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Abstract

Low-light video enhancement is an important task. Previ-
ous work is mostly trained on paired static images or videos.
We compile a new dataset formed by our new strategy that
contains high-quality spatially-aligned video pairs from dy-
namic scenes in low- and normal-light conditions. We built
it using a mechatronic system to precisely control the dy-
namics during the video capture process, and further align
the video pairs, both spatially and temporally, by identify-
ing the system’s uniform motion stage. Besides the dataset,
we propose an end-to-end framework, in which we design
a self-supervised strategy to reduce noise, while enhanc-
ing the illumination based on the Retinex theory. Exten-
sive experiments based on various metrics and large-scale
user study demonstrate the value of our dataset and effec-
tiveness of our method. The dataset and code are available
at https://github.com/dvlab-research/SDSD.

1. Introduction
To enhance underexposed images and videos captured in

low light is a longstanding task in computer vision. It is
challenging since underexposed input does not has much
scene structural information. Also, dark areas are typically
dominated by noise with low signal-to-noise ratios (see Fig-
ure 1(a)). When enhancing such input, one may end up with
amplified noise and undesirable visual artifacts in results, as
shown in Figure 1(b)&(c). These issues could be exagger-
ated for videos taken from dynamic scenes, in which the
cameras move largely. In this paper, we focus on enhancing
underexposed videos taken from low-light dynamic scenes.

Many methods [34, 18, 9, 6, 25, 20, 4] have been proposed
to enhance underexposed images/videos based on deep neu-
ral networks via supervised learning. Often these meth-
ods learn a mapping from images/videos taken in low-light
condition to those with normal lighting. They generally
do not deal with videos of dynamic scenes or severely-
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(a) Input (b) SMOID [14]

(c) Auto-Tone in Lightroom (d) Ours

Figure 1: An example frame (a) from a challenging underex-
posed frame enhanced by a SOTA method (b), a commercial
software (c), and our method (d). Our result exhibits clearer
details with distinct contrast and less noise.

underexposed videos corrupted by heavy noise. A major
reason comes from the lack of suitable datasets – there is
no real-world spatially-aligned video pair in high quality for
dynamic scenes.

The inherent difficulty of constructing such a dataset is the
following. First, to prepare this type of video pair means that
one needs to capture two videos – one in low-light and the
other in normal light of the same dynamic scene with iden-
tical camera motion. Second, it has to precisely align every
pair of corresponding frames in the two videos, both spatially
and temporally. Lastly, while beam splitters could be used
to alleviate some of the constraints for building a dynamic-
scene high-quality dataset, quality of captured videos would
be limited [14].

As a result, existing datasets, such as those of [1, 5, 27],
provide mainly paired images. Chen et al. [4] built a paired
video dataset of static scenes, and Jiang et al. [14] released
a paired-video dataset of dynamic scenes in limited qual-
ity. Our first goal in this work is to construct a new dataset
with high-quality spatially-aligned video pairs that feature
dynamic scenes.

Besides, for videos in low-light conditions, noise often
dominates. When we light up video frames, noise can be
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undesirably amplified, leading to various visual artifacts in
the enhancement results. In this work, our second goal is
to develop a new solution to enhance underexposed videos,
taking noise into account.

Our contribution is the following. First, we release a new
dataset of 150 high-quality spatially-aligned videos that fea-
ture the same dynamic scenes in low- and normal-light con-
ditions. To ensure the alignment and quality of the videos,
we built a mechatronic alignment system, in which we as-
sembled an electric slide rail and mounted a professional
camera on it; see Figure 2. Using this system, we captured
videos of nearly-identical camera motion, thereby reducing
the effort needed to align the low- and normal-light videos
for temporal and spatial consistency. The constructed dataset
is named as SDSD dataset, standing for “Seeing Dynamic
Scenes in the Dark.”

Second, we formulate an end-to-end framework for en-
hancing underexposed videos. We emphasize noise reduc-
tion and illumination enhancement simultaneously in our
method. For noise reduction, we formulate a self-supervised
strategy for learning, while for the illumination enhance-
ment, we predict an illumination map from each input frame
based on the Retinex theory [16].

