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Abstract—TPL-friendly detailed routers require a systematic approach
to detect TPL conflicts. However, the complexity of conflict graph (CG)
impedes directly detecting TPL conflicts in CG. This work proposes
a token graph-embedded conflict graph (TECG) to facilitate the TPL
conflict detection while maintaining high coloring-flexibility. We then
develop a TPL aware detailed router (TRIAD) by applying TECG to
a gridless router with the TPL stitch generation. Compared to a greedy
coloring approach, experimental results indicate that TRIAD generates
no conflicts and few stitches with shorter wirelength at the cost of 2.41×
of runtime.

I. INTRODUCTION

As manufacturing process node enters the nano-meter era, the
gap between the illumination wavelength of 193nm and the target
process node becomes increasingly larger. The semiconductor in-
dustry encounters the limitation of manufacturing sub-22nm due to
the delay of the next generation lithograph (NGL) such as extreme
ultraviolet (EUV) and E-beam direct write [1]. To bridge the gap,
double patterning lithography (DPL) is adopted, which decomposes a
single layer into two masks (colors) to increase the pitch and enhance
the resolution [2].

Deploying DPL involves two challenges. Layout decomposition
requires assigning two features to opposite colors (masks) if their
spacing is less than a specific spacing, denoted as spdp. One coloring
conflict occurs when two features whose spacing is less than spdp
cannot be assigned to different masks. Stitch generation, as the
second challenge, is used to solve the coloring conflicts at the cost
of yield loss due to the high sensitivity of stitches due to the
overlay error. However, some coloring conflicts cannot be solved
even after the stitch generation, e.g., native conflicts. Figure 1 shows
that one un-decomposable layout (Fig. 1(a)) becomes decomposable
after generating one stitch (Fig. 1(b)). Figure 1(c) depicts one layout
containing native conflicts in which the spacing between arbitrary
two features is less then spdp.

To further shrink the process nodes below 22nm, the paradigm
of DPL can be extended to the triple patterning lithography (TPL)
to compensate the delay of NGL. If single exposure half-pitch is
about 40nm, the 193nm lithography could be used to manufacture
the 11nm process node [3]. Compared to DPL, TPL contains one
additional mask and can easily solve the native conflicts of DPL.
In the example of Fig. 1(c), TPL assigns the three features to three
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masks, respectively.
Successfully carrying out the layout decomposition requires layouts

containing no native conflicts. Considering DPL in the layout syn-
thesis, especially in the detailed routing stage, facilitates generating
layouts without native conflicts. Cho et al. [4] developed the first
DPL-friendly detailed routing approach which greedily determined
the masks of routed wire segments to avoid generating layouts
with native conflicts. Gao and Macchiarulo [5] proposed lazy color
decision and last conflict segment recording to enhance the DPL-
aware detailed routing based on [4]. Lin and Li [6] developed a
deferred coloring assignment-based gridless detailed routing flow
to escape from the suboptimum that may be reached by adopting
the greedy coloring strategy. Yuan and Pan [7] spread wires to
simultaneously minimize the number of conflicts and stitches, while
introducing as less the layout perturbation as possible. On TPL,
previous researches only focus on the layout decomposition. Cork et
al. [8] applied a SAT solver to decompose layouts into three colors.
Bei et al. [9] proposed a novel vector programming formulation for
TPL decomposition and applied a semidifinite programming (SDP) to
solve the problem effectively. Chen et al. [10] and Mebarki et al. [11]
proposed a self-aligned triple patterning (SATP) process to extend the
193nm immersion lithography to half-pitch 15nm patterning.

Similar to DPL, generating TPL-friendly layouts, especially in the
detailed routing stage, becomes urgent as TPL is being considered
and adopted in the industry [12]. Generating TPL-friendly layouts
is more difficult than the TPL layout decomposition while the TPL
decomposition has been shown as a NP-complete problem [9]. The
DPL coloring conflicts can be easily detected by finding an odd-
length cycle in a conflict graph (CG) [13] [6] [5], which cannot be ap-
plied to detect TPL coloring conflicts. The greedily coloring approach
such as [4] can be directly applied to generate TPL-friendly layouts.
However, greedily determining the colors of routed wire segments
significantly sacrifices the flexibility of coloring assignment, which
may result in generating native conflicts and introducing unnecessary
stitches. Moreover, the complexity of CG impedes directly detecting
TPL coloring conflicts with high flexibility of coloring assignment
in one CG. Figure 2(a) depicts one layout with eight features. One
greedy coloring approach sequentially colors features (A, B, C, D,
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Figure 1. Challenges of DPL: (a) layout cannot be directly decomposed into
two masks; (b) layout becomes decomposable after splitting one feature by
generating one stitch; (c) layout contains native conflict.



