

TILA: Timing-Driven Incremental Layer Assignment

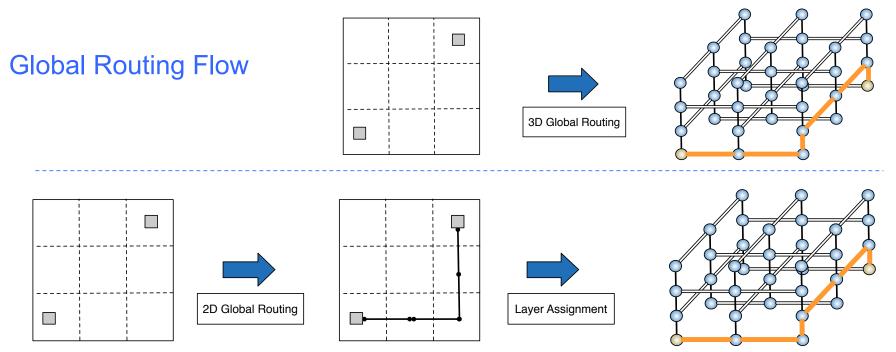
Bei Yu^{1,2}, **Derong Liu¹**, Salim Chowdhury³, and David Z. Pan¹

¹ECE Department, University of Texas at Austin, Austin, TX, USA ²CSE Department, Chinese University of Hong Kong ³Oracle Corp., Austin, TX, USA

Overview

Introduction

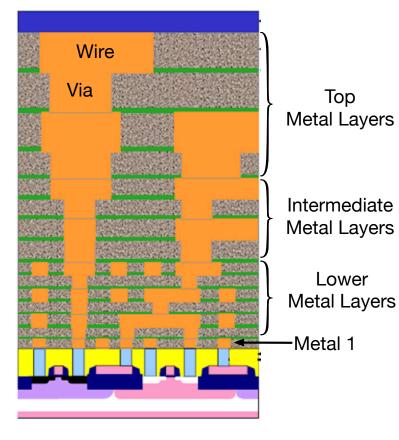
Problem Formulation


Algorithms

- Experimental Results
- Conclusion

Introduction

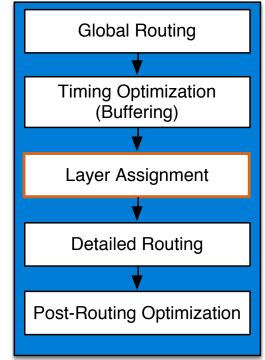
VLSI technology scales to deep submicron


- Interconnect delay
- Interconnect synthesis
 - > Timing-driven routing
 - Global routing -- part of a timing convergence flow

Introduction

Layer assignment:

- > Assign segments to metal layers
- > Impossible to assign all segments on higher layers

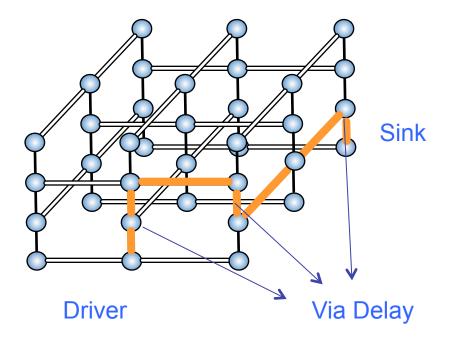

Wire [Hsu et al. ICCAD'14]			Via	
Layer	С	R	Layer	R
M 1	1.14	23.26	$v_{1,2}$	25.9
M2	1.05	19.30	$v_{2,3}$	16.7
M3	1.05	23.26	$v_{3,4}$	16.7
M4	0.95	5.58	$v_{4,5}$	16.7
M5	1.05	3.26	$v_{5,6}$	5.9
M 6	1.05	3.26	$v_{6,7}$	5.9
M7	1.05	3.26	$v_{7,8}$	5.9
M8	1.00	3.26	$v_{8,9}$	1.0
M9	1.05	1.00	$v_{9,10}$	1.0
M10	1.00	1.00	_	-

Previous Works on GR and LA

- Many papers on global routing and layer assignment, e.g.
 - Routability-driven GR [Cho+, TCAD'07]
 - Timing-driven GR [Liu et al. TCAD'13]
 - Via count and overflow minimization during layer assignment - NVM [Liu+, ASPDAC'11]
 - Delay-driven layer assignment [Ao+, ISPD'13]

Limitations of previous layer assignment:

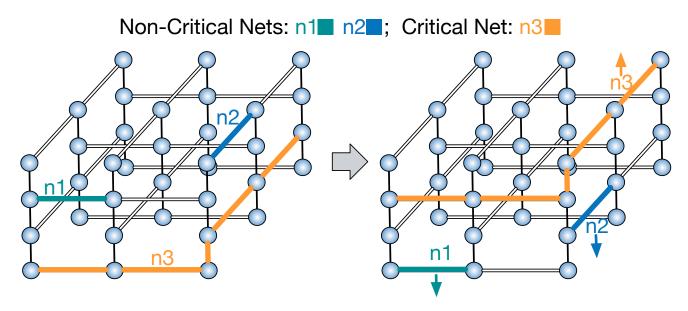
- Most focus on via minimization
- Via delays are often ignored
- Net-by-net method may lead to local optimality


Contributions of this Work

- The first timing-driven incremental layer assignment (TILA) that integrates via delay
- Solve multiple nets simultaneously
- Incremental approach to provide fast turn-around-time
- Lagrangian relaxation based optimization to improve total wire and via delay via min-cost flow iteratively
- Multi-processing of K*K partitions for speed-up
- Effectiveness demonstrated by ISPD'08 and industry benchmarks

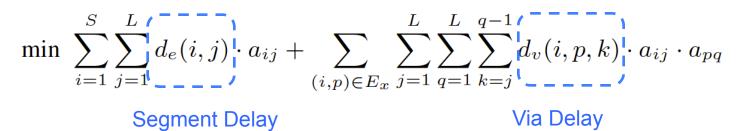
Model Description

• Timing model:


- > Elmore Delay (C_{down}, R)
- > Consider both segment delay and via delay

Problem Formulation

Timing-driven Incremental Layer Assignment (TILA)


- > Given initial layer assignment solution and critical ratio α
- > Minimize: sum of segment and via delays of selected nets
- > Subject to: via capacity and edge capacity constraints

One Example

TILA Algorithm

Mathematical Formulation

- Constraints:
 - > Each segment should be assigned on one and only one layer

$$\sum_{j} a_{ij} = 1, \qquad \forall i \in [1, S]$$

- > Edge capacity constraint:
- > Via capacity constraint:

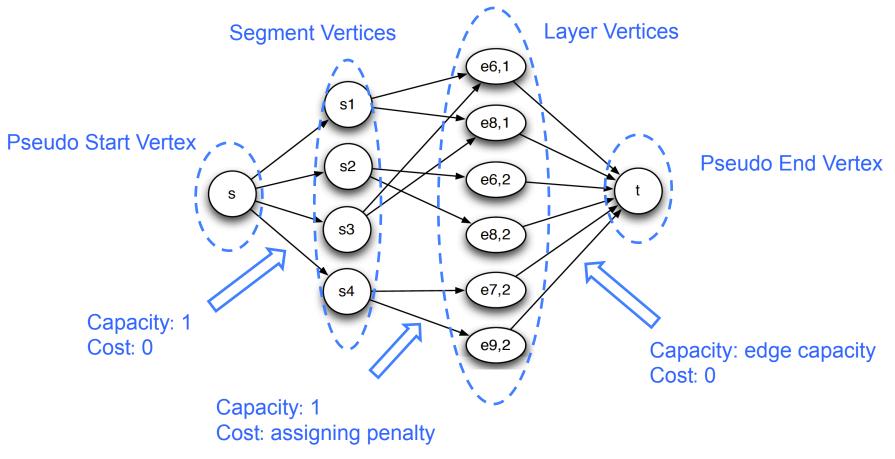
$$\sum_{s_i \in S_e(i)} \sum_j a_{ij} \le c_e(i), \quad \forall e \in E$$
$$\sum_{(i,p) \in E_x} a_{ij} \cdot a_{pq} \le c_v(k), \quad \forall k, j < k < p$$

TILA Algorithm

Lagrangian Relaxation Subproblem (LRS)

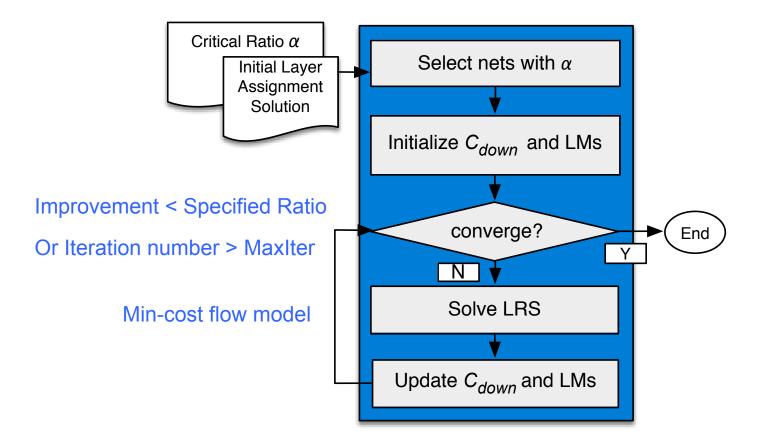
$$\min \sum_{i=1}^{S} \sum_{j=1}^{L} d_e(i,j) \cdot a_{ij} + \sum_{(i,p) \in E_x} \sum_{j=1}^{L} \sum_{q=1}^{L} \sum_{k=j}^{q-1} d_v(i,p,k) \cdot a_{ij} \cdot a_{pq}$$
$$+ \sum_{(i,p) \in E_x} \lambda_{ij,pq}(a_{ij} \cdot a_{pq} - c_v(k))$$
Integrate via capacity constraint with Lagrangian Multipliers (LMs)