Our dataset is the first high-quality paired video dataset
for dynamic scenes, featuring high-resolution video pairs of
the same scene and motion in low- and normal-light con-
ditions. Trained on our new dataset, our framework works
decently for enhancing underexposed videos, even in ex-
tremely low-light conditions. To evaluate and demonstrate
the applicability and robustness of our new approach, we
conducted comprehensive experiments to compare it with a
rich set of state-of-the-art methods on our constructed dataset
and SMID dataset [4]. Further, we conducted a large-scale
user study with 100 participants, showing that our results are
visually more pleasing and accurate than previous methods.

Figure 2: The devices in our mechatronic system. In the top
row, from left to right is Canon EOS 6D Mark II, the electric
machine (to drive the motion of the camera), the controller
(to set the starting and ending points for motion), and an ND
filter. We mount the camera and the electric machine on the
electric slide rail, as shown in the bottom row.

2. Related Work
2.1. Low-light Image Enhancement and Datasets

To enhance a low-light video, one may apply an image en-
hancement method in a frame-by-frame manner. Histogram
equalization and gamma correction are fundamental tools to
increase image contrast and expand the dynamic range. Re-
cently, Retinex-based methods [24, 8, 33, 10, 2, 35] produce
impressive results enhancing low-light images.

Learning-based low-light image enhancement methods
receive increasing attention in recent years [30, 31, 17, 3].
Wang et al. [23] proposed to enhance underexposed photos
by learning the illumination map. Sean et al. [20] learned
spatially local filters of three different types to enhance low-
light images. Xu et al. [28] proposed a frequency-based de-
composition and enhancement model to enhance low-images
with a low-light dataset based on SID [5]. Yang et al. [32]
presented a semi-supervised learning method to recover a
linear band representation of an enhanced image.

Also, unsupervised learning has been explored for photo
enhancement [6, 13, 9]. Guo et al. [9] trained a lightweight
neural network to estimate pixel-wise and high-order curves
for dynamic range adjustment of a given image. How-
ever, applying image enhancement algorithms to individual
frames likely causes flickering problems.

To improve the enhancement performance, various
datasets were built. Bychkovsky et al. [1] compiled the large
MIT-Adobe FiveK dataset, in which the photos are paired
with expert-retouched results for tone adjustment. Chen et
al. [5] collected raw images of short/long exposure pairs with
a U-Net to learn a raw image enhancement system. Re-
cently, Wei et al. [27] presented a dataset containing low-
and normal-light image pairs and proposed a deep Retinex-
Net learned on this dataset.

2.2. Low-light Video Enhancement and Datasets

Zhang et al. [34] presented an approach for underexposed
video enhancement using a perception-driven progressive fu-
sion. Lv et al. [18] proposed a multi-branch network to ex-
tract features up to different levels, applicable to both im-
age and video domains. Jiang et al. [14] employed a stan-
dard CNN to learn enhancement mapping for the transforma-
tion from low-light raw camera sensor data to bright videos.
However, these methods are not applicable to severe noise
conditions.

Xue et al. [29] designed a flow representation tailored for
specific video processing tasks. Wang et al. [25] mathemat-
ically defined the practical high sensitivity noise in digital
cameras and proposed to enhance low-light videos based on
the noise model using a recurrent neural network. Chen et
al. [4] collected a static dataset of raw low-light videos
and learned the low-light to normal-light transformation for
videos. Danai et al. [22] provided a data synthesis mecha-



0
2
4
6
8

10
12
14
16
18

N
um

be
r

The lengths of videos

The distribution for lengths of outdoor videos

0
2
4
6
8

10
12
14
16
18

N
um

be
r

The lengths of videos

The distribution for lengths of indoor videos

(b) (c)

(a)

intensity of frames under low light

in
te

ns
ity

of
fr

am
es

un
de

r
no

rm
al

lig
ht

intensity of frames under low light

distribution for indoor frames

distribution for outdoor frames

intensity is
equal on
this line

intensity is
equal on
this line

in
te

ns
ity

of
fr

am
es

un
de

r
no

rm
al

lig
ht

40.00%

50.00%

10.00%

The distribution of Lux for indoor videos 
under normal light condition

Lux > 8.0 4.0 < Lux < 8.0 2.0 < Lux < 4.0

12.85%

87.15%

The distribution of Lux for indoor videos 
under low light condition

Lux > 2.0 0.8 < Lux < 2.0

43.75%

46.25%

10.00%

The distribution of Lux for outdoor videos 
under normal light condition

Lux > 8.0 4.0 < Lux < 8.0 2.0 < Lux < 4.0

8.75%

91.25%

The distribution of Lux for outdoor videos 
under low light condition

Lux > 2.0 0.8 < Lux < 2.0

(d)

