



## **Electromigration-aware Redundant Via Insertion**

Jan. 21<sup>st</sup>, 2015

Jiwoo Pak, Bei Yu, David Z. Pan The University of Texas at Austin

#### 1. Introduction

- 2. EM modeling for redundant vias
- 3. EM-aware via insertion
- 4. Results
- 5. Summary

## **Electromigration (EM)**

Electromigration (EM) is getting severe in the modern ICs

- > EM: atomic diffusion due to high current density
- > Under the local via trench is one of the weakest point
- > EM is a function of current density, mechanical stress and temperature



## **Motivation: EM in Redundant Via**

Redundant via can increase yield in general

 However, maximizing total # vias may not be the best for EM, because current densities of nets can be different

"How can we qualify & optimize EM-related lifetime during post-layout via insertion?"

- In this study,
  - > Study EM of different combination of redundant via layouts
  - Suggest smart allocation of redundant vias considering EM

### **Transpose of Layouts for EM Analysis**

- 8 wire position cases exist with 2 wires and 1 via
  - > With two orthogonal wires in the adjacent routing layers
- ◆ EM analysis of any of them is equivalent to the EM analysis of the another case. → Transposition!



### **Redundant Via Layout Cases**

#### Redundant via layout cases in our study

| # Via   | 1 | 2                 | 3                                                   | 4    |
|---------|---|-------------------|-----------------------------------------------------|------|
| RV case | С | cs, ce,<br>cn, cw | css, cse, csn, csw, cee,<br>cen, cew, cnn, cnw, cww | cesd |

Example: cs[c] means center via [c] with cs via formation



- 1. Introduction
- 2. EM modeling for redundant vias
- 3. EM-aware via insertion
- 4. Results
- 5. Summary

### **Flow of EM Modeling for Redundant Vias**

#### For each RV case, get a failure time Tf



- > Void growth can be calculated through EM equations
- Using look up table from FEM simulation, via resistance can be calculated

## **Step 1: Calculation of Void Growth**

Vacancy flux equations for EM modeling



driven

Current density Temperature grad. driven

Stress grad. driven

$$D = D_o \exp(\frac{-Ea}{kT})$$

Cylindrical void growth model

$$dV = \alpha f \Omega A q_v dt = 2\pi \delta r_{void} dr$$
$$dr = \frac{\alpha f \Omega A q_v dt}{2\pi \delta r_{void}}$$

 $q_{v}$ : Total vacancy flux

- D : Diffusivity of vacancy
- $C_{v}$ : Vacancy concentration
- i : Current density vector
- $\sigma$  : Hydrostatic stress
- T: Temperature

## **Step 2: Calculation of Resistance**

#### Generate look-up tables (LUTs) with FEA simulation

- > Input: radius of void
- > output: resistance of the structure



### Current Density of <u>'Off-track' and 'On-track' vias</u>

#### Current density of each via with different layouts



 On-track 'css' case shows more balanced current densities between vias

### **Void Growth Time of Redundant Vias**

Off-track 'cnn' formation shows discrepancy in Tf
Off-track vias can live longer than the on-track vias



- 1. Introduction
- 2. EM modeling for redundant vias
- 3. EM-aware via insertion
- 4. Results
- 5. Summary

### **Flow of EM-aware Via Insertion**

#### Overall flow of EM-aware via insertion



## **Conflict Graph Construction**

#### For each unit structure,

- > Add vertices for EM-prone layout cases, if any
- > Each vertex has estimated failure time (Tf) of EM
- Internal Edges (IE): conflicts with a vertex from the same 'original via' — Internal Edges (IE)



 External Edges (EE): conflicts with a vertex from the neighboring unit structures

### **Formulation for EM-aware Via Insertion**

EM safeness (EMS)\*: based on look-up table of Tf

 $EMS_{(id,case)} = \begin{cases} MaxCost, & \text{if } Tf_{(id,case)} \ge Tf_{th} \\ MinCost, & \text{otherwise} \end{cases}$ 

ILP\*\* formulation with conflict graphs

$$R_{(id,case)} = \begin{cases} 0 & , \text{if } (id,case) \text{ is not used} \\ 1 & , \text{if } (id,case) \text{ is used} \end{cases}$$

Maximize 
$$\sum_{(id,case) \in V} EMS_{(id,case)} \cdot R_{(id,case)}$$

s.t. 
$$R_{(id,case)} + R_{(id,case')} \le 1$$
,  $\forall ((id,case),(id,case')) \in IE$   
 $R_{(id,case)} + R_{(id',case')} \le 1$ ,  $\forall ((id,case),(id',case')) \in EE$ 

\*MaxCost, MinCost are constants \*\*ILP: integer linear programming 16

## **Speed-up Techniques**

- 1. Simplify conflict graphs
  - > Show external edges between unit structures only



- 2. Independent component computation
  - Take union of sub-solutions



## **Speed-up Techniques (cont')**

#### 3. Articulation point computation

- > Check if the redundant via case can be pre-selected
  - » If one via case can be pre-selected without harm to EM, we can assign a vertex as an articulation point
  - » By removing edges of articulation points, graph size can be reduced



- 1. Introduction
- 2. EM modeling for redundant vias
- 3. EM-aware via insertion
- 4. Results
- 5. Summary

### **Results: EM-aware Via Insertion**

- Benchmark circuits: OpenSparc T1 (Nangate 45nm)
- EM-aware via insertion can achieve better EM reliability with smaller routing resources

| Ckt | Mode      | # Unit | # EM-Failed Unit | # Via  | Runtime |
|-----|-----------|--------|------------------|--------|---------|
| alu | RV        | 5661   | 710              | 21346  | 2.7s    |
|     | EM-RV     | 5661   | 533 (-24.9 %)    | 21023  | 2.5s    |
|     | EM-RV (S) | 5661   | 535 (-24.6 %)    | 21026  | 0.6s    |
| byp | RV        | 24383  | 3331             | 90166  | 18.3s   |
|     | EM-RV     | 24383  | 2298 (-31.0 %)   | 88221  | 14.7s   |
|     | EM-RV (S) | 24383  | 2318 (-30.4%)    | 88221  | 3.5s    |
| Mul | RV        | 44085  | 5594             | 165913 | 28.2s   |
|     | EM-RV     | 44085  | 4124 (-26.3 %)   | 163303 | 21.1s   |
|     | EM-RV (S) | 44085  | 4142 (-26.0 %)   | 163429 | 4.7s    |

## **Comparison of Failed Units**

#### The suggested method reduces EM-failed units up to -31%

Normalized Number of Failed Unit



- 1. Introduction
- 2. EM modeling for redundant vias
- 3. EM-aware via insertion
- 4. Results
- 5. Summary

### Summary: EM-aware Redundant Via Insertion

- Modeled and analyzed electromigration (EM) for various redundant-via structures
- Found that the degree of current imbalance in redundant vias affects EM reliability of the whole structure
- Proposed a via-insertion algorithm that can maximize EM reliability than the conventional via insertion, with similar number of total vias
- Investigated a set of speed-up techniques for ILP formulation

# **BACK UP SLIDES**

## Algorithm of EM Modeling for Redundant Vias

```
For each case in RV cases
       ti = 0;
                                 /* discrete time */
       while (1) do
                for each via i in case
                        void_size [case][i] = get_void_growth(dt);
                        resistance [case][i] = R LUT (void size[case][i]);
                        if (void size[case][i] > critical size)
                                 Tf [case][i] = ti;
                if all the vias in case failed
                        return Tf [case]; /* failure time of case */
                update current (resistance [case])
                ti = ti + dt:
                                          /* dt = time step */
```