- > Solve the LRS iteratively
- Linearize the quadratic term approximately:


 $a_{ij} \cdot a_{pq} \approx a'_{pq} \cdot a_{ij} + a'_{ij} \cdot a_{pq}$

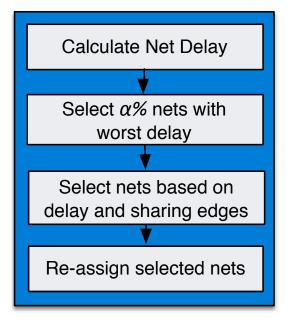
- Based on the values in previous iteration
- Solve the LRS through a min-cost network flow model
 - Satisfy the edge capacity constraint
 - Guarantee one segment on one layer

TILA Algorithms


Min-cost Flow Model

- > Inherent uni-modular property to ensure integer solutions
- Directed Graph G (V,E)

TILA Algorithm

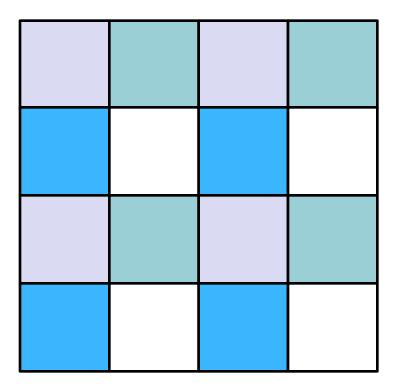

Algorithm Flow

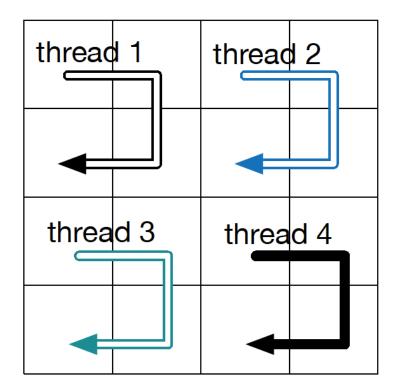
Incremental Approach

Critical & Non-critical Net Selection

- Most Critical nets: improve the timing
- Most non-critical nets: release more high layers resources

Nets Selection Flow


Most critical nets selection


Most non-critical nets selection

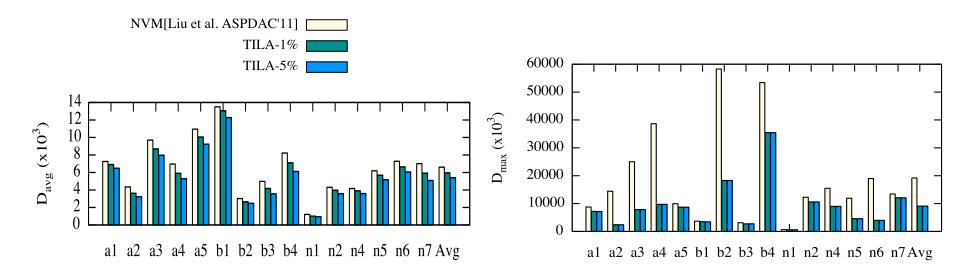
Speed-up Techniques

Parallel Scheme

- > Divide grid model into *K* x *K* partitions
- Recent results by peer threads can be considered

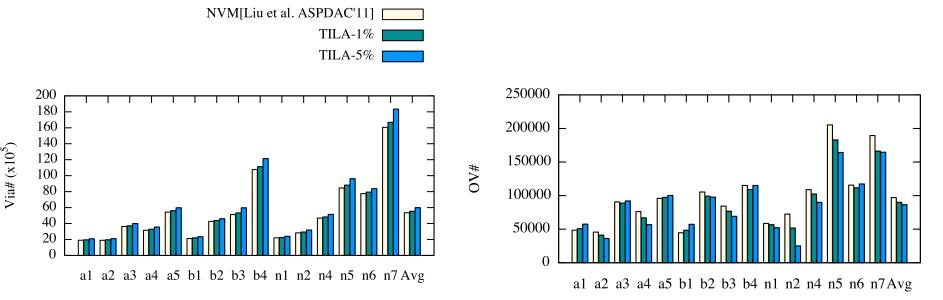
4*4 partitions

Experimental Results

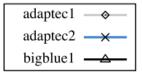

- Implemented the framework in C++
- Tested on Linux machine with eight 3.3GHz CPUs
- Min-cost flow solver
 - > LEMON open source graph library
- Parallel computation with OpenMP
 - > Default thread number as 6 and K set as 6
- Evaluation on both academia and industrial benchmarks
- Performance Metrics
 - > Average Delay
 - Maximum Delay
 - > Via capacity violation#
 - > Via#