Figure 3: (a) Overview of 25% data in our dataset (zoom in to see more details). (b) Distribution of the intensity for a video
pair. We randomly crop two patches at the same location for a video pair under different light conditions and compute the
intensity of each patch that corresponds to a point in the 2D plot. Obviously, most cropped patches from normal-light videos
have a higher intensity than the corresponding patches in the low-light counterpart. (c) Distribution of video length (the
number of frames) in our dataset. (d) Distribution of video Lux in our dataset.

Table 1: Comparison between our dataset and those from the
previous work.

Dataset Release Status Capture Device Numbers
EHSC [25] × Dynamic Canon 5D Mark III 900
SMID [4]

√
Static Sony RX100 VI 22,220

SMOID [14] × Dynamic FLIR GS3-U3-23S6C 35,800
Ours

√
Dynamic Canon 6D Mark II 37,500

nism to generate dynamic video pairs from SID [4].
Although several datasets for video enhancement have

been proposed recently, they are with different limitations.
For example, the dataset is not released yet for [14, 25, 22].
The dataset consists of only static videos [4], while the video
quality is limited in the one proposed in [14]. Current repre-
sentative dataset issues are summarized in Table 1.

In contrast to the previous work, we provide a high-
quality dataset via mechatronic alignment. It is made pub-
licly available. Besides, our method is complementary to
current learning-based methods. Particularly, we design
a new network to handle the underexposed dark areas in
videos, and enable the correction of illumination and noise
suppression in these areas simultaneously.

3. SDSD Dataset with Mechatronic Alignment
Supervised low-light video enhancement for dynamic

scenes is challenging. Spatially paired video data in high
quality from real dynamic scenes needs much effort to col-
lect. If we use two cameras to gather paired data, the first

way is to use camera pose estimation, like DPED [12]. But
this solution causes misalignment. Another way is to uti-
lize a beam splitter to build an optical system. Nevertheless,
it is hard to capture high-quality videos since professional
cameras cannot be mounted on such an optical system. The
dataset of SMOID [14] is not released yet up to our submis-
sion time.

In contrast to these strategies, we collected paired videos
by employing an electric slide rail as shown in Figure 4,
which can repeatedly move along a path precisely within
1mm error. This allows us to manage dynamics in scenes
by accurately controlling the camera motion with the elec-
tric slide rail. Therefore, we can capture a pair of videos
under different light conditions from a scene by running the
electric slide rail with the camera for two rounds, as shown
in Figure 4. Such a pair can be later spatially aligned. In a
nutshell, collecting data consists of capturing and aligning,
which will be described as follows.

3.1. Capture Video Data

To control the trace of the camera, we set the starting point
A and endpoint B on the electric slide rail. The camera starts
capturing videos at point A, then moves towards point B. To
capture a pair of videos, we run the slide rail by two rounds.
In the first round, we capture a noise-free bright video with
good contrast and vivid color. In the second round, we put
the ND filter on the camera lens and increase the camera ISO
to capture a low-light video with severe noise.
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Figure 4: To capture videos with our electric slide rail system, we mount the camera and use an electric machine to drive it.
The camera motion path is governed by the controller and this motion process consists of five stages. The start point of the
path is A and the endpoint is B. To collect a video pair, we run this system for two rounds. In the first round, we capture a
video in normal light, and then we use an ND filter to collect a low-light video in the second round. The captured videos are
aligned by finding the uniform moving stage. Videos in the static stage can be utilized as static data pairs.

Figure 5: Two video clips in our dataset. For each clip, the
first row is captured by Canon EOS 6D Mark II with an ND
filter, and the second row is captured under normal light.

3.2. Align Video Data

Alignment of videos was conducted according to the cam-
era trace, which consists of five stages (Figure 4) — that is,
static stage I, accelerating stage, uniform moving stage, de-
celerating stage, and static stage II.

