
2298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

Cross-Layer Optimization for High Speed Adders:
A Pareto Driven Machine Learning Approach

Yuzhe Ma , Subhendu Roy , Member, IEEE, Jin Miao , Jiamin Chen, and Bei Yu , Member, IEEE

Abstract—In spite of maturity to the modern electronic design
automation (EDA) tools, optimized designs at architectural stage
may become suboptimal after going through physical design flow.
Adder design has been such a long studied fundamental problem
in very large-scale integration industry yet designers cannot
achieve optimal solutions by running EDA tools on the set of
available prefix adder architectures. In this paper, we enhance a
state-of-the-art prefix adder synthesis algorithm to obtain a much
wider solution space in architectural domain. On top of that, a
machine learning-based design space exploration methodology is
applied to predict the Pareto frontier of the adders in physical
domain, which is infeasible by exhaustively running EDA tools
for innumerable architectural solutions. Considering the high
cost of obtaining the true values for learning, an active learning
algorithm is proposed to select the representative data during
learning process, which uses less labeled data while achieving
better quality of Pareto frontier. Experimental results demon-
strate that our framework can achieve Pareto frontier of high
quality over a wide design space, bridging the gap between archi-
tectural and physical designs. Source code and data are available
at https://github.com/yuzhe630/adder-DSE.

Index Terms—Active learning, design space exploration,
machine learning, Pareto optimality, prefix adder.

I. INTRODUCTION

IN THE last decades, the industrial EDA tools have
advanced toward optimality, especially at the individual

stages of very large-scale integration (VLSI) design cycle.
Nevertheless, with growing design complexity and aggressive
technology scaling, physical design issues have become more
and more complex. As a result, the constraints and the objec-
tives of higher layers, such as the system or logic level, are
very difficult to be mapped into those of lower layers, such
as physical design, and vice-versa, thereby creating a gap
between the optimality at the logic stage and the physical

Manuscript received October 23, 2017; revised January 29, 2018, May 4,
2018, July 23, 2018, and September 23, 2018; accepted October 6, 2018. Date
of publication October 25, 2018; date of current version November 20, 2019.
This work was supported in part by the Research Grants Council of Hong
Kong SAR under Project CUHK24209017, and in part by the CUHK
Undergraduate Summer Research Internship 2017. The preliminary version
has been presented at the IEEE International Symposium on Low Power
Electronics and Design in 2017. This paper was recommended by Associate
Editor X. Li. (Corresponding author: Yuzhe Ma.)

Y. Ma, J. Chen, and B. Yu are with the Department of Computer Science
and Engineering, Chinese University of Hong Kong, Hong Kong.

S. Roy is with the Programmable Solution Group, Intel Corporation, San
Jose, CA 95134 USA.

J. Miao is with the DSG Group, Cadence Design Systems, San Jose, CA
95134 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2878129

Fig. 1. Regular adders (picture taken from [12]).

design stage. This necessitates the innovation of data-driven
methodologies, such as machine learning [1]–[5], to bridge
this gap.

Adder design is one of the fundamental problems in digital
semiconductor industry, and its main bottleneck (in terms of
both delay and area) is the carry-propagation unit. This unit
can be realized by hundreds of thousands of parallel prefix
structures, but it is hard to evaluate the final metrics with-
out running through physical design tools. Historically, regular
adders [6]–[9] have been proposed for achieving the corner
points in terms of various metrics as shown in Fig. 1 in archi-
tectural stage. The main motivation for structural regularity
was the ease of manual layout, but EDA tools now taking care
of all physical design aspects, the regularity is no longer essen-
tial. Moreover, the extreme corners do not map well to the
physical design metrics after synthesis, placement and routing.
To address this gap between prefix adder synthesis and actual
physical design of the adders, custom adders are typically
designed by tuning parameters, such as gate-sizing, buffering,
etc., targeting at the optimization of power/performance met-
rics for a specific technology library [10], [11]. However, this
custom approach: 1) needs significant engineering effort; 2) is
not flexible to engineering change order (ECO); and 3) does
not guarantee the optimality.

The algorithmic synthesis approach resolves the first two
issues of the custom approach, by adding more flexibility to
the late ECO changes and reducing the engineering effort.

