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Abstract—The microarchitecture design of a processor has
been increasingly difficult due to the large design space and time-
consuming verification flow. Previously, researchers rely on prior
knowledge and cycle-accurate simulators to analyze the perfor-
mance of different microarchitecture designs but lack sufficient
discussions on methodologies to strike a good balance between
power and performance. This work proposes an automatic
framework to explore microarchitecture designs of the RISC-
V Berkeley Out-of-Order Machine (BOOM), termed as BOOM-
Explorer, achieving a good trade-off on power and performance.
Firstly, the framework utilizes an advanced microarchitecture-
aware active learning (MicroAL) algorithm to generate a diverse
and representative initial design set. Secondly, a Gaussian process
model with deep kernel learning functions (DKL-GP) is built to
characterize the design space. Thirdly, correlated multi-objective
Bayesian optimization is leveraged to explore Pareto-optimal
designs. Experimental results show that BOOM-Explorer can
search for designs that dominate previous arts and designs de-
veloped by senior engineers in terms of power and performance
within a much shorter time.

I. INTRODUCTION

Recently, RISC-V, an open-source instruction set archi-
tecture (ISA) gains much attention and also receives strong
support from academia and industry. Berkeley Out-of-Order
Machine (BOOM) [1], [2], a RISC-V design fully in com-
pliance with RV64GC instructions, is competitive in power
and performance against low-power, embedded out-of-order
cores in academia. By adopting Chisel hardware construction
language [3], BOOM can be parametric, providing great
opportunities to explore a series of microarchitecture designs
that have a better balance on power and performance for
different purposes of use.

Microarchitecture defines the implementation of an ISA
in a processor. Due to different organizations and combi-
nations of components inside a processor, microarchitecture
designs under a specific technology process can affect power
dissipation, performance, die area, etc. of a core [4], [5].
Finding a good microarchitecture that can accommodate a
good balance between power and performance is a notorious
problem because of two restrictions. On the one hand, the
design space is extremely large and the size of it can be
exponential with more components to be considered, e.g., spe-
cial queues, buffers, branch predictors, vector execution unit,
external co-processors, efc. Thus, we cannot traverse and
evaluate each microarchitecture to retrieve the best one. On the
other hand, it costs a lot of time to acquire metrics, e.g., power,
performance, efc. when we verify one microarchitecture with
diverse benchmarks.
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In industry, the traditional solution is based on prior en-
gineering experience from computer architects. However, it
lacks scalability for newly emerged processors. In academia,
to overcome these two obstacles, researchers proposed various
arts, which can be categorized as two kinds of methodologies.
First, in view of the difficulty in constructing an analytical
model, researchers can otherwise characterize a microarchi-
tecture design space with fewer samples as much as possible
by leveraging statistical sampling and predictive black-box
models. Li et al. [6] proposed AdaBoost Learning with novel
sampling algorithms to explore the design space. Second,
to search for more designs within a limited time budget,
researchers often rely on coarse-grained simulation infrastruc-
ture rather than a register-transfer level (RTL) verification flow
to accelerate the process [7]-[10]. Moreover, by decreasing
redundant overhead, the simulation can be further speed up
[11]-[14].

Unfortunately, both of these academic solutions contain
several limitations. In the first place, despite the fact that
statistical analysis performs well when highly reliable mod-
els can be constructed, it fails to embed prior knowledge
on microarchitectures to further improve design space ex-
ploration. For another, to accelerate the simulation, coarse-
grained simulation infrastructure is used widely. Nevertheless,
most of them lose sufficient accuracy, especially for distinct
processors. The low quality of results is generated often due
to the misalignment between simulation and real running be-
haviors of processors. More importantly, because it is difficult
to model the power dissipation of modern processors at the
architecture level [15], some infrastructure cannot provide
power value, e.g., [8], [10]. In general, because of the afore-
mentioned limitations, academia lacks sufficient discussions
on methodologies that can explore microarchitecture designs
achieving a good trade-off between power and performance.

In this paper, following the first strategy, we propose
BOOM-Explorer address these issues. In BOOM-Explorer,
without sacrificing the accuracy of a predictive model, we em-
bed prior knowledge of BOOM to form a microarchitecture-
aware active learning (MicroAL) algorithm based on trans-
ductive experimental design [16] by utilizing BOOM RTL
samples among the entire design space as few as possible.
Secondly, a novel Gaussian process model with deep kernel
learning functions (DKL-GP) initialized through MicroAL, is
proposed to characterize the features of different microarchi-
tectures. The design space is then explored via correlated
multi-objective Bayesian optimization flow [17] based on



DKL-GP. Our framework can not only take advantage of fewer
microarchitecture designs as much as possible but also helps
us to find superior designs that have a better balance between
power and performance.