The camera in static stages I and II locates at points A and
B, respectively, and has no motion. The accelerating stage
leads to the camera with speed accelerating at the beginning
of the moving trace and the decelerating stage is at the ending

of the moving trace. Aligning frames of the two sequences in
the same position is easy in the uniform moving stage, where
the camera motion is stable. Thus, we choose the frames in
the uniform moving stage to construct our video dataset.

First, we find the first frame in the uniform moving stage
from the normal/low-light video. Then we manually pick the
aligned frame from the uniform moving stage in a frame-
wise style, until finding the dis-alignment frame in the decel-
erating stage. Specifically, we adopt the reference objects in
the top, bottom, left, right of the frames to measure the align-
ment where the reference objects should locate at the same
position for the two aligned frames.

We collected 150 paired video sequences in total, includ-
ing 80 outdoor videos and 70 indoor videos. Each video con-
sists of 100-300 frames, and the resolution is 1, 920×1, 080.
Our dataset is called SDSD, and Figure 3 shows 25% of the
data in our dataset and the statistical indicators of the over-
all dataset. In our dataset, there are various scenes, such as
cityscapes, grassland, and indoors. In Figure 5, we provide
two examples for indoor/outdoor sequence under low- and
normal-light conditions.

4. Method

Besides our constructed dataset with mechatronic align-
ment, we design an effective video enhancement framework.
For simplicity, It ∈ RH×W×3 denotes a low-light video
frame and Īt ∈ RH×W×3 represents the paired frame un-
der normal-light condition. Given a sequence of frames
(It+i, i ∈ [−2, 2]), we aim to enhance the illumination of
the middle frame It.

It is observed that severe noise inevitably occurs in videos
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Figure 7: Detailed illustration for “progressive alignment to
center frame” in Figure 6.

taken in a dark environment [25] and enhancing illumination
would further amplify it. We first formulate physical noise
in dark as It = It + ϵ, where It is the clean frame under a
low-light condition without noise and ϵ is the noise.

According to the Retinex-based enhancement theory [16],
an illumination map St can be computed to recover this
frame to a normal illumination condition as

It
St

=
It + ϵ

St
=

It
St

+
ϵ

St
,

where It

St
is the enhanced frame without noise, and It

St
is

the frame with amplified noise ϵ
St

. Thus, directly enhanc-
ing frame illumination will cause noise amplification.

Instead of solely enhancing the illumination like tradi-
tional methods, we propose an end-to-end network as shown
in Figure 6, simultaneously achieving noise reduction and il-
lumination enhancement. This network consists of the mod-
ules of progressive alignment (PAL), noise estimation (SNE),
and illumination prediction (IMP).

4.1. Progressive Alignment (PAL)

Directly conducting low-light image enhancement [23, 9,
20] to each frame causes flickering. To avoid it and take ad-
vantage of temporal information, the input of existing video
enhancement methods is a sequence. Meanwhile, to produce
frames without blur, existing video enhancement methods
consider aligning neighboring frames into the middle one
[36, 21, 15]. Such alignment can be executed at the feature
level. In this section, we illustrate the process of feature ex-
traction and our progressive strategy for alignment.

Given the input sequence under the low-light condition
as (It+i, i ∈ [−2, 2]) with shape R5×H×W×3, we extract
these frame features with three convolution layers and two
down-sampling layers, to propagate the information spatially
and temporally, as shown in Figures 6 and 7. The ob-
tained features are denoted as (FL

t+i, i ∈ [−2, 2]) with shape
R5×H

4 ×W
4 ×C , where C is the number of feature channels,

and L is one level in the progressive alignment.
The alignment module spatially aligns features of neigh-

boring frames to the central one, which is realized by the
deformable convolution (DCN) [7] progressively, as illus-
trated in Figure 7. To align FL

t+i, i ∈ [−2, 2], we extract
features with different levels as FL+1

t+i , i ∈ [−2, 2] and FL+2
t+i ,

i ∈ [−2, 2] that have shape R5×H
8 ×W

8 ×C and R5× H
16×

W
16×C .

