
Incremental Layer Assignment for Critical Path Timing
Derong Liu, Bei Yu†, Salim Chowdhury‡ and David Z. Pan

ECE Dept., University of Texas at Austin; †CSE Dept., Chinese University of Hong Kong; ‡Oracle Corp.

Motivation and Problem

I Layer assignment assigns segments to metal layers after 2-D global routing.

2D Global Routing

Layer Assignment 3D Global Routing

Figure: General Global Routing Flow.

Wires and vias on top layers are wider and much less resistive.

Wire

Via

Metal 1

Lower
Metal Layers

Intermediate
Metal Layers

Top
Metal Layers

Layer Resistance
M10 1.00
M9 1.00
M8 3.26
M7 3.26
M6 3.26
M5 3.26
M4 5.58
M3 23.26
M2 19.30
M1 23.26

Figure: The cross section of IC interconnection stack in advanced technology nodes. The normalized
resistance values of different metal layers are listed in the table (source: [1] Hsu. et al. ICCAD’2014 [2]
Yu. et al. ICCAD’2015).

Timing critical segments prefer higher metal layers.

n1

n2

n3 n1
n2

n3

Non-Critical Nets: n1 n2 ; Critical Net: n3

(a) (b)

Figure: Incremental layer assignment example, (a) initial assignment, (b) assignment after timing
optimization (source: [2] Yu. et al. ICCAD’2015).

Problem: Critical Path Layer Assignment
Given a 3-D grid graph, edge and layer information, initial routing and layer
assignment, and set of critical nets, layer assignment re-assigns layers among
critical and non-critical nets onto layers in order to minimize their maximum path
timing and satisfy the edge capacity constraints.

Model Description

Elmore Delay Model

s3

s2s1

s4

v1

Maximum Path Delay:
t(s1) + t(s2) + t(s3) + t(s4) + t(v1)

Figure: Net critical path timing considering segment and via delays.

I Segment delay depends on its assigned layer and its downstream capacitance,
while via delay depends on the connecting two segments and their assigned
layers.

Capacity Constraints

M3

M2
Edge capacity constraint

Via capacity violation
when cap(e) = 4

Figure: Example illustrations of capacity constraints, (a) edge capacity, (b) via capacity.

I Edge capacity constraint – the maximum number of routing tracks along the edge.
I Via capacity constraint – the maximum number of allowable vias in this grid.

CPLA Algorithms

ILP Formulation

min
∑

i∈S(Nc)

L∑
j

ts(i , j) · xij +
∑

i ,p∈Sx(Nc)

L∑
j

L∑
q

tv(i , j ,p,q) · yijpq

Binary variables: xij represents segment i assigned on layer j ;
yijpq represents the via connecting segment i and p from layer j to q, which is equal
to the product of xij and xpq.

Constraints
Each released segment has to be assigned.

∑
j

xij = 1; ∀i ∈ S(Nc) j ∈ L

Edge capacity constraint:

∑
i∈S(e)

xij ≤ cape(j); ∀e ∈ E

Via capacity constraint:

∑
(i ,p)∈Sx(Nc)

yijpq + nv · (xij + xpq) ≤ capg(l), ∀l , j < l < q.

Self-adaptive Quadruple Partition

K × K Partition supports parallel scheme.
I Incremental layer assignment can be solved in each partition separately.
I Multithreading is applied to provide further speed-up.
I The most recent updated results by peer threads can be taken into accounts.

Figure: Example of grid partition, (a) nets partition, (b) routing density for benchmark adaptec1 by
NCTU-GR.

Self-adaptive Quadruple Partition
I Uniform division by K × K may lead to unbalanced resource allocation.
I Self-adaptive partition provides similar number of segments in each partition.
I Through multi-threading, each thread deals with a workload in a well-balanced

manner.

……

……

Figure: Sub-grid partition illustration, (a) sub-grid partition, (b) sub-grid partition tree.

Semidefinite Programming Relaxation

The proposed self-adaptive partition provides an opportunity for further speed-up.
Semidefinite programming (SDP) is solvable in polynomial time while providing a
theoretically better solution than Linear Programming (LP).

I The objective function:
min(T · X).