A
H

E

B C D

G

F

(a)

A
H

E

B C D

G

F

(b)

A
H

E

B C D

G

F

(c)

Figure 2. Effects of coloring ordering to TPL coloring result: (a) layout
contains eight features; (b) sequentially coloring (A, B, C, D, E, F , G, H)
with colors (c1, c2, c3, c1, c2, c3, c1, c2) causes G and H un-colorable; (c)
coloring result without conflicts exists.

E, F , G, H) in Fig. 2(a) with colors (c1, c2, c3, c1, c2, c3, c1, c2).
Figure 2(b) displays the coloring result, in which G and H become
un-colorable. Nevertheless, the layout can be colored without any
un-colorable feature as shown in Fig. 2(c). Therefore, a TPL conflict
detection with high coloring-flexibility and low detection-complexity
is desired in a correct-by-construction approach.

In this work, a token graph-embedded conflict graph (TECG),
comprising a token graph (TG) and a conflict graph (CG), is proposed
to enable detailed routers to generate TPL-friendly layouts by a
correct-by-construction approach. One TG is used to maintain the
coloring relation among different vertex sets in one CG. In one
TG, one strictly colored component (SCC) is constructed to fix the
coloring relation among certain vertex sets in one CG. We apply the
proposed TECG to a detailed routing model [14] [15] to implement a
triple patterning lithography aware detailed router (TRIAD). During
the path searching, TRIAD adopts the TECG to detect if any TPL
conflict occurs by the current routing wire segment. After detecting
solvable TPL conflicts, TRIAD utilizes the TECG to generate stitches
in wire segments. With the assistance of TECG, TRIAD can generate
stitches which cannot be generated by adopting the conventional DPL
stitch generation scheme. Notably, the TPL stitch generation scheme
can split one wire segment into several segments even when the
wire is entirely intersected by the TPL effect regions of other wire
segments.

The main contribution of this paper is to realize a TPL aware
detailed router TRIAD with the following two novel techniques:

• A TECG is proposed to assist detailed routers in detecting
the TPL conflicts in a correct-by-construction approach while
keeping high coloring-flexibility.

• A TPL stitch generation scheme is proposed to generate stitches
which may not be generated by adopting the conventional DPL
stitch generation scheme.

The remainder of the paper is organized as follows: Section II
presents the basic concepts and the problem formulation. Sections III
and IV introduce the proposed TECG and TRIAD, respectively. Next,
Section V summarizes the experimental results. Brief conclusions are
drawn in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Conflict Graph

Kahng et al. [13] first adopted a conflict graph (CG) to maintain the
relationship among wire segments for the DPL layout decomposition.
A vertex in one CG represents one wire segment in a layout. An
edge between two vertices, vi and vj , in one CG is generated when
the minimum spacing between the wire segments represented by vi
and vj is smaller than minimum coloring spacing, denoted as spdp.
One DPL coloring conflict occurs when there is an odd number of
connected vertices in a cycle in one CG.
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Figure 3. Routing graph construction of NEMO [14] [15]: (a) contour
generation for each routed wire; (b) routing graph construction and PMT
extraction.

B. Routing Model

The detailed routing can be classified into grid-based one and
gridless one based on the utilized routing models. While utilizing the
routing resources in a dense layout better than the conventional grid-
based routers do, the gridless routers construct more complex data
structures than grid-based routers owing to the ability to accommo-
date the routing rules in the routing graph. Besides, to fit the demand
of regular layout designs, gridless routers can also generate on-grid
routing wires with an on-grid feature. Two conventionally adopted
gridless routers are tile-based one and implicit connection graph-
based one, which possess the advantages of low path propagation
complexity and fast routing graph construction, respectively [16] [17].

NEMO [14] [15] is an implicit connection graph-based router
with both the benefits of tile-based and implicit connection graph-
based routers. Before each routing, NEMO expands each obstacle
and routed net by half of a wire width hww and one wire spacing
spw to generate contours as shown in Fig. 3(a). NEMO constructs the
implicit connection graph by extracting all borders of contours (the
dotted lines in Fig. 3(b)). In the propagation stage, NEMO performs
the path propagation by identifying the adjacent pseudo-maximum
horizontally/vertically stripped tiles (PMTs) of the last PMT in the
minimum-cost path and then expanding the connected PMT list. The
path propagation is repeated until the PMT containing the target is
reached. Accordingly, NEMO generates routing wire segments by
retracing the routing result and then places new wire segments on
the layout. In Fig. 3(b), three PMTs are passed from S to T , and
NEMO traces them to construct the final routing result.

