
Triple Patterning Lithography (TPL) Layout Decomposition
using End-Cutting

Bei Yu, Jhih-Rong Gao, and David Z. Pan

ECE Dept. University of Texas at Austin, Austin, TX USA 78712
Email: {bei, jrgao, dpan}@cerc.utexas.edu

ABSTRACT

Triple patterning lithography (TPL) is one of the most promising techniques in the 14nm logic node and beyond.
However, traditional LELELE type TPL technology suffers from native conflict and overlapping problems. Re-
cently LELEEC process was proposed to overcome the limitations, where the third mask is used to generate the
end-cuts. In this paper we propose the first study for LELEEC layout decomposition. Conflict graphs and end-
cut graphs are constructed to extract all the geometrical relationships of input layout and end-cut candidates.
Based on these graphs, integer linear programming (ILP) is formulated to minimize the conflict number and the
stitch number.

1. INTRODUCTION

As the semiconductor process further scales down, the industry encounters many lithography-related issues. In
the 14nm logic node and beyond, triple patterning lithography (TPL)1 is one of the most promising techniques,2

because of the delay of other candidates, such as extreme ultraviolet lithography (EUVL) and electron beam
lithography (EBL). EUVL is challenged by tremendous technical barriers,3 while EBL has a serious limitation
due to low throughput.4,5

One traditional process of TPL is with the same principle of litho-etch-litho-etch (LELE) type double pat-
terning lithography (DPL), where the original layout is decomposed into three masks and manufactured through
three exposure/etching steps. This technology is called LELE-litho-etch (LELELE). Many research has been
carried out to solve the corresponding design problems, including layout decomposition6–10 and routing.11,13

However, even with stitch insertion, there are some native conflicts in LELELE. Fig. 1 shows a 4-clique conflict
among features a, b, c, and d. Since this 4-clique structure is common in advanced standard cell design, LELELE
type TPL still suffers from the native conflict problem.7 Besides, compared with LELE, there are more serious
overlapping problem in LELELE.14

To overcome all these limitations derived from LELELE, recently Lin15 proposes a new TPL manufacturing
process, called LELE-end-cutting (LELEEC). As a TPL, this new manufacturing process contains three mask
steps, namely first mask, second mask, and trim mask. Fig. 2 illustrates an example of the LELEEC process.
To generate target features in Fig. 2(b), the first and second masks are used for pitch splitting, which is similar

Target/ Final

1st Mask

2nd Mask

3rd Mask
(a) (b)

a b

c d

(c)

Figure 1. Process of LELELE (a) Some labels. (b) Target features. (c) layout decomposition with one conflict introduced.

Target/ Final

1st Mask

2nd Mask

Trim Mask
(a) (b) (c) (d)

Figure 2. Process of LELEEC (a) Some labels. (b) Target features. (c) First and second mask patterns. (d) Trim mask,
and final decomposition with no conflict.

to LELE process in DPL. These two masks are shown in Fig. 2(c). Finally, a trim mask is used to trim out
the desired region as shown in Fig. 2(d). In other words, the trim mask is used to generate some end-cuts to
further split feature patterns. As a result, the features that are not LELELE-friendly can be printed without
introducing any conflict through the LELEEC process. Besides, the end-cuts introduce better printability.?

Layout decomposition, which is the most crucial step for TPL, has been extremely studied under LELELE
process.6–9 However, some new design challenges are introduced in LELEEC process that previous layout
decomposition methodology cannot be directly borrowed. Since the end-cuts are printed through one mask,
some end-cuts may not be compatible to each other. How to design the trim mask is pretty crucial, and
therefore the layout decomposition for LELEEC is still an open problem.

In this paper, we propose the first study for LELEEC layout decomposition. Given a layout which is specified
by features in polygonal shapes, we extract the geometrical relationships and construct the conflict graphs.
Furthermore, the compatibility of all end-cuts candidates are also modeled in the conflict graphs. Based on the
conflict graphs, integer linear programming (ILP) is formulated to assign each vertex into one layer. Our goal
in the layout decomposition is to minimize the conflict number, and at the same time minimize the overlapping
errors.