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3612-4182
https://orcid.org/0000-0001-8554-563X
https://orcid.org/0000-0002-0150-4599
https://orcid.org/0000-0001-6406-4810

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2299

Based on the number of solutions, the existing adder synthesis
algorithms can be broadly classified into two categories. The
first and the most common approach is to generate a single pre-
fix network for a set of structural constraints, such as the logic
level, fan-out, etc. Several algorithms have been proposed to
minimize the size of the prefix graph (s) under given bit-width
(n) and logic-level (L) constraints [13]–[16]. Closed form the-
oretical bounds for size-optimality are provided by [17] for
L ≥ 2 log2 n−2. Zhu et al. [18] have given more general bound
for prefix graph size, but when L is reduced to log2 n, a pre-
requisite for high-performance adders, there is no closed form
bound for s. Roy et al. [19] presented a polynomial-time algo-
rithm for generating prefix graph structures by restricting both
logic-level and fan-out. The limitations in these approaches are
twofold: 1) this restricted set of structures is not capable of
exploring the large solution space and 2) since it is very hard
to analytically model the physical design complexities, such as
wire-length and congestion issues, the physical design metrics,
such as the area, power, delay, etc., may not be mapped well
to the prefix structure metrics, such as the size, max-fan-out
(mfo), etc. This motivates the second category of algorithms
where thousands of prefix adder solutions can be generated and
explored for synthesis and physical design in the commercial
EDA tools.

One such approach is [20] which presents an exhaus-
tive bottom-up enumeration technique with several pruning
strategies to generate innumerable prefix structure solutions.
However, it has two issues.

1) This approach cannot provide solutions in several cases
for restricted fan-out, which can control the congestion
and load-distribution during physical design [19]. As a
result, it may still miss the good solution space to a large
extent.

2) It is computationally very intensive to run
all solutions through synthesis, placement, and
routing.

In this paper, we enhance the algorithm in [20] and [21]
to generate adders under any arbitrary mfo constraint, which
enables a wider adder solution space in logical form. To
tackle the high computational effort during the physical design
flow, we further propose to use machine learning to perform
the design space exploration in physical solution space. We
develop Pareto frontier driven machine learning methodologies
to achieve rich adder solutions with tradeoffs among power,
area, and delay. As a passive supervised learning, the proposed
quasi-random sampling approach is able to select representa-
tive prefix adders out of the hundreds of thousands of prefix
structures.

It should be noted that various machine learning algo-
rithms have been investigated to explore design space in
different design scenarios. Palermo et al. [22] deployed both
linear regression and artificial neural network for multiproces-
sor systems-on-chip design. Liu and Carloni [23] presented
a random forest-based learning model in high-level synthe-
sis, which can find an approximate Pareto-optimal designs
effectively. Meng et al. [3] proposed a random forest-based
method for Pareto frontier exploration, where non-Pareto-
optimal designs are carefully eliminated through an adaptive
strategy. Multiple predictions can be obtained through random

forest, which can be used for estimating the uncertainty.
Superior to the random forest, in this paper we further pro-
pose an active learning approach based on Gaussian process
(GP), which by nature can estimate the prediction uncertainty
efficiently.

Our main contributions are summarized as
follows.

1) A comprehensive framework for optimal adder search
by machine learning methodology bridging the prefix
architecture synthesis to the final physical design.

2) An enhancement to a state-of-the-art prefix adder algo-
rithm [20] to optimize the prefix graph size for restricted
fan-out and explore a wider solution space.

3) A machine learning model for prefix adders, guided by
quasi-random data sampling with features considering
architectural attributes and EDA tool settings.

4) A design space exploration method to generate the
Pareto frontier for delay versus power/area over a wide
design space.

5) An active learning approach for the design space explo-
ration, which uses less labeled data and achieves better
quality of Pareto frontier.

The rest of this paper is organized as follows. Section II
presents the background of prefix adder synthesis, while
Section III discusses our prefix graph generation (PGG) algo-
rithm. Next, two machine learning approaches of design
space exploration for high-performance adders are described.
Section IV presents the passive supervised learning, while
Section V introduces a Pareto frontier driven active learning
approach. Section VI lists the experimental results, followed
by the conclusion in Section VII.

II. PREFIX ADDER SYNTHESIS

In this section, we first provide the background of the prefix
adder synthesis problem. Then we present a brief discussion
on the algorithm presented in [20], which we enhance to our
PGG algorithm to synthesize the prefix adder network.

A. Preliminaries

An n-bit adder accepts two n-bit addends A = an−1..a1a0
and B = bn−1..b1b0 as input, and computes the output
sum S = sn−1 . . . s1s0 and carry out Cout = cn−1, where
si = ai ⊕ bi ⊕ ci−1 and ci = aibi + aici−1 + bici−1. The
simplest realization for the adder network is the ripple-carry-
adder, but with logic level n− 1, which is too slow. For faster
implementation, carry-lookahead principle is used to compute
the carry bits. Mathematically, this can be represented with bit-
wise (group) generate function g (G) and propagate function p
(P) by the Weinberger’s recurrence equations as follows [24].

1) Preprocessing (Inputs): Bitwise generation of g, p

gi = ai · bi and pi = ai ⊕ bi. (1)

2) Prefix Processing: This part is the main carry-
propagation component where the concept of gener-
ate/propagate is extended to multiple bits and G[i:j], P[i:j]
(i ≥ j) are defined as

P[i:j] =
{

pi, if i = j
P[i:k] · P[k−1:j], otherwise (2)

2300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

Fig. 2. 6-bit prefix adder network.