Our contributions are summarized as follows:

« A microarchitecture-aware active learning methodology
based on transductive experimental design is introduced
for the first time to attain the most representative designs
from an enormous RISC-V BOOM design space.

« A novel Gaussian process model with deep kernel learn-
ing and correlated multi-objective Bayesian optimization
are leveraged to characterize the microarchitecture design
space. With the help of DKL-GP, Pareto optimality is
explored between power and performance.

o We verify our framework with BOOM under advanced 7-
nm technology. The experimental results demonstrate the
outstanding performance of BOOM-Explorer on various
BOOM microarchitectures.

The remainder of this paper is organized as follows. Sec-
tion II introduces the RISC-V BOOM core and the problem
formulation. Section III provides detailed explanations on
the framework. Section IV conducts several experiments on
BOOM core to confirm the outstanding performance of the
proposed framework. Finally, Section V concludes this paper.

II. PRELIMINARIES
A. RISC-V BOOM Core

BOOM is an open-source superscalar out-of-order RISC-
V processor in academia and it is proved to be industry-
competitive in low-power, embedded application scenarios
(11, [2].

Fig. 1 demonstrates the organization of BOOM. Consist of
four main parametric modules, i.e., FrontEnd, IDU, EU, and
LSU, BOOM can execute benchmarks in distinct behaviors
via choosing different candidate values for each component
inside these modules. FrontEnd fetches instructions from
L2 Cache, packs these instructions as a sequence of fetch
packages, and sends them to IDU. IDU decodes instructions
as micro-ops and dispatches these micro-ops w.rt. their cat-
egories to issue queues in EU, the latter of which, triggered
by corresponding micro-ops and related logics, is responsible
for manipulating operands in an out-of-order manner. Finally,
some memory-related operations, i.e., loading data and storing
data, interact with LSU after EU calculates the results. In
addition, BOOM also integrates branch predictors, floating-
point execution units, vector execution units, efc.

Thanks to the parameterized modules provided by BOOM,
various BOOM microarchitectures can be acquired by con-
figuring the core with different parameters. Thus, divergent
trade-offs between power dissipation and performance to
meet various design requirements can be achieved, e.g., low-
power, and embedded applications. However, a satisfying
microarchitecture design is non-trivial to be found.

Across all parametric modules, a microarchitecture design
space of BOOM is constructed and shown in TABLE 1. Each
row of TABLE I defines structures of a component inside
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Fig. 1 BOOM implements a ten-stage pipeline, i.e., Fetch,
Decode, Register Rename, Dispatch, Issue, Register Read,
Execute, Memory, Writeback and Commit.

the module. RasEntry and BranchCount in FrontEnd are
considered since they have great impacts on the behaviors
of branch predictions, and thus incur different power and
performance. Because caches, e.g., D-Cache in LSU, often
runs at a lower frequency compared to other modules, the
component might be hotspots when many memory-related
requests occur in the instructions pipeline. A suitable struc-
ture of D-Cache can alleviate the burden, therefore different
organizations of D-Cache (i.e., associativity, block width, TLB
size, etc.) are also included for exploration. Besides, I-Cache
is also considered in the design space.

Different BOOM microarchitecture designs can be con-
structed with various combinations of candidate values. How-
ever, some combinations do not observe constraints of BOOM
design specifications as shown in TABLE II. Thus they are
illegal and cannot be compiled to Verilog. For example, each
entry of the reorder buffer traces status of every in-flight
but decoded instruction in the pipeline. If a microarchitecture
does not obey rule 2, reorder buffer may not reserve enough
entries for each decoded instruction or may contain redundant
entries that cannot be fully used at all. The last three rules
in TABLE II are added to simplify the design space. They
require the same number of entries or registers in respective
components and their additions will not affect the performance
of BOOM-Explorer. After we prune the design space w.rt.
rules in TABLE 1I, the size of the legal microarchitecture
design space is approximately 1.6 x 108,