The rest of the paper is organized as follows. In Section 2, we provide some preliminary, and discuss the
problem formulation. In Section 3 we explain the details to generate the end-cut candidates. In Section 4 we
provide the integer linear programming formulation for this problem, and followed by several speedup techniques
in Section 5. Section 6 presents the experimental results, and we conclude this paper in Section 7.

2. PRELIMINARY AND PROBLEM FORMULATION

2.1 Layout Graph

Given a layout which is specified by features in polygonal shapes, layout graphs7 are constructed. As shown
in Fig. 3, the layout graph is an undirected graph with a set of vertices V and a set of conflict edges CE.
Each vertex in V represents one input feature. There is an edge in CE if and only if the two features are within
minimum coloring distance dism of each other. In other words, each edge in CE is a conflict candidate. Fig. 3(a)
shows one input layout, and the corresponding layout graph is in Fig. 3(b). For each edge (conflict candidate),
we check whether there is an end-cut candidate. End-cut candidates (grey rectangles in Fig. 3(c)) are introduced
to input layout. For each end-cut candidate i− j, if it is applied, then features i and j will be merged into one
feature. By this way the corresponding conflict edge can be removed. We label all edges in layout graph, to
indicate those conflict edges that can be removed by end-cut insertion (see blue solid edges in Fig. 3(d)). If
stitch is considered in layout decomposition, some vertices in layout graph can be split into several segments.
The segments in one layout graph vertex are connected through stitch edges. A set SE contains all these stitch
edges ∗.

2.2 End-Cut Graph

Since all the end-cuts are manufactured through one single exposure process, they should be distributed far
away from each other. That is, two end-cuts have conflicts if they are within minimum end-cut distance disc

∗Please refer to16 for the details of stitch candidate generation.

1 2

3 4

5 6

7
(a)

1 2
3 4
5 6

7

(b)

5-7
6-7

2-41-4
3-4

4-6

1-3

3-5
5-6

1-
21 2

3 4

5 6

7
(c)

4
6

1 2
3
5

7

Conflict edge that can be
removed by end-cut

(d)

Figure 3. Layout graph construction (a) Input layout. (b) Layout graph with conflict edges. (c) End-cut candidate
generation, where each grey rectangle represents one end-cut candidate. (d) Update layout graph where each blue edge
means that the conflict can be removed by introducing one end-cut.

5-7
6-7

2-41-4
3-4

4-6

1-3

3-5
5-6

1-
21 2

3 4

5 6

7
(a)

1-3

1-2

2-43-4

1-4

4-63-5
5-6

6-75-7

ec14 and ec46 have conflict

ec35 and ec46 can be
merged into one endcut

(b)

Figure 4. End-cut graph construction. (a) Input layout with end-cut candidates. (b) End-cut graph.

of each other. Note that these conflict relationships among end-cuts are not available in layout graph, therefore
we construct end-cut graph to store the relationships. Fig. 4(a) shows an example of an input layout with all
end-cut candidates; the corresponding end-cut graph is shown in Fig. 4(b). Each vertex in the graph represents
one end-cut. There is an solid edge if and only if the two end-cuts conflict to each other. There is an dash edge
if and only if they are close to each other, and they can be merged into one larger end-cut.

2.3 Problem Formulation

Given a layout which is specified by features in polygonal shapes, the layout graph and the end-cut graph are
constructed. The layout decomposition assigns all vertices in layout graph into one of two colors, and select a
set of end-cuts in end-cut graph. The objectives it to minimize the number of conflict and/or stitch.