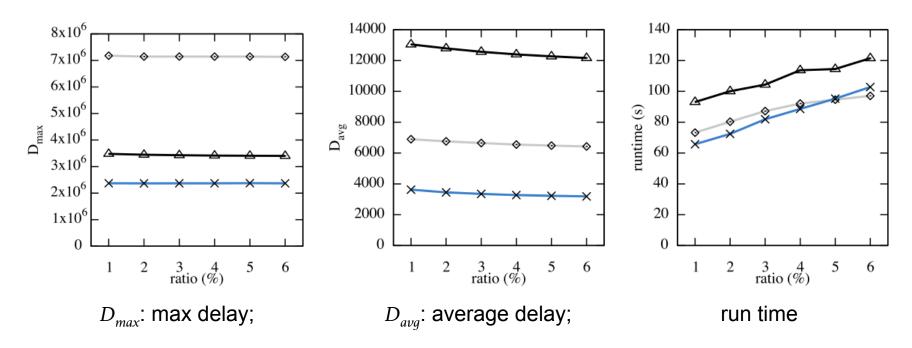
Evaluation on ISPD'08 Benchmarks

- Initial global routing input:
 - > Generated by NCTU-GR 2.0 [Liu et al. TCAD'13]
- Initial layer assignment:
 - > From NVM [Liu et al. ASPDAC'11]
 - > Targeting via number and overflow minimization
- Wire resistance and capacitance values obtained from [Hsu et al. ICCAD'14]
- Via resistance and capacitance normalized from industry
- Release 1% and 5% critical and non-critical nets

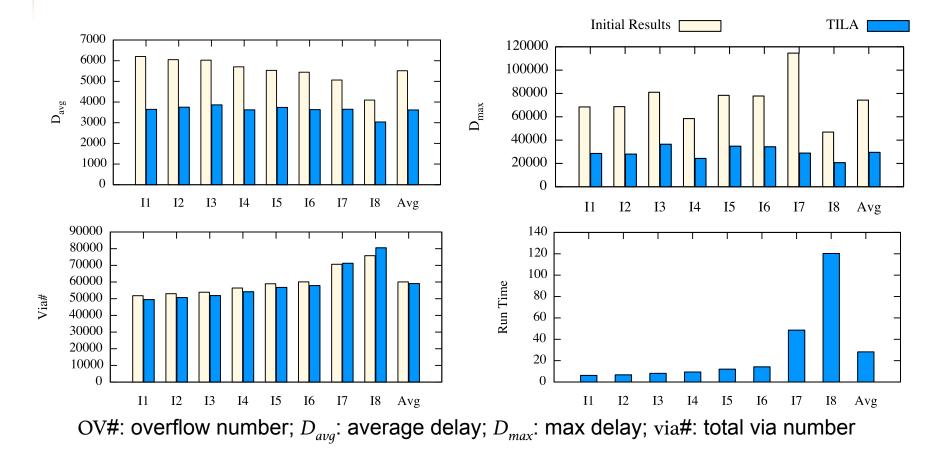

Delay Comparison Results

- ISPD'08 Global Routing Benchmarks
- TILA-1%:
 - > 53% improvement by D_{max} and 10% improvement by D_{avq}
- TILA-5%:
 - > 53% improvement by D_{max} and 18% improvement by D_{avq}


Via Comparison Results


- ISPD'08 Global Routing benchmarks
- TILA-1%
 - > OV# decreases by 7% and Via# increases by 3%
- ♦ TILA-5%
 - > OV# decreases by 11% and Via# increases by 12%

Experimental Results


- Impact of different critical/non-critical ratio
 - > Releasing 1% is enough for maximum delay
 - > Trade-off between average delay and speed

Industrial Benchmarks Results

Industry tool to generate initial routing solution
Use industry resistance and capacitance

Conclusion

 We proposed a new Timing-driven Incremental Layer Assignment (TILA) algorithm

- > Select a subset of critical and non-critical nets
- > Lagrangian relaxation based global optimization
- > Min-cost network flow to solve iteratively
- > Multi-threading
- TILA can work smoothly with any global router and adapt easily to future heterogeneous layer structures
- New research needed to shed light on "classical" EDA problems