TABLE I Microarchitecture Design Space of BOOM

Module |  Component | Descriptions | Candidate values
FetchWidth Number of instructions the fetch unit can retrieve once 4,8
FetchBufferEntry Entries of the fetch buffer register 8, 16, 24, 32, 35, 40
RasEntry Entries of the Return Address Stack (RAS) 16, 24, 32
FrontEnd BranchCount Entries of the Branch Target Buffer (BTB) 8, 12, 16, 20
ICacheWay Associate sets of L1 I-Cache 2,4,8
ICacheTLB Entries of Table Look-aside Buffer (TLB) in L1 I-Cache 8, 16, 32
ICacheFetchBytes Unit of line capacity that L1 I-Cache supports 2,4
DecodeWidth Number of instructions the decoding unit can decode once 1,2,3,4,5
DU RobEntry Entries of the reorder buffer 32, 64, 96, 128, 130
IntPhyRegister Number of physical integer registers 48, 64, 80, 96, 112
FpPhyRegister Number of physical floating-point registers 48, 64, 80, 96, 112
MemlssueWidth Number of memory-related instructions that can issue once 1,2
EU IntIssueWidth Number of integer-related instructions that can issue once 1,2,3,4,5
FplssueWidth Number of floating-point-related instructions that can issue once 1,2
LDQEntry Entries of the Loading Queue (LDQ) 8, 16, 24, 32
STQEntry Entries of the Store Queue (STQ) 8, 16, 24, 32
LSU DCacheWay Associate sets of L1 D-Cache 2,4,8
DCacheMSHR Entries of Miss Status Handling Register (MSHR) 2,4,8
DCacheTLB Entries of Table Look-aside Buffer (TLB) in L1 D-Cache 8, 16, 32

TABLE II Constraints of BOOM design specifications

Rule | Descriptions

FetchWdith > DecodeWidth
RobEntry | DecodeWidth *
FetchBufferEntry > FetchWidth
FetchBufferEntry | DecodeWidth
fetchWidth = 2x ICacheFetchBytes
IntPhyRegister = FpPhyRegister
LDQEntry = STQEntry
MemlssueWidth = FplssueWidth

0NN BN =
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means RobEntry should be divisible by
DecodeWidth.

B. Problem Formulation

Definition 1 (Microarchitecture Design). Microarchitecture
design is to define a combination of candidate values given
in TABLE 1. A microarchitecture design is legal if it satisfies
all constraints as referred to in TABLE II. Every legal
microarchitecture design to be determined is encoded as a
feature vector among the entire design space D. The feature
vector is denoted as x. For convenience, microarchitecture
and microarchitecture design in the following sections are the
same.

Definition 2 (Power). The power is to be defined as the
summation of dynamic power dissipation, short-circuit power
dissipation, and leakage power dissipation.

Definition 3 (Clock Cycle). The clock cycle is to be defined as
the clock cycles consumed when a BOOM microarchitecture
design runs a specific benchmark.

Provided with the same benchmark, power and clock cycle
are a pair of trade-off metrics since the lower cycles are,
the more power will be dissipated when a design integrates
more hardware resources to accelerate instructions execution.
Together, They reflect whether a microarchitecture design is
good or not. Power and clock cycle are denoted as y.

Definition 4 (Pareto Optimality). For a n-dimensional min-
imization problem, an objective vector f(x) is said to be
dominated by f(x') if

E|j€ [LTLL fj(m) <fj(xl)'
In this way, we denote x’ = x. In the entire design space, a
set of designs that are not dominated by any other is called

the Pareto-optimal set and they form the Pareto optimality in
this space.

(1)

In this paper, our objective is to explore Pareto optimality
defined in Definition 4 w.r.t. power and clock cycle for various
BOOM microarchitectures. Due to the power and clock cycle
are a pair of negatively correlated metrics, a microarchitec-
ture belonged to the Pareto-optimal set cannot improve one
metric without sacrificing another metric. To guarantee high
quality of results, rather than use coarse-grained simulation
infrastructure introduced in Section I, we evaluate power and
performance using commercial electronic automation (EDA)
tools and they are referred to as the VLSI flow. Based on the
above definitions, our problem can be formulated.