C. Problem Formulation

Problem 1 (TPL Aware Detailed Routing Problem): The mini-
mum coloring spacing of TPL sptp indicates that two wire segments
need to be assigned to different masks when their spacing is smaller
than sptp. Given a netlist and sptp, the detailed routing for all nets
is performed to minimize the number of stitches and TPL conflicts.

III. TECG

One conflict graph (CG) is used to maintain the physical coloring
relations among all wire segments. The higher routed ratio, the
higher complexity of CG. In Fig. 2(c), the decomposable layout is
acquired only when D, G, and H are assigned to the identical color,
which indicates that maintaining the consistent coloring relations
among disconnected vertices in one CG can assist detailed routers
in generating TPL-friendly results. However, maintaining certain
coloring relations among non-adjacent vertices in one CG is quite
difficult. Therefore, one token graph (TG) is proposed to maintain
the logical coloring relation among sets of wire segments. Before
introducing the proposed TG, the terminology of CG is defined as
follows.

Definition 1 (CG): A CG GC = (V C , EC) contains a vertex set
V C representing all wire segments in one layer and an edge set EC
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Figure 4. TECG of layout in Fig. 2(c): (a) CG; (b) TG.

representing the minimum distance of two vertices, vci ∈ V C , vcj ∈
V C , and i ̸= j, is smaller than sptp.

Definition 2 (Token): A token represents a potential color. Each
vertex vci ∈ V C is assigned a token T to represent its potential color,
denoted as token(vci ) = T . Each token T contains a CG vertex set,
denoted as V C

t (T ) ⊂ V C where ∀vcj ∈ V C
t (T ), token(vcj ) = T , to

indicate all vertices in V C
t (T ) is assigned to T .

Definition 3 (TG): A TG GT = (V T , ET ) comprises a vertex set
V T representing all tokens in one layer and an edge set ET . Each
edge in ET between two tokens, Ti ∈ V T , Tj ∈ V T and i ̸= j,
represents that there exists at least one edge in GC between V C

t (Ti)
and V C

t (Tj).
Definition 4 (Strictly Colored Component (SCC)): One SCC is

defined as one three-tuple (Ti, Tj , Tk) where Ti ∈ V T , Tj ∈ V T ,
and Tk ∈ V T comprise one three-clique in GT . TG may contain a
set of SCCs.

Definition 5 (TECG): A TECG GT C comprises one CG GC and
one TG GT . A CG/TG may comprise several connected compo-
nents, and each component is a subgraph of CG/TG and named as
CSG/TSG. TPL conflict can be detected by finding a conflicting edge
ec ∈ EC between vci ∈ V C and vcj ∈ V C where token(vci ) =
token(vcj ).

The proposed TG enables detailed routers to maintain high
coloring-flexibility. Instead of assigning physical colors into wire
segments, tokens are used to represent the potential colors. Therefore,
one TG may contain more than three tokens even when TPL provides
only three colors in each layer. Figures 4 depicts the TECG of
the layout in Fig. 2(c). In Fig. 4(a), A and C are assigned to
T1; B and E are assigned to T2; D, G, and H are assigned to
T3; and F is assigned to T4. The corresponding TG as shown in
Fig. 4(b) contains four tokens, T1, T2, T3, and T4, and one SCC
scc = (T1, T2, T3). Therefore, the coloring result in Fig. 2(c) can be
obtained by assigning T1, T2, and T3 to c1, c2, and c3, respectively,
while T4 can be assigned to c1 or c2. Notably, the number of vertices
and edges of TG is much less than that of CG.

A. Token Graph Reduction

The coloring relation between non-adjacent tokens may become
consistent after inserting an edge in one TG. Merging these tokens
can effectively compact TG to facilitate TPL conflict detection. Two
disconnected tokens Tw ∈ V T and Tx ∈ V T are merged when there
exists one SCC scc = (Tx, Ty, Tz) in GT where Ty and Tz connect
to Tw. After merging Tw and Tx, the adjacent tokens of Tw and
Tx connect to the merged token, which conduces to further graph
reduction.