I Matrix T - |S · L|-dimension symmetric matrix representing timing costs
I Matrix X - |S · L|-dimension symmetric matrix representing variables

T =

 ts(i , j) . . . tv(i , j ,p,q)
.

tv(i , j ,p,q) . . . ts(p,q)

 , X =

 xij . . . yijpq
.
yijpq . . . xpq

 .

Semidefinite Programming Example

�

�
�

�

S1

S2

Figure: Example of layer assignment through solving SDP.

I Cost matrix T and solution matrix X of this example

T =


35.2 0 5.8 6.7

0 15.6 2.3 3.5
5.8 2.3 47.8 0
6.7 3.5 0 23.9

 , X =


0.01 0 0 0

0 0.99 0.09 0.89
0 0.09 0.10 0
0 0.89 0 0.90


I Segment S2 overlaps with other segments, resulting in continuous solutions.
I Therefore, post mapping is required to provide integer solutions.

Overall Algorithm Flow

Post mapping transfers continuous solutions into discrete assignment result.

Select nets containing
maximum timing paths

Mapping Flow

Grid File

N

Y

End

Solve SDP Formulation

K x K Division

Quadruple Partition

Size <= Limit?
N

Post mapping strategy

Converge?

Select one edge with
critical segments

Finish all edges?

Find the current highest
layer j to assign segments

cap(j) = allowable number
of segments to assign

Finish all layers?

Assign these segments
on layer j of edge

Y

 Select cap(j) segments
with highest solutions

Y

Y

N

N

Initial
Routing File

Partition Flow

Exit

Figure: Iterative incremental layer assignment algorithm flow.

Experimental Results

Experimental Setup
I CPLA implemented in C++, Gurobi as the MILP solver and CSDP as the SDP

solver
I Linux machine with 2.9GHz Inter(R) Core and 192GB memory
I Initial routing and layer assignment result from NCTU-GR and NVM tool

Comparison on layer assignment result with TILA-0.5%

(a) (b)

(c) (d)

Figure: Comparison among different strategies, (a) Avg(Tcp), (b) Max(Tcp), (c) via number, (d) via
violations.

I Average delay improved by 14% while maximum delay improved by 4%.
I Via violations improved by 10% with the similar number of vias.

Performance comparison with ILP

 0

 100

 200

 300

 400

a1 a2 b1 n1 n2 n4

A
v
g

 (
T

c
p
)

(a)

 100

 1000

 10000

a1 a2 b1 n1 n2 n4

M
a
x
 (

T
c
p
)

(b)

 0

 100

 200

 300

 400

adaptec1

adaptec2

bigblue1

new
blue1

new
blue2

new
blue4

A
v
g
 (

T
c
p
)

ILP-0.5% SDP-0.5%

Figure: Performance comparison with ILP, (a) Avg(Tcp), (b) Max(Tcp).

I Both average delay and maximum delay of SDP achieve the similar performance.

Run-time comparison

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

a1 a2 b1 n1 n2 n4

R
u
n

ti
m

e
 (

s
)

(a) (b)
Figure: Run time comparison among different strategies, (a) with ILP, (b) with TILA.

I The run-time of SDP is lower than ILP but slower than TILA [2] (Yu. et al.
ICCAD’2015).

Partition size impact on performance

 0

 50

 100

 150

 200

 250

 300

 350

 16 64

A
v
g
 (

T
c
p
)

(x
1
0

3
)

Segment# in each partition

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 16 64

M
a
x
 (

T
c
p
)

(x
1
0

3
)

Segment# in each partition

(b)

 100

 1000

 16 64

R
u

n
ti
m

e
 (

s
)

Segment# in each partition

(c)

 100

 1000

 16 64

R
u

n
tim

e
 (

s)

Segment# in each partition

adaptec1 adaptec2 bigblue1

Figure: Comparison among different partition sizes, (a) Avg(Tcp), (b) Max(Tcp), (c) run time.

I For different partition sizes, similar performance can be achieved.
I When partition size is equal to 10, the lowest run-time can be obtained.

Acknowlegement
This work is supported in part by NSF, Oracle, and CUHK Direct Grant for Research.

Derong Liu – ECE Department – University of Texas at Austin – Austin, USA E-Mail: derongliu@utexas.edu WWW: http://www.cerc.utexas.edu/utda