Problem 1 (BOOM Microarchitecture Design Space Ex-
ploration). Given a search space D, each microarchitecture
design inside D is regarded as a feature vector x. Power and
clock cycle form the power-performance space Y. Through
VLSI flow, the power and cycles y € Y can be obtained
according to x. BOOM microarchitecture design space explo-
ration is to be defined as to find a series of features X that
form the Pareto optimality among the corresponding Y C Y.
Hence, Y = {yly’ # y,Vy' € Y}, X = {z|f(x) e Y,Vx €



III. BOOM-EXPLORER
A. Overview of BOOM-Explorer

Fig. 2 shows an overview of BOOM-Explorer. Firstly, the
active learning algorithm MicroAL is adopted to sample a
set of initial microarchitectures from the large design space.
In this step, domain-specific knowledge is used as the prior
information to guide the sampling of the initial designs. Then,
a Gaussian process model with deep kernel learning functions
(DKL-GP) is built on the initial set. To explore the optimal
microarchitecture, the multi-objective Bayesian optimization
algorithm is used, with the Expected Improvement of Pareto
Hypervolume as the acquisition function, and the DKL-GP
model as the surrogate model. During this process, BOOM-
Explorer interacts with the VLSI flow to get the accurate per-
formance and power values of designs according to different
benchmarks. Finally, The outputs of BOOM-Explorer are the
set of explored microarchitectures in the iterative optimization
process, and the Pareto optimality is gained from the set.

Sampled Set

Bayesian Opt.

Fig. 2 Overview of the proposed BOOM-Explorer.

B. Microarchitecture-aware Active Learning Algorithm

Due to the time-consuming VLSI flow, to save time, only
a limited number of designs will be synthesized practically to
obtain power and performance. To guarantee that adequate
information is covered in the data set, two principles are
considered during the initialization. First, feature vectors
should cover the entire design space uniformly. Second, their
diversity should fully represent the characteristics of the
design space. Within a limited time budget, only push the
most representative microarchitecture to VLSI flow can we
alleviate the burden to get power and performance.

A naive solution is to sample microarchitectures randomly.
In literature, most previous works [18], [19] choose this
simple method directly for convenience. In addition, by ap-
praising the importance of each feature vector with suitable
distance measurement, greedy sampling [20] can be facilitated
to select representative microarchitecture designs.

To further improve the sampling, orthogonal design [6],
[21] is also utilized to pick up dissimilar microarchitectures
that are distributed orthogonally across the design space.

Algorithm 1 TED(U, y, )

Require: U is the unsampled microarchitecture design space,
4 is a normalization coefficient, and b is the number of
samples to draw.

Ensure: X: the sampled set with |X| = b.

X+ 0, Kpw + f(u,u), Yu,u’ € U;
2: fort=1—0bdo
3 @y < argmax Tr[Kyg (Kez + 1) " Keul; > Ky,

K., and K;lfuare calculated via f w.rt. corresponding
columns in K
X XUz, U U\ xy;
K+ K - Kua, (Kz,z, + pI) 'Kz
end for
return The sampled set X;

Nk

Nevertheless, the aforementioned methodologies are failed
to capture the key components of different microarchitec-
tures that bring great impacts to the trade-off in the power-
performance space.

Recently, witnessing the great performance improvement
attained by transductive experimental design (TED) in the
design space exploration of high-level synthesis [22], [23],
compilation and deployment of deep neural networks [24],
and efc., we introduce this method into the exploration of
microarchitectures for the first time.

TED tends to choose microarchitecture that can spread
across the feature space to retain most of the information
among the whole design space [16]. A pool of representative
feature vectors can be acquired with high mutual divergences,
by iteratively maximizing the trace of the distance matrix
constructed on a newly sampled design and unsampled ones.
Algorithm 1 shows the backbone of TED, where f represents
the distance function used in computing the distance matrix
K. Note that any suitable distance functions can be applied
without restrictions.

Unfortunately, TED cannot fully guarantee to generate a
good initial data set owing to a lack of prior knowledge of
microarchitecture designs. We are motivated to embed the
domain knowledge to improve its performance.

DecodeWidth as referred to in TABLE I decides the max-
imal number of instructions to be decoded as corresponding
micro-ops simultaneously. In consequence, it can affect the
execution bandwidth of EU and LSU (i.e., instructions exe-
cuted per clock cycle). Assigning a larger candidate value to
DecodeWidth and allocating a balanced amount of hardware
resources, on the one hand, can lead to greater performance
improvement. On the other hand, power dissipation will also
increase significantly. By clustering w.rt. DecodeWidth, the
power-performance space can be separated along the poten-
tial Pareto optimality, as shown in Fig. 3. Each cluster in
Fig. 3 represents a group of microarchitectures with different
candidate values for DecodeWidth in the power-performance
space. The entire design space is discrete and non-smooth
but nonetheless a large number of microarchitectures with
the same DecodeWidth achieve similar power-performance
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Fig. 3 Clustering w.r.t. DecodeWidth

characteristics within their sub-regions respectively. It inspires
us that we can select microarchitectures on the possible
sub-area from the initial design space, to better cover the
entire design space at the same time improve the diversity
of samples.