Algorithm 1 depicts the algorithm of TG Update with two con-
nected tokens Ti and Tj . TG Update finds if there exists one
scci = (Ti, Ti1, Ti2) ∈ SSCC where Tj connects to Ti1 but not
Ti2. If scci exists, Tj and Ti2 are merged (lines 1–3). Otherwise,
TG Update tries to merge Ti with one token in an existing SCC in a
similar scenario (lines 5–7). When the above two conditions cannot be
met, TG Update finds if any SCC, such as scccom = (Ti, Tj , Tk) ∈

Algorithm 1 TG Update

Require: Two connected tokens Ti ∈ V T and Tj ∈ V T , one SCC
set SSCC

1: Find scci = (Ti, Ti1, Ti2) ∈ SSCC such that Tj connects to Ti1

but not Ti2;
2: if scci exists then
3: Token Merging(Tj , Ti2);
4: else
5: Find sccj = (Tj , Tj1, Tj2) ∈ SSCC such that Ti connects to

Tj1 but not Tj2;
6: if sccj exists then
7: Token Merging(Ti, Tj2);
8: else
9: Find scccom = (Ti, Tj , Tk) ∈ SSCC ;

10: if scccom exists and Ti and Tj have one common adjacent
token Tcom ̸= Tk then

11: Token Merging(Tk, Tcom);
12: else if Ti and Tj have one common adjacent token Tcom

then
13: Generate sccnew = (Ti, Tj , Tcom);
14: SSCC := SSCC ∪ sccnew;
15: TG Update(Ti, Tj);
16: end if
17: end if
18: end if

Algorithm 2 Token Merging

Require: Tw ∈ V T , Tx ∈ V T , one SCC set SSCC

1: Merge Tw and Tx into Tmrg;
2: for all scc ∈ SSCC do
3: if scc contains Tw or Tx then
4: Update scc by replacing Tw or Tx by Tmrg;
5: end if
6: end for
7: Remove redundant SCC from SSCC ;
8: for all token t ∈ {V T

ad(Tmrg)− {V T
ad(Tw) ∩ V T

ad(Tx)}} do
9: TG Update(Tmrg , t);

10: end for

SSCC , contains Ti and Tj . If scccom exists and Ti and Tj have an
other common adjacent token Tcom, Tk and Tcom are merged (lines
9–11). If no tokens can be merged and Ti and Tj have one common
adjacent token Tcom, TG Update generates one SCC, and recursively
calls itself until no more tokens/SCCs can be merged/generated (lines
12–16).

Assume that Tw and Tx are merged into Tmrg . Let V T
ad(Tw) and

V T
ad(Tx) be the adjacent vertex sets of Tw and Tx in GT , respectively.

After merging Tw and Tx, the adjacent vertex set of Tmrg is
V T
ad(Tmrg) = V T

ad(Tw)∪V T
ad(Tx). Therefore, token merging reduces

|V T | and |ET | by one and |V T
ad(Tw)| + |V T

ad(Tx)| − |V T
ad(Tmrg)|,

respectively. Notably, some redundant TG edges are removed after
token merging, and the inserted edges of the merged token can further
benefit in simplifying TG. Algorithm 2 displays the algorithm of
merging two tokens Tw and Tx. Merging Tw and Tx into Tmrg

requires scc ∈ SSCC being updated by replacing Tw or Tx by Tmrg

(lines 1–5). The replacement may cause two SCCs to contain the
same tokens, resulting in redundant SCCs. After updating SCCs, the
redundant SCCs are removed, if any (line 7). The additional edges of
the merged token can further assist in graph reduction. (lines 8–10).



Algorithm 3 TECG Update

Require: GT C , vci ∈ V C and vcj ∈ V C to be connected
1: Connect vci and vcj in GC ;
2: if token(vci ) = token(vcj ) then
3: Detect one TPL conflict;
4: else if token(vci ) and token(vcj ) are disconnected in GT then
5: Connect token(vci ) and token(vcj );
6: TG Update(token(vci ), token(v

c
j ));

7: end if

B. TECG Update

In the routing stage, the vertices representing routing wire segments
are inserted into one CG, and new tokens are generated in one TG
to represent the potential colors of routing wire segments. When
vci ∈ V C and vcj ∈ V C are connected by an edge, an edge in
one TG between token(vci ) and token(vcj ) needs to be generated, if
necessary. Algorithm 3 shows TECG Update by connecting vci ∈ V C

and vcj ∈ V C . Firstly, vci and vcj are connected (line 1). One TPL
conflict is detected when token(vci ) and token(vcj ) are identical
(lines 2–3). If token(vci ) and token(vcj ) in the TG are disconnected,
token(vci ) and token(vcj ) are connected, and then TG Update is
used to compact the TG, if possible (lines 4–6).