G[i:j] =
{

gi, if i = j
G[i:k] + P[i:k] · G[k−1:j], otherwise. (3)

The associative operation ◦ is defined for (G, P) as

(G, P)[i:j] = (G, P)[i:k] ◦ (G, P)[k−1:j]

=
(

G[i:k] + P[i:k] · G[k−1:j], P[i:k] · P[k−1:j]
)
.

(4)

3) Postprocessing (Outputs): Sum/carry-out generation

si = pi ⊕ ci−1, ci = G[i:0], and Cout = cn−1. (5)

The “prefix processing” or carry propagation network can
be mapped to a prefix graph problem with inputs ik = (pk, gk)

and outputs ok = ck, such that ok depends on all previous
inputs ij (j ≤ k). Any node except the input nodes is called a
prefix node. Size of the prefix graph is defined as the number
of prefix nodes in the graph. Fig. 2 shows an example of such
prefix graph of 6 bits and we can see that Cout = c5 = o5 is
given by

o5 = (i5 ◦ i4) ◦ ((i3 ◦ i2) ◦ (i1 ◦ i0)). (6)

Size (s), logic level (L), and mfo for this network are,
respectively, 8, 3, and 2. Note that here the number of fan-
ins for each of the associative operation o is two, thus this is
called radix-2 implementation of the prefix graph. However,
there exist other options such as radix-3 or radix-4, but the
complexity is very high and not beneficial in static CMOS cir-
cuits [25]. In this paper, the logic levels for all output bits are
log2 n, i.e., the minimum possible, to target high performance
adders.

B. Discussion on [20]

Our PGG algorithm to generate the prefix graph structures
for physical solution space exploration is based on [20]. So
it is imperative to first discuss about [20]. However, we omit
the details and only mention the key points of [20] due to
space constraint. Reference [20] is an exhaustive bottom-up
and pruning based enumeration technique for prefix adder
synthesis. This paper presented an algorithm to generate all
possible n+1-bit prefix graph structures from any n-bit prefix
graph. Then this algorithm is employed in a bottom-up fashion
(from 1-bit adder to 2-bit adders, then from all 2-bit adders
to 3-bit adders, and so on) to synthesize prefix graphs of any
bit-width. As a result, scalability issue arises due to the exhaus-
tive nature of the algorithm, which is then tackled by adopting
various pruning strategies to scale the approach. However, the
pruning strategies are not sufficient to scale the algorithm well
for different fan-out constraints. So when it intends to find the

Fig. 3. Imposing semiregularity.

solutions for higher bit adders, the intermediate adder solu-
tions that need to be generated are often huge. Consequently,
it fails to get fan-out restricted (e.g., when mfo = 8, 10, 12,
etc. for 64-bit adders) solutions even with 72-GB RAM due
to the generation of innumerable intermediate solutions [19].
Pruning strategies, such as size-bucketing [20], help to achieve
solutions in some cases, but with suboptimality. So design
space-exploration based on this algorithm can miss a signifi-
cant spectrum of the adder solutions.

C. Our PGG Algorithm

To better explore the wide design space of adders, in this
paper we have enhanced [20] for different fan-out constraints
by incorporating more pruning techniques.

1) Semiregularity in Prefix Graph Structure: The first strat-
egy is to enforce a sort of regularity in the prefix graphs. For
instance, regular adders, such as Sklansky, Brent-Kung, have
the inherent property that the consecutive input nodes (even
and odd) are combined to create the prefix nodes at the logic
level 1. In our approach, we constrain this regularity for those
prefix nodes (logic level 1). To explain this, let us consider
Fig. 3. We can see that prefix nodes r1, r2, r3, and r4 are con-
structed by consecutive even-odd nodes. For instance, i0 and i1
are used to construct r1. But with this structural constraint, we
are not allowed to construct any node by combining i1 and i2
as done in Kogge–Stone adders. Note that the substructure, as
shown in Fig. 3, is a part of some regular adders like Sklansky
adder, and is imposed in our prefix structure enumeration.

We have run experiments with 16-bit adders, and observed
that this pruning strategy: 1) does not degrade the solution
quality (or size of the prefix graph under same L and mfo), but
2) able to reduce the search space significantly, in comparison
to not using this pruning strategy.

2) Level Restriction in Nontrivial Fan-In: Each of the pre-
fix node N (a : b), where a is the most-significant-bit (MSB)
and b is the least-significant-bit, is constructed by connecting
the trivial fan-in Ntr (a : c) having same MSB as N, and the
nontrivial fan-in Nnon-tr (c− 1 : b). For instance, in Fig. 2, o3
and b2 are, respectively, the nontrivial fan-in and the trivial
fan-in node for the prefix node o5. In the bottom-up enumer-
ation technique, we put another additional restriction that the
level of the trivial fan-in node is always less or equal to that
of the nontrivial fan-in node, i.e., level(Ntr) ≤ level(Nnon-tr).
Note that this sort of structural restriction is also inherent in
regular adders, such as Sklansky or Brent-Kung adders.