Inside each cluster, Algorithm 1 can be applied instead
of choosing the centroid to enlarge the initial data set. The
clustering w.r.t. DecodeWidth, together with TED, forms
MicroAL and the pseudo code is detailed in Algorithm 2.

First, we cluster the entire design space according to P,
which is the distance function with a higher penalty along
the dimension of DecodeWidth. One possible alternative can
be ® = (z; — ¢;)TA(x; — ¢j), with i € {1,---,|U|} and
j € {l,---,k}, where A is a pre-defined diagonal weight
matrix. Next, we apply TED for each cluster to sample the
most representative feature vectors, i.e., line 9 in Algorithm 2.
Finally, containing all of the sampled microarchitectures, the
initial data set is formed.

C. Gaussian Process with Deep Kernel Learning

Given the initial data set, it is hard to build a reliable model
to fully capture the characteristics of the design space yet.

However, thanks to robustness and non-parametric approxi-
mation features reside in Gaussian process (GP) models, they
have been applied in various domains [24]-[26]. In view of
the success, BOOM-Explorer adopts GP as well.

Assume that we have feature vectors X = {x1, x2,...x,}
and they index a set of corresponding power or clock cycles
vy = {y1,%2,...,Yn}. GP provides a prior over the value
function f as f(x) ~ GP(u,ke), where p is the mean
value and the kernel function k is parameterized by 6. Then,
Gaussian distributions can be constructed with any collection
of value functions f according to Equation (2)

F=1f(@), f(x2), ... f(@n)]" ~ N(p, Kxx10), ()
where K x x|g is the intra-covariance matrix among all feature
vectors and calculated via [KXX‘Q]M = ko(zx;, z;). A Gaus-
sian noise N(f(x), 02) is necessary to model uncertainties of
power or clock cycles generated by different microarchitecture
designs. Thus, given a newly sampled feature vector x., the
predictive joint distribution f, that depends on y can be

Algorithm 2 MicroAL(U, y, b)

Require: U is the unsampled microarchitecture design space,
4 is a normalization coefficient, b is the number of
samples that to draw.

Ensure: X: the sampled set with |X| = b.

12X+ 0;
2: initialize k clusters randomly with the centroids set C' =
{e1,¢a,..., ¢} from U;
3: while not converged do
¢ = argmin ® (z; —
je{1,2,....k}

distance function considering DecodeWidth
U|

[ .
2 He'=j}a:
5: c; = 77““
X 1)
: end while

6
7: € + neighborhood of ¢; € C, Vi € {1,2,...,k};
8
9

cj), Ve; € U; > P is the

, Vi e{1,2,..,k};

: for X in C do

. X =TED(K. 1, | 2));
10 X=XUX;
11: end for
12: return The sampled set X;

> Algorithm 1

calculated according to Equation (3)

pl [Kxxjg+02l Kxq.e
Ly~ N(| P G
fely qm}[ Ko, x /6 %mw) 3)

By maximizing the marginal likelihood of GP, 6 is opti-
mized to sense the entire design space. Nevertheless, the
performance of GP normally depends on the expressiveness
and hyper-parameters of kernel functions kg, e.g., radial bias
functions, and etc. Therefore, a suitable kernel function is
necessary to the performance of GP.

In the recent years, deep neural networks (DNN) have
shown great potential in various applications and tasks as the
black-box model to extract useful features [27]-[29]. Thus,
with the help of DNN as a meta-learner for kernel func-
tions, we can relieve workloads in tuning hyper-parameters
of kernel functions. By leveraging multi-layer non-linear
transformations and weights to calibrate kernel functions with
Equation (4) [30], deep kernel functions can provide better
performance.

ko(xi, @j) — kw.o(p(Ti, w), p(x;j, w)) “)
o in Equation (4) denotes non-linear transformation layers
stacked by DNN and w denotes weights in DNN. Enhanced
with the expressive power of DNN, DKL-GP is constructed

and then plugged into Bayesian optimization as the surrogate
model.