Figure 5(a) depicts one TECG with one CG containing seven
vertices, one TG containing seven vertices and ten edges, and two
SCC scc1 = (T1, T2, T7) and scc2 = (T3, T4, T5). Connecting C
and G (the dashed line) in the CG generates the connection between
T3 and T7 (the dashed line) in the TG. Therefore, TG Update(T3, T7)
merges T1 and T3 into T1′ , and the two SCCs are updated by
replacing T1 and T3 with T1′ as shown in Fig. 5(b). Next, because
T5 is not a common adjacent token of T1 and T3 in Fig. 5(a),
TG Update(T1′ , T5) merges T2 and T5 into T2′ followed by updating
SCCs by replacing T2 and T5 with T2′ as shown in Fig. 5(c).
Similarly, T4 is not a common adjacent token of T2 and T5 in
Fig. 5(c) so TG Update(T4, T2′) updates TG as shown in Fig. 5(d).
Notably, after replacing T4 and T7 with T3′ , the three tokens of
two SCCs become identical, requiring removing one redundant SCC.
Therefore, one SCC is removed as shown in Fig. 5(d). Finally,
TG Update(T2′ , T6) is called because T6 is not a common adjacent
token of T2 and T5 in Fig. 5(b). Figures 5(e) depicts the updated
TECG with one SCC (T1′ , T2′ , T4′) where the assigned token of
each vertex in CG is also updated. Notably, before connecting C
and G in the CG, the number of TG vertices, TG edges, and SCCs
are seven, ten, and two, respectively. After connecting C and G in
CG, the number of TG vertices, TG edges, and SCCs are reduced by
four, seven, and one, respectively, which indicates the proposed graph
reduction technique effectively reduces the complexity of the TG.
Therefore, the graph reduction technique of TECG can significantly
reduce the complexity of the TPL conflict detection.

C. Implicit Edge in TG

Two tokens cannot be assigned to the same color when they
connect to each other in one TG. We observe that two non-adjacent
vertices in one TG cannot be assigned to one color when certain
topology appears in TG. Notably, there might be other patterns that
are not observed. An implicit TG edge between two non-adjacent
tokens, such as Ti and Tj , is generated when all the following
conditions are satisfied:

1) TG contains two SCCs (Tx, Ty, Tz) and (Tp, Tq, Tr), where
2) Tx and Tp connect to each other;
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Figure 5. Example of TECG update: (a) TECG before connecting C and G
in CG with two SCCs (T1, T2, T7) and (T3, T4, T5); (b) updated TG after
merging T1 and T3 in (a) into T1′ ; (c) updated TG after merging T2 and T5

in (b) into T2′ ; (d) updated TG after merging T4 and T7 in (c) into T3′ ; (e)
updated TECG after merging T3′ and T6 in (d) into T4′ .
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Figure 6. Example of implicit TG edge: (a) T1 and T2 are disconnected
in TG; (b) implicit TG edge between T1 and T2 is inserted to indicate that
colors of T1 and T2 must differ.

3) Ti connects to both Ty and Tq; and
4) Tj connects to both Tz and Tr .

Without loss of generality, there are three colors (c1, c2, c3) can
be used to color all tokens in one TG. Figure 6(a) depicts one TG
contains the specific topology with two SCCs scc1 = (T3, T4, T5)
and scc2 = (T6, T7, T8). Suppose that T1 and T2 are assigned to
c1. Notably, T4/T5 and T7/T8 can only be assigned to c2 and c3
due to the connection to T1/T2, resulting in that T3/T6 must be
assigned to c1. However, there exists one edge between T3 and T6.
Therefore, T1 and T2 must be assigned to different colors, and one
implicit edge is generated between T1 and T2 as shown in Fig.
6(b). In TECG Update, after TG Update (Algorithm 3: line 6),a
set of implicit TG edges IE is generated by checking if the above
conditions are satisfied. For each implicit edge ie ∈ IE, TG Update
checks if the TG can be further reduced by inserting ie.
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Figure 7. Overall flow of TRIAD.