We first compute the offset {∆pk}L+2
t+i for the DCN in

level L+2. The offset is learned from FL+2
t+i and FL+2

t , and
the aligned feature is obtained with the learned offset as

{∆pk}L+2
t+i = fL+2(FL+2

t+i ⊙ FL+2
t ),

F̂L+2
t+i = gL+2(DCN(FL+2

t+i , {∆pk}L+2
t+i )),

(1)

where {∆pk}L+2
t+i is the learned offset for DCN at (L + 2)-

th level, ⊙ denotes channel concatenation, fL+2 and gL+2

are the mapping function completed by several convolution
layers, and DCN is the operation of DCN. To implement



the progressive learning, we employ the computed offset at
(L + 2)-th and (L + 1)-th levels for offset computation at
(L + 1)-th and L-th levels. Further, we set the progressive
learning for updating features at each level by incorporating
the features from other levels. The process can be written as

{∆pk}L+j
t+i = fL+j(FL+j

t+i ⊙ FL+j
t ⊙ ({∆pk}L+j+1

t+i )↑),

F̂L+j
t+i = gL+j(DCN(FL+j

t+i , {∆pk}L+j
t+i )⊙ (F̂L+j+1

t+i )↑),
(2)

where ({∆pk}L+j+1
t+i )↑ is the upsampled offset, (F̂L+j+1

t+i )↑

is the upsampled feature and j ∈ {0, 1}. With the aligned
features F̂L

t+i, we fuse them with the similarity between F̂L
t+i

and F̂L
t . The process to obtain the aligned feature can be de-

noted as FL
t = fa(It+i), i ∈ [−2, 2], where FL

t has shape of
RH

4 ×W
4 ×C . Such alignment works well for videos with the

smooth local motion, since the motion in the corresponding
input can be simulated as the translation.

4.2. Self-Supervised Noise Estimation (SNE)

After obtaining the aligned feature FL
t , we utilize it for

two purposes: noise estimation and illumination map pre-
diction. Implementation of noise estimation is described in
this section. With the input It+i, we aim to predict a noise
map Nt with shape as RH×W×3, and the recovered frame
can be obtained as It −Nt. The module of noise estimation
is trained with the principle of “Noisier2Noise” [19] where
we add the crafted noise to an input noisy/clean frame and
train the network to regress the added noise. Thus, the noise
estimation module can be learned in a self-supervised way.

As shown in Figure 6, to estimate noise, the aligned fea-
ture FL

t forwards through a network fn that consists of
residual blacks and two layers for up-sampling. This SNE
network produces the computed noise map Nt as Nt =
fn(FL

t ) = fn(fa(It+i)), i ∈ [−2, 2]. For training, we com-
pute the average RGB value of It+i to create noise to be
added to It+i, so that the noise magnitude can be more rele-
vant to image contents of It+i. We compute the loss as

N̂t+i = It+i −M(It+i), i ∈ [−2, 2],

Ln = E(∥fn(fa(It+i + N̂t+i, i ∈ [−2, 2]))− N̂t∥),
(3)

where N̂t+i is the created noise, M(It+i) is the average
RGB value of It+i, E is the operation to compute the average
value, and Ln is the loss term for training fn.

4.3. Illumination Map Prediction (IMP)

According to the Retinex-based methods [23], we en-
hance the illumination of It by predicting an illumination
map It

Īt
. Unlike existing Retinex-based methods, we propose

to train a noise-aware network for estimating an illumination
map. The illumination map should be consistent with the
content of frames and not be influenced by the noise.

As shown in Figure 6, we adopt another network fi with
the input of FL

t to predict the illumination map. This IMP

module also consists of residual blocks and two layers for
up-sampling. We formulate this process to acquire the illu-
mination map St as St = fi(fa(It+i, i ∈ [−2, 2])) and the
output size of the illumination map is RH×W×3. The loss
term to train fi is written as

Lic = E(∥fi(fa(It+i, i ∈ [−2, 2]))− It

Īt
∥),

Lin = E(∥fi(fa(It+i + N̂t+i, i ∈ [−2, 2]))− It

Īt
∥),

(4)

where N̂t is the crafted noise defined in Eq. (3). Lic and Lin

are the loss terms for training fi.