D. Correlated Multi-Objective Design Exploration

Notwithstanding DKL-GP can be used to evaluate a single
object (i.e., power or clock cycles) well, to find the Pareto-
optimal set still remains an issue, especially for such nega-
tively correlated objectives.
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Fig. 4 An example of Pareto hypervolume is shown in the
power-performance space. (a) The region covered in orange
is dominated by the currently explored Pareto-optimal set
denoted as circles in blue. Circles in red denote dominated
microarchitecture designs. (b) The circle in green denotes an
explored potential candidates of the Pareto-optimal set among
the entire design space. EIPV is represented as the area of
sub-region colored in light green.

A traditional methodology usually integrates different ac-
quisition functions to solve it. Lyu et al. [31] combines
Expectation Improvement (EI), Probability Improvement (PI)
and Confidence Bound (i.e., UCB and LCB) to form a multi-
objective optimization framework in analog circuit design. It
still leads to sub-optimal results except that we can select
a good composite of acquisition functions for specific prob-
lems. To solve the problem more efficiently, we introduce
Expected Improvement of Pareto Hypervolume (EIPV) [32]
and demonstrate its usability to characterize the trade-off in
the power-performance space of different microarchitecture
designs.

In our problem, a better microarchitecture can not only
run faster (i.e., it gets fewer average clock cycles among all
benchmarks) but also dissipate less power. Given a reference
point vr € Y, Pareto hypervolume bounded above from
Vrer 18 the Lebesgue measure of the space dominated by the
Pareto optimality as shown in Fig. 4(a) [33]. The shaded area
in orange, indicating Pareto hypervolume w.rt. the current
Pareto-optimal set P(Y) is calculated by Equation (5)

PVOIUrcf(:P(%)) = / ]]-[y Uref H ]]- y* dy,
b y.€P(Y)
(%)

where 1(-) is the indicator function, which outputs 1 if its
argument is true and O otherwise.

Vs 18 carefully chosen for convenience of calculation.
Ideally, a feature vector @’ that can increase the likelihood
of DKL-GP maximally should be picked up from the de-
sign space D in every iteration. Thus, a better predictive
Pareto-optimal set, enveloping the previous one by improving
PVol,, . (P(Y)) is the direct solution according to Equation (6)
where f : * — y € Y is denoted as DKL-GP. Then the feature

vector @, = arg max EIPV(z’|D) can be sampled as a new
€D
candidate for the predlctlve Pareto optimality.

Algorithm 3 BOOM Explorer(D, T, 1, b)

Require: D is the microarchitecture design space, T is the
maximal iteration number, p is a normalization coefficient
and b is the number of samples to draw.

Ensure: Pareto-optimal set X that forms Pareto optimality
among D.

1: Xy < MicroAL(D, y1, b); > Algorithm 2
2: Push X to VLSI flow to obtan corresonding power and
clock cycles Y';

3: L+ Xo;
4: U+ D \ L;

5: fori=1<+T do

6

7

Establish and train DKL-GP on L with Y,
@, < arg max EIPV(z|U); > Equation (7)

8: Push x, %g VLSI flow to obtain corresponding power
and clock cycles and add to Y;

9: L+ LUz, U+ U\,

10: end for

11: Construct Pareto-optimal set X from L;

12: return Pareto-optimal set X;

EIPV (@[ D) = By (a) [PVolu,, (P(Y) U f(a'))

— PVol,, . (P(Y))].

By decomposing the power-performance space as grid cells
shown in Fig. 4, Equation (6) can be further simplified as
Equation (7)

EIPV(2/|D) = Z / PVol,. (y

CeCm
where C,q denotes non-dominated cells. Region colored in
green as referred to Fig. 4(b) shows the improvement of
Pareto hypervolume. In Equation (7), p(y|D) is modeled as
a multi-objective GP for power and clock cycles where the
kernel function in Equation (4) parameterized by DNN can
be Matérn 5/2 kernel.

Equipped with all aforementioned methodologies, Algo-
rithm 3 provides the end-to-end flow of BOOM-Explorer. We
first leverage Algorithm 2 to sample representative microar-
chitectures (e.g., different branch prediction capability, cache
organization, various structures of issue unit, efc.). DKL-GP
is then built to characterize the design space. Finally, with
Bayesian optimization, the Pareto-optimal set is explored via
the maximization of EIPV.