3. END-CUT CANDIDATE GENERATION

Above we have discussed how to generate the layout graph and end-cut graph. In this section we will explain
the details to generate all end-cut candidates. For each conflict edge in layout graph, there are two adjacent
features in corresponding input layout. To check whether one end-cut can be inserted, we classify the adjacent
relationships of features into two types: edge-edge and corner-corner. The end-cut between two edge-edge
features can be calculated through calculating the projection, as illustrated in Fig. 5. Note that in some cases, if
the width of one end-cut is smaller than wire width threshold wth, this end-cut candidate is forbidden (see Fig.
5(d)).

(a) (b) (c) (d)
Figure 5. End-cut candidate generation for edge-edge type.

(a) (b)

(c) (d)
Figure 6. End-cut candidate generation for corner-corner type.

If one end-cut candidate cannot be constructed through edge-edge type, we search whether there is one legal
corner-corner type end-cut. As shown in Fig. 6, there are four possible end-cut shapes. We pick up the shape
with minimal area, meanwhile the shape width should be larger than width threshold wth. For each end-cut
candidate, if it is overlapping with any layout feature, it would be forbidden.

4. ILP ALGORITHMS

After the construction of layout graph and end-cut graph, LELEEC layout decomposition problem can be
transferred into an optimization problem on graphs. Note that conflict graph can not be guaranteed to be planar,
so some face based methodology17 cannot be applied here. Therefore, we formulate integer linear programming
(ILP) to solve the optimization problem. For convenience, some notations in the ILP formulation are listed in
Table 1.

Table 1. Notations in ILP

CE set of conflict edges

EE set of end-cut conflict edges

SE set of stitch edges.

ri the ith layout feature

xi variable denoting the coloring of ri
ecij 0-1 variable, ecij = 1 when the end-cut between ri and rj
cij 0-1 variable, cij = 1 when a conflict between ri and rj
sij 0-1 variable, sij = 1 when a stitch between ri and rj

4.1 ILP Formulation without Stitch Insertion

When no stitch candidate is considered, the layout decomposition problem can be formulated as shown in Eq.
(1). The objective is to minimize the conflict number.

min
∑

eij∈CE

cij (1)

s.t. xi + xj ≤ 1 + cij + ecij ∀eij ∈ CE (1a)

(1− xi) + (1− xj) ≤ 1 + cij + ecij ∀eij ∈ CE (1b)

ecij + ecpq ≤ 1 ∀eijpq ∈ EE (1c)

ecij + xi − xj ≤ 1 ∀eij ∈ CE (1d)

ecij + xj − xi ≤ 1 ∀eij ∈ CE (1e)

where xi is a variable for the colors of feature ri, cij is a binary variable for conflict edge eij ∈ CE. ecij is a
binary variable for end-cut candidate. Constraints (1a) and (1b) are used to evaluate the conflict number and
end-cut number. If two adjacent features ri and rj are assigned same colors (masks), and the end-cut candidate
ecij is not applied (ecij = 0), then there is one conflict reported (cij = 1). If end-cuts ecij and ecpq are conflict
with each other, constraint (1c) makes sure that at most one of them will be applied. Constraints (1d) and (1e)
are used to forbid useless end-cut. That is, if features xi and xj are in different colors, ecij = 0.

1-2

1-3

2-3

1

2
3

1

2

1

2
3

Figure 7. End-cut candidate generation for corner-corner type.

At first glance, the ILP formulation (1) works well. However, it may report some unnecessary conflicts. An
example is shown in Fig. 7, where three end-cut candidates ec12, ec13, ec23 are considered among features r1, r2
and r3. Note that ec13 and ec23 could be merged into one large end-cut. If these two end-cuts are applied, all
features can be manufactured through one feature (see Fig. 7(b)). However, based on the constraints (1a) and
(1b), since x1 equals to x2, and end-cut ec12 is not applied, conflict c12 will be reported. We can see that our
initial ILP formulation ignore this wire merging character. To overcome this limitation, we modify the constraints
(1a) and (1b) as follows:

xi + xj ≤ 1 + cij + ecij + ecik · ecjk (2)