IV. TRIAD

The TPL aware detailed router (TRIAD) focuses on accomplishing
detailed routing for all given nets and generating a highly decom-
posable routing outcome with low yield loss. The routing model of
NEMO is adopted here [14] [15]. This work proposes a technique to
make TECG work on the routing model of NEMO. With the aid of
TECG, TRIAD can generate stitches which cannot be generated by
adopting the conventional DPL stitch generation scheme. Therefore,
TRIAD can update the routing cost based on the number of stitches
and TPL conflicts. Figure 7 shows the routing flow of TRIAD. Firstly,
all multi-pin nets are decomposed into two-pin nets. A TPL-aware
routing which allows the stitch generation at the cost of increasing
routing cost is applied to route all two-pin nets. If one two-pin net is
routed without any conflicts, then the layout and TECG are updated.
Otherwise, TRIAD checks whether conflicts can be generated in
current iteration while TRIAD is prohibited to generate TPL conflicts
in the first few iterations. If the TPL stitch generation is not allowed,
TRIAD rips up routed nets to release the routing resource and then
re-routes the two-pin net. Otherwise, the layout and the TECG are
directly updated.

A. TECG on the Gridless Routing Model

When constructing contours for routed wire segments, TRIAD also
constructs shadows for routed wire segments presented by vertices
in GC . One shadow denotes the TPL effect region of its attached
routed wire segment. TRIAD constructs shadows by extending routed
nets by hww + sptp. Figure 8(a) shows three extracted PMTs with
intersected shadows. The vertices in GC attached to the corresponding
shadows assist TRIAD in detecting TPL conflicts when the potential
routing wire segments pass through a PMT. The CG vertex rep-
resenting the potential routing wire segment connects to the CG
vertices representing routed wire segments by passing through their
corresponding shadows, and the path propagation of TRIAD thus
becomes aware of TPL conflicts. Figures 8(b)–(d) illustrate the path
propagation of TRIAD. Figure 8(b) shows five routed wire segments,
a PMT with three shadows, and one TECG. In Fig. 8(b), one routing
wire segment passes through the PMT, sequentially inserting one
vertex F in GC and one token T4 in GT . The routing wire segment
represented by F passes through three shadows of A, B, and C.
Therefore, TRIAD iteratively connects F to A, B, and C. After
connecting F to A and B, T1 and T3 are merged into T5 as shown in
Fig. 8(c). In Fig. 8(d), TRIAD detects one TPL conflict by connecting
F and C because token(F ) and token(C) equal T5.
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Figure 8. TECG on routing model of NEMO: (a) TRIAD constructs shadows
to represent TPL effect region of routed wire segments; (b) PMT contains
three shadows of three routed wire segments with TECG, and TRIAD inserts
one vertex F in GC and a token T4 in GT to represent the routing wire; (c)
connecting F to A and B iteratively merges T3 and T4 into T5; (d) TRIAD
detects one coloring conflict after connecting F and C.

B. TPL Stitch Generation Scheme

After detecting TPL conflicts, TRIAD splits one of the terminal
vertices of the conflicting edge to differ the assigned token by
generating stitches, if possible. The DPL stitch generation scheme
inserts one stitch in one wire when the wire contains at least one
segment that is not passed by shadows of other wire segments. Based
on the DPL stitch generation scheme, in Fig. 8(d), no stitch can be
inserted in the routing wire segment because the routing wire segment
is entirely overlapped by the shadows of routed wire segments.
However, the TPL stitch generation scheme is quite different from
the DPL stitch generation scheme. With the assistance of TECG,
TRIAD can generate stitches at the wire segment even if which is
entirely passed by shadows of other wires. Before introducing the
proposed TPL stitch generation scheme, some definitions are given
in the following.

Definition 6 (Shadowy Interval): One shadowy interval, denoted
as φ, is one interval of one wire segment, and one wire segment
may contain several shadowy intervals. Let ST

shd(φ) be the set of
tokens represented by the shadow set passing through φ. For any
two adjacent shadowy intervals φi and φj , ST

shd(φi) and ST
shd(φj)

cannot be identical.

Definition 7 (Splittable Shadowy Interval): Given one wire seg-
ment w represented by one CG vertex vc and one SCC scc ∈ SSCC

containing token(vc). Let φi and φj be two adjacent shadowy
intervals of w. One shadowy interval φi is called splittable when
|ST

shd(φi) ∩ ST
shd(φj) ∩ scc| is less than two.

Definition 8 (Splittable CG Vertex): Let V C
adj(v

c) denote the ad-
jacent vertex set of one vertex vc ∈ V C . Given one SCC scc =
(token(vc), token(vad1), token(vad2)) ∈ SSCC where vcad1 ∈
V C
adj(v

c), vcad2 ∈ V C
adj(v

c), and vcad1 ̸= vcad2. One CG Vertex vc

is called splittable when vc contains a set of splittable shadowy
intervals that can split vc into a CG vertex set V C

SPLIT where
∀vcs ∈ V C

SPLIT , token(v
c
s) connects to at most two tokens of scc.