(6)

p(y,|D)dy, ()

IV. EXPERIMENTS

We conduct comprehensive experiments to evaluate the pro-
posed BOOM-Explorer. Chipyard framework [34] is leveraged
to compile various BOOM RTL designs. We utilize 7-nm
ASAP7 PDK [35] for the VLSI flow. Cadence Genus 18.12-
e012_1 is used to synthesize every sampled RTL design, and
Synopsys VCS M-2017.03 is used to simulate the design
running at 2GHz with different benchmarks. PrimeTime PX
R-2020.09-SP1 is finally used to get power value for all
benchmarks.
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Fig. 5 Learned Pareto optimal set of BOOM microarchitec-
tures.

A. Benchmarks and Baselines

Since it is time-consuming to verify every sampled mi-
croarchitecture design online, we construct an offline data set.
Consisting of 994 legal microarchitectures, the offline data set
is sampled randomly and uniformly from the BOOM design
space as referred to in TABLE I. Each design is fed to the
VLSI flow to get power and clock cycles with high fidelity
for all benchmarks and the corresponding time to conduct
the flow is also recorded. The VLSI flow for each design
takes approximately from 6 hours to more than 14 hours
to finish. All of experiments are conducted on this data set.
Several benchmarks are selected to test the performance of
microarchitectures, i.e., median, mt—vvadd, whetstone,
and mm from commonly used CPU benchmark suites. These
four benchmarks are complete to all RISC-V instructions,
e.g., instructions that transfer data between registers and mem-
ory, floating-point manipulations, multi-threading executions,
vector instructions, efc. The average clock cycles and power
on the four benchmarks are denoted as the performance and
power value for each design respectively.

Several representative baselines are compared with BOOM-
Explorer. The ANN-based method [18] (shorted as ASP-
LOS’06), stacks ANN to predict the performance of designs,
including a complicated chip multiprocessor. The regression-
based method [19] (termed HPCA’07), leverages regression
models with non-linear transformations to explore the power-
performance Pareto curve on POWER4/POWERS5 designs.
The AdaBoost-RT-based method [6] (abbreviated as DAC’16),
utilizes OA sampling and active learning-based AdaBoost re-
gression tree models to explore microarchitectures w.zt. their
performance. The aforementioned arts are proved effective in
their works of the exploration of microarchitectures respec-
tively. Therefore, it is requisite to compare these method-
ologies with BOOM-Explorer. The HLS predictive model-
based method [36] (named DAC’19), exploring the high-level
synthesis design is also chosen as our baseline. Although the
starting point is different, their method is proved to be robust
and transferable. Moreover, we also compare BOOM-Explorer
with traditional machine learning models, i.e., support vector
regression (SVR), random forest, and XGBoost [37]. For fair
comparisons, experimental settings of the baselines are the

TABLE III Normalized Experimental Results

Methodologies | Normalized ADRS | Normalized ORT *

SVR 0.2399 1.0000

Random Forest 0.2263 0.9763
XGBoost 0.2171 1.010
ASPLOS’06 [18] 0.1948 0.9437
HPCA’07 [19] 0.1907 0.8544
DAC’16 [6] 0.1473 3.0102

DAC’19 [36] 0.1884 0.8973
BOOM-Explorer w/o MicroAL 0.1441 0.3307
BOOM-Explorer 0.1145 0.3556

* ORT: Overall Running Time

same as those mentioned in their papers. Simulated anneal-
ing is leveraged for traditional machine learning algorithms,
e.g., SVR, Random Forest, and XGBoost.

B. Experiments Settings

In the settings of BOOM-Explorer, DKL-GP is stacked
with three hidden layers, each of which has 1000, 500, and
50 hidden neurons respectively, and it adopts ReLU as the
non-linear transformation for deep kernel learning. The Adam
optimizer [38] is used, with an initial learning rate equals
to 0.001. DKL-GP is initialized with 5 microarchitectures
sampled according to MicroAL and then BOOM-Explorer
performs Bayesian exploration with 9 rounds sequentially. All
experiments together with baselines are repeated 10 times and
we report corresponding average results.

Average distance to reference set (ADRS) and overall
running time (ORT) are two metrics for performance com-
parisons. ADRS, as shown in Equation (8), is widely used
in design space exploration problems to measure how close
a learned Pareto-optimal set to the real Pareto-optimal set of
the design space.