(1− xi) + (1− xj) ≤ 1 + cij + ecij + ecik · ecjk

Since ecik · ecjk is non-linear, we introduce boolean variables γik,jk to replace it, and enforce the following
artificial constraints in our ILP formulation:

ecik + ecjk ≤ γik,jk + 1

ecik ≥ γik,jk (3)

ecjk ≥ γik,jk

After replacing constraints (2) with (3), our formulation can be linearized. Therefore, the modified ILP
formulation is as follows:

min
∑

eij∈CE

cij (4)

s.t. xi + xj ≤ 1 + cij + ecij + γik,jk ∀eij ∈ CE (4a)

(1− xi) + (1− xj) ≤ 1 + cij + ecij + γik,jk ∀eij ∈ CE (4b)

(1c)− (1e), (3)

4.2 ILP formulation with Stitch Insertion

If the stitch insertion is considered, the ILP formulation is as in Eq. (5). The objective is to simultaneously
minimize both the conflict number and the stitch number. The parameter α is a user-defined parameter for
assigning relative importance between the conflict number and the stitch number.

min
∑

eij∈CE

cij + α×
∑

eij∈SE

sij (5)

s.t. xi − xj ≤ sij ∀eij ∈ SE (5a)

xj − xi ≤ sij ∀eij ∈ SE (5b)

(1c)− (1e), (3), (4a)− (4b)

5. SPEEDUP TECHNIQUES

ILP is a well-known NP-hard problem that it may suffer from long runtime penalty to achieve the results. In
this section, we provide a set of speedup techniques. Note that these techniques can keep optimality. In other
words, with these speedup techniques, ILP formulation can achieve the same results comparing with those not
applying speedup.

5.1 Independent Component Computation

The first speedup technique is called independent component computation. By breaking down the whole layout
graph into several independent components, we partition the initial layout graph into several small ones. Then
each component can be resolved through ILP formulation independently. At last, the overall solution can be
taken as the union of all the components without affecting the global optimality. Note that this is a well-known
technique which has been applied in many previous studies (e.g.,16,18,19).

5.2 Bridge Computation

A bridge of a graph is an edge whose removal disconnects the graph into two components. If the two components
are independent, removing the bridge can divide the whole problem into two independent sub-problems. We
search all bridge edges in layout graph, then divide the whole layout graph through these bridges. Note that all
bridge can be found in O(|V |+ |E|), where |V | is the vertex number, and |E| is the edge number in the layout
graph.

5.3 End-Cut Pre-Selection

Some end-cut candidates have no conflict end-cuts. For the end-cut candidate ecij that has no conflict end-cut, it
would be pre-selected in final decomposition results. That is, the features ri and rj are merged into one feature.
By this way, the problem size of ILP formulation can be further reduced.

6. EXPERIMENTAL RESULTS

We implement our algorithms in C++ and test on an Intel Xeon 3.0GHz Linux machine with 32G RAM. ISCAS
85&89 benchmarks from7 are used. GUROBI20 is chosen as the ILP solver. We set the minimum coloring
distance dism as 2Wmin + 3Smin, where Wmin and Smin denote the minimum wire width and the minimum
spacing, respectively. The width threshold wth, which is used in end-cut candidate generation, is set as dism.