One wire segment to be split represented by one CG vertex vc may
contain several splittable shadowy intervals for one SCC. Generating
stitches at all splittable shadowy intervals introduces unnecessary



Algorithm 4 TPL Stitch Generation
Require: One CG vertex vc to be split, one CG vertex set

V C
c (vc) adjacent to vc where ∀vcadj ∈ V C

c (vc), token(vc) =
token(vcadj) = Tc, one SCC scc containing Tc

1: Compute shadowy intervals Ssplt in wire segments represented
by vc for scc;

2: for all Shadowy interval φ ∈ Ssplt do
3: if |ST

shd(φ)| > 2 then
4: Increase the routing cost by one penaltyunsolvable;
5: break;
6: end if
7: end for
8: numst := 0;
9: φst cand := φst := NULL;

10: ST
passed := ∅;

11: Topologically sort Ssplt;
12: for all Shadowy interval φ ∈ Ssplt do
13: if |ST

shd(φ)| = 1 then
14: φst cand := φ;
15: end if
16: ST

passed := ST
passed ∪ ST

shd(φ);
17: if |ST

passed| > 2 then
18: Generate one stitch at φst cand;
19: ++ numst;
20: ST

passed := ∅;
21: for all Shadowy interval φpassed between φ and φst do
22: ST

passed := ST
passed ∪ ST

shd(φpassed);
23: end for
24: φst := φst cand;
25: end if
26: end for
27: Increase the routing cost by numst × penaltyst;

stitches, sequentially degrading the yield. To minimize the number
of required stitches, the TPL stitch generation algorithm is proposed
in Algorithm 4. All shadowy intervals Ssplt in wire segments repre-
sented by vc are firstly computed (line 1). One conflicting edge cannot
be solved by splitting one wire segment with one shadowy interval
passed by more than two shadows because two adjacent CG vertices
must be assigned to the same token after splitting. After detecting
one unsolvable conflicting edge, the routing cost is directly increased
by one unsolvable penalty penaltyunsolvable (lines 2–7). One token
set ST

passed is initially set as empty (line 10). Before generating
stitches based on Ssplt, Ssplt is firstly topologically sorted (line 11),
followed by sequentially checking the shadowy interval φ ∈ Ssplt. If
|ST

shd(φ)| equals one, φ is recorded as the potential position φst cand

to generate one stitch (lines 13–15). Inserting ST
shd(φ) into ST

passed

(line 16) may cause |ST
passed| to exceed two, requiring generating

one stitch at φst cand (lines 17–19). Then ST
passed is set as empty,

and the tokens attached to shadows passing through the shadowy
intervals between φst and φ are inserted into ST

passed (lines 20–23).
Finally, φst is set as φst cand to record the latest stitch position (line
24). After all shadowy intervals in Ssplt are checked, the routing
cost is increased based on the number of generated stitches (line 27).
Notably, the token Tc that causes conflicting edges may belong to
more than one SCC. Therefore, Algorithm 4 is applied to each SCC
that contains Tc to generate necessary stitches.

Figures 9(a) and 9(c) show a small part of one TECG where CG
vertices A,B,C,D and U represent four routed wire segments and
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Figure 9. Example of TPL stitch generation schemes: (a)(c) DPL stitch
generation scheme cannot insert any stitch; (b) generating one stitch can solve
the conflict edge in (a); (d) generating two stitch can solve the conflict in (c);
(e) TPL stitch generation of Fig. 8(d).

Table I
STATISTICS OF BENCHMARKS

Circuit Size (µm2)
# # # 2Pin #

Layer Net Net Pin
s5378 217.5 × 119.5 3 1694 3124 4818
s9234 202.0 × 112.5 3 1486 2774 4260
s13207 330.0 × 182.5 3 3781 6995 10776
s15850 352.5 × 194.5 3 4472 8321 12793
s38417 572.0 × 309.5 3 11309 21035 32344
s38584 647.5 × 336.0 3 14754 28177 42931

one routing wire segment, respectively. Notably, token(A) equals T1;
token(B) and token(D) equal T2/T1; and token(C) and token(U)
equal T3 in Fig. 9(a)/(c). The routing wire segment in Fig. 9 contains
seven shadowy intervals φ1, φ2, · · · , and φ7, and Algorithm 4
generates stitches by sequentially checking these shadowy intervals.
In Fig. 9(a), |ST