4.4. Overall Loss Function

We denote the output of (It+i, i ∈ [−2, 2]) from our net-
work as (St, Nt) = f(It+i, i ∈ [−2, 2]), where f denotes the
function implemented by our network. The final enhanced
frame can be obtained as Ĩt = It−Nt

St
. To this end, we add a

loss function for Ĩt as the constraint for fa, fn and fi simul-
taneously, which can be written as

Lb = E(∥Ĩt − Īt∥). (5)

Moreover, to ensure the effect of enhancement with noisy
input, we set another constraint for fa, fn and fi as

(S′
t, N

′
t) = f(It+i + N̂t+i, i ∈ [−2, 2]),

Lbn = E(∥It + N̂t −N ′
t

S′
t

− Īt∥),
(6)

where N̂t is the crafted noise defined in Eq. (3).
The overall loss function to train this framework is sum-

marized as

La = λ1Ln + λ2(Lic + Lin) + λ3Lb + λ4Lbn, (7)

where λ1, λ2, λ3, and λ4 are weights of the loss terms. We
empirically set λ1 = 2, λ2 = 0.25, λ3 = 0.5, and λ4 = 0.5.

5. Experiments
5.1. Experiment Setup

We demonstrate the superiority of our method and the im-
pact of SDSD through experiments in this section. To illus-
trate the effect of our method, we retrain seven previous rep-
resentative methods on the SDSD and SMID [4] datasets for
comparison and provide an ablation study for our method.
Besides, we conduct user study to evaluate the results of our
method and the chosen baselines.

Further, we compare the performance of two models with
our designed network structure that are trained on SDSD and
SMID [4], respectively, and conduct the evaluation on real-
world videos captured from mobile devices. For the SMID
dataset, we use SMID pre-processing to process the RAW
data to produce the sRGB data. The comparison between



Table 2: Quantitative comparison among our method, state-
of-the-art baselines, and ablation settings on our SDSD and
the SMID [4] dataset. PSNR is in dB.

Methods SDSD SMID
PSNR SSIM PSNR SSIM

DeepUPE [23] 21.82 0.68 23.91 0.69
ZeroDCE [9] 20.06 0.61 22.62 0.67
DeepLPF [20] 22.48 0.66 24.36 0.69

DRBN [32] 22.31 0.65 24.42 0.69
MBLLEN [18] 21.79 0.65 22.67 0.68

SMID [4] 24.09 0.69 24.78 0.72
SMOID [14] 23.45 0.69 23.64 0.71

Ours w/o PAL, w/o IMP, w/o SNE 22.61 0.64 25.04 0.71
Ours with PAL, w/o IMP, w/o SNE 24.47 0.65 25.32 0.71
Ours with PAL, with IMP, w/o SNE 24.53 0.67 25.71 0.74

Ours 24.92 0.73 26.03 0.75

these two models via subjective evaluations show that our
SDSD is perceptually better than the static SMID dataset to
enhance videos captured from dynamic scenes. One visual
example is shown in Figure 10.

Similar to previous work [11, 23, 20], we employ
two commonly-used metrics of peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [26]. High PSNR
and SSIM values suggest good results.

5.2. Comparison on the SDSD Dataset

We compare our approach with seven state-of-the-art
methods on the SDSD dataset and provide the qualitative re-
sults in Figure 8. It is clear that our result mainly has two
advantages over other methods. First, the result from our
proposed method has high contrast, clear details, and natu-
ral color constancy. Thus, frames processed by our method
are more realistic. Second, see the wall and floor areas, our
output has fewer visual artifacts and less noise, and looks
cleaner than all baselines. These facts show that our model
can achieve noise reduction and illumination enhancement.
The effect is better than the already strong baselines.

Moreover, we provide quantitative results in Table 2 for
comparison. As exhibited in Table 2, our method achieves
the highest PSNR and SSIM on the SDSD dataset. Espe-
cially, our PSNR is higher than all baselines with a large
margin (more than 0.8dB). This superiority validates that our
method yields greater performance for low-light video en-
hancement compared with all baselines.

Besides, we perform ablation study to evaluate the ef-
fectiveness of the components in our method. Comparing
the values presented in the last row (“Ours”) with the val-
ues listed in the three rows above “Ours” (Ours with/without
PAL, IMP, and SNE) in Table 2, we observe clear progress
brought by adding PAL, IMP, and SNE into our framework.