Table 2. Comparison of Runtime and Performance

Circuit Wire# Sub-G#
ILP w/o. stitch ILP w. stitch

conflict# stitch# cost CPU(s) conflict# stitch# cost CPU(s)
C432 1109 30 0 0 0 1.66 0 0 0 1.77
C499 2216 64 0 0 0 3.7 0 0 0 4.15
C880 2411 102 0 0 0 5.3 0 0 0 5.56
C1355 3262 104 0 0 0 5.5 0 0 0 5.72
C1908 5125 155 1 0 1 8.4 0 0 0 8.62
C2670 7933 299 0 0 0 16.2 0 0 0 16.75
C3540 10189 417 0 0 0 22.5 0 0 0 23.33
C5315 14603 601 0 0 0 32.8 0 0 0 34.01
C6288 14575 475 9 0 9 27.5 8 11 9.1 32.54
C7552 21253 788 0 0 0 44.3 0 0 0 45.57
S1488 4611 194 0 0 0 10.3 0 0 0 10.73
S38417 67696 2285 3 0 3 149.6 0 1 0.1 159.68
S35932 157455 4469 47 0 47 411.3 5 1 5.1 380.73
S38584 168319 5659 14 0 14 502.3 2 0 2 477.27
S15850 159952 5417 16 0 16 473.9 5 4 5.4 452.58

avg. - - 6 0 6 114.3 1.33 1.13 1.45 110.6
ratio - - 4.5 0 1.0 1.0 1.0 1.0 0.24 0.97

6.1 With or Without Stitch

In the first experiment, we show the decomposition results of the ILP formulation. Table 2 compares two ILP
formulations “ILP w/o. stitch” and “ILP w. stitch”. Here “ILP w/o. stitch” is the ILP formulation based on the
graph without stitch edges, while “ILP w. stitch” considers the stitch insertion in the ILP. Columns “Wire#”
and “Sug-G#” reports the total feature number, and the divided sub-graph number, respectively. For each
method we report the conflict number, stitch number, and computational time in seconds(“cpu(s)”). “Cost” is
the cost function, which is set as conflict# +0.1× stitch#. From Table 2 we can see that both ILP formulation
is effective that only a few conflicts are reported. Compared with “ILP w/o. stitch”, when stitch candidates are
considered in the ILP formulation, the cost can be reduced by 76%, while the runtime is similar.

Fig. 8 shows two conflict examples in decomposed layout, where conflict pairs are labeled with red arrows.
We can observe that both of the two conflicts come from via shapes. One possible reason is that it is hard to
find end-cut candidates around via, comparing with long wires.

(a) (b)

Figure 8. Conflict examples in decomposed results.

6.2 LELEEC v.s. LELELE

In the next experiment, we compare two TPL type layout decompositions. The state-of-art LELELE decomposer9

is applied for the comparison. Fig. 9 and Fig. 10 compare the conflict number and the stitch number under
two lithography processes, respectively. We can observe that through applying end-cutting (LELEEC), both the
conflict and stitch number are reduced dramatically. The reasons are mainly twofold: (1) 4-clique conflict, which
is a common type in standard layout, can be resolved in LELEEC; (2) Compared with wire shapes, most of the
end-cuts are smaller, therefore the trim mask can contain more features.

 10

 15

 20

 25

 30

 35

 40

 45

 50

C
4
3
2

C
4
9
9

C
8
8
0

C
1
,3

5
5

C
1
,9

0
8

C
2
,6

7
0

C
3
,5

4
0

C
5
,3

1
5

C
6
,2

8
8

C
7
,5

5
2

S
1
,4

8
8

S
3
8
,4

1
7

S
3
5
,9

3
2

S
3
8
,5

8
4

S
1
5
,8

5
0

C
o
n
fl

ic
t

N
u
m

 LELELE

 LELEEC

 0

 5

Figure 9. Conflict number comparison

 100

 150

 200

 250

 300

 350

C
4
3
2

C
4
9
9

C
8
8
0

C
1
,3

5
5

C
1
,9

0
8

C
2
,6

7
0

C
3
,5

4
0

C
5
,3

1
5

C
6
,2

8
8

C
7
,5

5
2

S
1
,4

8
8

S
3
8
,4

1
7

S
3
5
,9

3
2

S
3
8
,5

8
4

S
1
5
,8

5
0

S
ti

tc
h
 N

u
m

 LELELE

 LELEEC

 0

 50

Figure 10. Stitch number comparison

7. CONCLUSION

In this paper, we propose the first study for the LELEEC layout decomposition. The problem is translated
into an optimization problem on the layout graph and end-cut graph. Integer linear programming (ILP) is then
applied to search the solutions. The experimental results show the effectiveness of our algorithms. In addition,
our preliminary results show that compared with traditional LELELE type TPL, LELEEC can reduce both

the conflict number and stitch number dramatically. As LELEEC may be adopted by industry for 14nm/11nm
nodes, we believe more research will be needed to enable LELEEC-friendly design and mask synthesis.