passed| equals three when checking φ4, resulting
in generating one stitch at φ3 as shown in Fig. 9(b). However, if
token(D) is assigned to T1 as shown in Fig. 9(c), the edge (D,U2)
in Fig. 9(b) becomes conflicting. Similarly, for the TECG in Fig.
9(c), one stitch is generated in φ3 as shown in Fig. 9(d) followed
by setting ST

passed as {T2, T3}. When checking φ7, ST
passed equals

{T1, T2, T3}, requiring generating another stitch at φ5 as shown in
Fig. 9(d). To solve the conflicting edge in Fig. 8(d), one stitch is
generating at the routing wire segment by splitting F into F 1 and
F 2 as shown in Fig. 9(e).

V. EXPERIMENTAL RESULTS

The algorithm herein was implemented in C++ language on a
workstation with 4-Core 2.4 GHz CPU and 82GB memory. A
total six benchmarks [18] are adopted in this work. We scale all
benchmarks, including routing area and features size, to approach the
target process node. Table I shows the corresponding statistics. The
minimum resolution (half-pitch) for pushing the 193nm lithography’s



Table II
COMPARISON BETWEEN WIRELENGTH, STITCHES, CONFLICTS, AND RUNTIME OF THE GREEDY APPROACH (GREED) AND TRIAD

Circuit Wirelength (nm) # Stitch # Conflict Runtime (s.)
GREEDY DPLAG GREEDY DPLAG GREEDY DPLAG GREEDY DPLAG

s5378 382900 381170 165 0 0 0 9.47 14.36
s9234 286503 284608 157 0 1 0 8.62 9.78
s13207 910055 903705 405 1 2 0 25.38 49.11
s15850 1131665 1124715 371 0 2 0 40.83 95.80
s38417 2457675 2461940 1528 0 3 0 122.7 443.75
s38584 3211985 3204160 1264 2 2 0 168.97 660.38

Ave. 100% 99.46% 560.67 0.50 - - 1 2.41

single exposure limit is around 40nm. Thus, to print 20nm half-
pitch, we need double patterning, and to print 10nm half-pitch, we
need quadruple patterning. The minimum coloring spacing for single
exposure lithography is fixed, i.e., around 40nm. The purpose of
multiple patterning is to push for smaller resolution (half-pitch).
Therefore, to the first order, the minimum coloring spacing would be
n times minimum wire spacing (i.e., half-pitch) of the n patterning
lithography. The minimum coloring spacing sptp is set as three times
of the minimum wire spacing.

As there is no other TPL aware router published, to demonstrate the
effectiveness of the proposed algorithm, a greedy approach (GREED)
is developed based on TRIAD for comparison. GREED only contains
three colors for each layer and greedily determines the colors of
routing wire segments. In GREED, the colors of routed wire segments
are fixed. GREED adopts the same routing flow of TRIAD without
TECG. Notably, TRIAD and GREED are prohibited to generate
conflicts in the first fifteen iterations for fair comparison. Table II
shows the wirelength, the number of stitches (# Stitch), the number
of unsolvable conflicts (# Conflict), and runtime of GREED and
TRIAD. TRIAD produces no conflicts in all cases and only introduces
one and two stitches in s13207 and s38548, respectively, while
GREED only generates conflict-free results in one case with total
3890 stitches. Moreover, the average wirelength of TRIAD is less
than that of GREED by 0.54% because GREED has to detour the
routed colored wire segments to avoid generating TPL conflicts.
Thus, GREED requires more detours than TRIAD does. Compared
to GREED, TRIAD can generate conflict-free results in all cases at
the cost of an average 2.41× of runtime. For the largest case s38584,
the runtime of TRIAD is less than four times of that of GREED. The
most runtime spends of the graph reduction which provides TRIAD
high coloring-flexibility to generate TPL-friendly results.

VI. CONCLUSION

The detailed routing is a key optimization stage for TPL. To
effectively detect TPL conflicts with high coloring-flexibility, this
work proposes a token graph-embedded conflict graph (TECG) with
a graph reduction technique. This work develops a TPL aware
detailed router (TRIAD) with the TPL stitch generation to solve TPL
conflicts.. With the aid of TECG, TRIAD can generate stitches in one
wire even when the wire is entirely intersected by the TPL effect
regions of other wires. Experimental results show that the routing
results have no TPL conflicts and introduces total three stitches for
two cases with 0.54% decrement in wirelength at the cost of 2.41×
of runtime. The future work focuses on the density-driven TPL aware
detailed routing.
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