1
~yerl

where f is the Euclidean distance function. I' is the real
Pareto-optimal set and 2 is the learned Pareto-optimal set.
ORT measures the total time of algorithms including initial-
ization and exploring.

C. Results Analysis

Fig. 5 shows the learned Pareto-optimal sets obtained by
the baselines and BOOM-Explorer. The results show that the
Pareto-optimal set learned by BOOM-Explorer is much closer
to the real Pareto-optimal set and thus outperforming baselines
remarkably.

The normalized results of ADRS and ORT are listed
in TABLE III. BOOM-Explorer outperforms ASPLOS’06,
HPCA’07, DAC’16, and DAC’19 by 70%, 66%, 29%, and
64% in ADRS, respectively. Meanwhile, it accelerates the
exploring by more than 88% compared with DAC’16. Since
the prior knowledge of BOOM microarchitecture designs is
embedded in our method, DKL-GP can outperform baselines
by a large margin in ADRS and ORT. The effectiveness
of the proposed MicroAL is demonstrated by conducting
comparative experiments of BOOM-Explorer with random
sampling instead of MicroAL. The corresponding results are



TABLE IV Comparison with two-wide BOOM

Micro-architecture Design \ Design Parameters *

\ Average Power (unit: watts) \ Average Clock Cycles

Two-wide BOOM

‘ [4, 16,32, 12,4, 8, 2,2, 64, 80, 64, 1, 2, 1, 16, 16, 4, 2, 8] ‘

6.0700 x 1072 | 74915.2963

Pareto Design *

‘ [4, 16, 16, 8, 2, 8, 2, 2, 32, 64, 64, 1, 3, 1, 24, 24, 8, 4, 8] ‘

5.8600 x 102 \ 73333.7407

* The parameters are in the same order as TABLE I
* Pareto Design is found by BOOM-Explorer
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Fig. 6 Comparisons of power and performance between the Pareto design found by BOOM-Explorer and the two-wide BOOM.

listed as BOOM-Explorer w/o MicroAL. The results show
that without MicroAL, the performance of BOOM-Explorer
would be close to DAC’16.

If a larger initialization set is sampled via MicroAL,
BOOM-Explorer will be able to gain a better predictive
Pareto-optimal set. Finally, we can achieve different designs
to strike good balances between power and performance.

D. The Optimal BOOM Microarchitecture Design

Our Pareto design is chosen from the Pareto-optimal set
found by BOOM-Explorer and it is compared with a two-
wide BOOM developed by senior engineers [1].

The aforementioned two microarchitectures of BOOM are
listed in TABLE IV. Indicated by “Design Parameters” in
TABLE 1V, our Pareto design has the same DecodeWidth
compared with the two-wide BOOM. However, the Pareto
design reduces hardware components on the branch predictor
(i.e., RasEntry, BranchCount, efc.), entries of the reorder
buffer, efc., but enlarges instructions issue width, LDQ, STQ,
etc. Moreover, it has different cache organizations, e.g., dif-
ferent associate sets. Because 1.SU introduced in Section II-A
tends to become a bottleneck, the Pareto design increases
hardware resources for LDQ, STQ, and meanwhile increases
associate sets and MSHR entries for D-Cache to overcome
more data conflicts. Furthermore, the Pareto design reduces
resources of RAS and BTB since there are not many branches
or jump instructions in these benchmarks. Via reducing redun-
dant hardware resources while increasing necessary compo-

nents, our Pareto design achieves a better trade-off on power
and performance.

To demonstrate the superiority of the Pareto design com-
pared with the two-wide BOOM, both of them are evaluated
on more benchmarks, and TABLE IV shows the average
power and clock cycles of all these benchmarks. These
benchmarks are chosen from different application scenarios,
e.g., add-int, add-fp, efc. are from ISA basic instructions, iir,
firdim, etc. are from DSP-oriented algorithms [39], compress,
duff, efc. are from real-time computing applications [40],
etc. Fig. 6 shows the comparison of power and performance
between them. For all of these benchmarks, our Pareto de-
sign runs approximately 2.11% faster and at the same time
dissipates 3.45% less power than the two-wide BOOM.

V. CONCLUSIONS

In this paper, BOOM-Explorer is proposed to search for
Pareto optimality among the microarchitecture design space
within a short time. To the best of our knowledge, this is
the first work introducing automatic design space exploration
solution to the RISC-V community. We expect to see a lot of
researches in our community to further improve microarchi-
tecture design space explorations of processors.
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