Acknowledgment

This work is supported in part by NSF, SRC, Oracle, and NSFC.

REFERENCES

[1] K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14
nm node design and patterning,” in Proc. of SPIE, vol. 8327, 2012.

[2] B. Yu, J.-R. Gao, D. Ding, Y. Ban, J.-s. Yang, K. Yuan, M. Cho, and D. Z. Pan, “Dealing with ic man-
ufacturability in extreme scaling,” in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2012, pp. 240–242.

[3] Y. Arisawa, H. Aoyama, T. Uno, and T. Tanaka, “EUV flare correction for the half-pitch 22nm node,” in
Proc. of SPIE, vol. 7636, 2010.

[4] K. Yuan, B. Yu, and D. Z. Pan, “E-Beam lithography stencil planning and optimization with overlapped
characters,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 31, no. 2, pp. 167–179, Feb. 2012.

[5] B. Yu, J.-R. Gao, and D. Z. Pan, “L-Shape based layout fracturing for e-beam lithography,” in IEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), 2013.

[6] C. Cork, J.-C. Madre, and L. Barnes, “Comparison of triple-patterning decomposition algorithms using
aperiodic tiling patterns,” in Proc. of SPIE, vol. 7028, 2008.

[7] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decomposition for triple patterning lithography,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2011, pp. 1–8.

[8] R. S. Ghaida, K. B. Agarwal, L. W. Liebmann, S. R. Nassif, and P. Gupta, “A novel methodology for
triple/multiple-patterning layout decomposition,” in Proc. of SPIE, vol. 8327, 2011.

[9] S.-Y. Fang, W.-Y. Chen, and Y.-W. Chang, “A novel layout decomposition algorithm for triple patterning
lithography,” in ACM/IEEE Design Automation Conference (DAC), 2012.

[10] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. Wong, “A polynomial time triple patterning algorithm for cell
based row-structure layout,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2012.

[11] Q. Ma, H. Zhang, and M. D. F. Wong, “Triple patterning aware routing and its comparison with double
patterning aware routing in 14nm technology,” in ACM/IEEE Design Automation Conference (DAC), 2012,
pp. 591–596.

[12] P. Lei and X. Ying, “Thermoelectric Heat Pump Drying Temperature Control System on the Basis of
89C51”, in International Conference onComputer Science and Electronics Engineering, 2012.

[13] Y.-H. Lin, B. Yu, D. Z. Pan, and Y.-L. Li, “TRIAD: A triple patterning lithography aware detailed router,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2012.

[14] C. Ausschnitt and P. Dasari, “Multi-patterning overlay control,” in Proc. of SPIE, vol. 6924, 2008.

[15] B. J. Lin, “Lithography till the end of moore’s law,” in ACM International Symposium on Physical Design
(ISPD), 2012.

[16] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition for double patterning lithography,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2008, pp. 465–472.

[17] Y. Xu and C. Chu, “A matching based decomposer for double patterning lithography,” in ACM International
Symposium on Physical Design (ISPD), 2010, pp. 121–126.

[18] K. Yuan, J.-S. Yang, and D. Z. Pan, “Double patterning layout decomposition for simultaneous conflict and
stitch minimization,” in ACM International Symposium on Physical Design (ISPD), 2009.

[19] J.-S. Yang, K. Lu, M. Cho, K. Yuan, and D. Z. Pan, “A new graph-theoretic, multi-objective layout
decomposition framework for double patterning lithography,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), 2010.

[20] “GUROBI,” http://www.gurobi.com/html/academic.html.