Table 3: User preference comparison in the user study.
“Ours” is the percentage that our result is preferred, “Other”
is the percentage that some other method is preferred,
“Same” is the percentage that the users have no preference.

Methods Other Same Ours
DeepUPE [23] 27.0% 8.7% 64.3%
ZeroDCE [9] 11.9% 4.4% 83.7%
DeepLPF [20] 19.8% 6.8% 73.4%

DRBN [32] 12.5% 19.2% 68.3%
MBLLEN [18] 6.8% 13.5% 79.7%

SMID [4] 13.9% 13.5% 72.6%
SMOID [4] 19.8% 25.4% 54.8%

5.3. Comparison on the SMID Dataset

To demonstrate the generalization of our method, we eval-
uate the effect of our method/baselines that are trained on
SMID [4]. The testing sequences are in 8bit sRGB format.

In Figure 9, we provide the results of our method and
baselines, which are trained on the training set of SMID [4]
while evaluated on the testing set of SMID [4]. Our method
restores the underexposed video frames into those with nor-
mal brightness and natural color. Also, we provide quantita-
tive results in Table 2 for comparison. Our network achieves
the best PSNR and SSIM, and performs better than the base-
lines with a large margin (more than 1.3dB).

5.4. User Study on the Real Testing Videos

To compare our method with the seven baselines based on
human perception, we conduct user study with 100 persons
using totally 12 videos, which are captured by iPhone7plus
and iPhoneX with real camera motion and local subjects mo-
tion. We compute the results of different methods on these
videos to conduct an AB-test. All network models are trained
on the SDSD dataset.

Each participant saw two videos (called videos A and B)
simultaneously, which were synthesized by different meth-
ods, and has to choose among three options: “Video A is
better”, “Video B is better”, and “I cannot make a decision
on which one is better”. For evaluation accuracy, we invited
100 persons to participate in our user study, and each par-
ticipant was asked to complete 14 pairs of AB-test. Each
AB-test was conducted between our result and one of the
seven baselines — they were presented in a random left-right
order. Participants made decisions according to the follow-
ing five properties: suitable brightness, clear details, distinct
contrast, vivid color, and well-preserved photo realism.

The results of this user study are given in Table 3, where
we report the proportion that our results are preferred by par-
ticipants. It proves that our method yields more appealing
and natural results, as the participants often preferred our
predicted videos rather than those from the baselines.
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Figure 8: An underexposed video frame (a) enhanced by various methods (b)-(h). Results from baselines exhibit blurry
details, noise, distorted color, weak contrast, abnormal brightness, and unnatural white balance (zoom in to see details).

(a) Input (b) DeepUPE [23] (c) DeepLPF [20] (d) ZeroDCE [9]

(e) DRBN [32] (f) SMID [4] (g) SMOID [14] (h) Our result

Figure 9: Another underexposed video frame (a) enhanced by various methods (b)-(h) that are trained on the SMID dataset [4]
(zoom in to see details).

(a) Input (b) Camera Trajectory

(c) Ours with SMID [4] (d) Ours with SDSD

Figure 10: A real video frame (a) captured by iPhone X en-
hanced by our method trained on SMID [4] (c) and our SDSD
(d). (b) shows the phone’s camera setting (light blue) and
its trajectory (orange) in the 3D-reconstructed scene (please
zoom in to see details).

6. Conclusion
We have presented a paired high-quality video dataset

built using a mechatronic system. Each video pair in our
dataset is captured from an indoor/outdoor dynamic scene,
containing two spatially-aligned videos taken from low-
and normal-light conditions, respectively. Besides, we pro-
pose an end-to-end framework for video enhancement. Our
framework achieves noise reduction and illumination en-
hancement simultaneously. Extensive experiments with user
study are conducted, demonstrating the value of our dataset
and the effectiveness of our method.

The methods trained with the SDSD dataset effectively
enhance videos that are captured with a real camera trajec-
tory, e.g., the panning and rotation motion, as shown in the
user study. But they may not perfectly handle videos cap-
tured with serious camera shaking. Hence, we envision to
build another dataset using a robot arm that can precisely re-
peat the most challenging trajectories.
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