Setup
I CPLA implemented in C++, Gurobi as the MILP solver and CSDP as the SDP

solver
I Linux machine with 2.9GHz Inter(R) Core and 192GB memory
I Initial routing and layer assignment result from NCTU-GR and NVM tool

Comparison on layer assignment result with TILA-0.5%
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Figure: Comparison among different strategies, (a) Avg(Tcp), (b) Max(Tcp), (c) via number, (d) via
violations.

I Average delay improved by 14% while maximum delay improved by 4%.
I Via violations improved by 10% with the similar number of vias.

Performance comparison with ILP
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Figure: Performance comparison with ILP, (a) Avg(Tcp), (b) Max(Tcp).

I Both average delay and maximum delay of SDP achieve the similar performance.

Run-time comparison
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Figure: Run time comparison among different strategies, (a) with ILP, (b) with TILA.

I The run-time of SDP is lower than ILP but slower than TILA [2] (Yu. et al.
ICCAD’2015).

Partition size impact on performance
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Figure: Comparison among different partition sizes, (a) Avg(Tcp), (b) Max(Tcp), (c) run time.

I For different partition sizes, similar performance can be achieved.
I When partition size is equal to 10, the lowest run-time can be obtained.
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