In a nutshell, our PGG algorithm is a blend of regular adders
and [20]. We borrow some properties of regular adders to
enforce in [20] for reducing its huge search space without ham-
pering the solution quality. To illustrate this, we have obtained
the binary for [20] from the authors, and first compared our

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2301

TABLE I
COMPARISON WITH [20] FOR 64-BIT ADDERS

result for lower bit adders, such as n = 16, 32. We got the
solutions with same minimum size, which proves that our
structural constraints have not degraded the solution quality.
However, for higher bit adders, we get better solution quality
than [20] as shown in Table I.

Column 1 presents the mfo constraint, while columns 2
and 3, respectively, show the size and run-time for our
enhanced algorithm, and the corresponding entries for [20]
are, respectively, represented in columns 4 and 5. In general,
when fan-out is relaxed or mfo is higher, the run-time is less
due to relaxed size-pruning as explained in [20]. Note that [20]
cannot generate solutions for mfo = 8, 12 due to generation
of innumerable intermediate solutions as explained in [19].
On the contrary, our structural constraints can do a prefilter-
ing of the potentially futile solutions, thereby allowing relaxed
size-pruning and size-bucketing to search for more effective
solution space. In terms of run-time, it is slightly worse in
a few cases, but importantly, this generation is a one-time
process, and this run-time is negligible in comparison to the
design space exploration by the physical design tools. So our
imposed structural restrictions: 1) do not degrade the solution
quality; 2) achieve better solution sizes for all mfo than [20]
for higher bit adders which could not even generate solutions
in all cases; and 3) help to obtain wider physical solution space
to be demonstrated in Section II-E.

D. Quasi-Random Sampling

We have mainly focused on 64-bit adders in this paper as
this is mostly used in today’s microprocessors. From all pre-
fix adder solutions, we sample a set of solutions for building
the learning model via the quasi-random approach which is
conducted by a two-level binning (mfo, s) followed by ran-
dom selection, This approach aims to evenly sample the prefix
adders covering different architectural bins. The primary level
of binning is determined by mfo of the solutions. However,
there may be thousands of architectures sharing the same mfo,
so the secondary level of binning is based on s. Afterwards,
adders are picked randomly from those secondary bins.

We illustrate the quasi-random sampling with the following
example: given 5000 solutions with mfo = 4, we want to
pick 50 solutions from them. Suppose these 5000 solutions
have the size distribution from 244 to 258. First a random
solution is picked from the bucket of the solutions (mfo = 4
and s = 244). Then we pick a solution randomly from mfo = 4
and s = 245, and so on. After picking 15 solutions from each
of those buckets with mfo = 4, we again start from the bucket
(mfo = 4 and s = 244). This process is repeated until we get
50 solutions. Similar procedure is done with other mfo values.

(a) (b)

(c) (d)

Fig. 4. Quasi-random sampled adders versus adders from [20]. Solution space
in (a) area versus delay domain from [20], (b) area versus delay domain from
ours, (c) power versus delay domain from [20], and (d) power versus delay
domain from ours.

E. Physical Solution Space Comparison With [20]

In this section, we show the usefulness of our algorithm
for obtaining wider solution space in physical design domain
in comparison to [20]. Among the prefix adders generated by
Roy et al. [20], we randomly sampled 7000 prefix adders.
Those prefix adders are fed into the full EDA flow (synthesis,
placement, and routing) to get their real delay, power, and area
values (takes around 700 h). We plot these adders by [20] and
our representative 3000 adders in Fig. 4. It can be seen that,
although the numbers of adders by Roy et al. [20] is more
than two times of our representative adders, our adders still
cover wider solution space in physical domain, demonstrat-
ing the effectiveness of our enhanced algorithm PGG. This is
in accordance with the solutions missed by Roy et al. [20]
as mentioned in Table I. Those availabilities eventually offer
more opportunities for our machine learning methodology to
identify close to ground truth Pareto frontier solutions.

III. BRIDGING ARCHITECTURAL SOLUTION SPACE

TO PHYSICAL SOLUTION SPACE

In most EDA problems, the metrics of the solution quality
are typically conflicting. For instance, if we optimize the tim-
ing of the design, then the power/area may be compromised
and vice versa. So one imperative job of EDA engineers is
to find the Pareto-optimal points of the design enabling the
designers to select among those. In this section, we first pro-
vide the preliminaries about Pareto optimality, and the error
metrics of Pareto-optimal solutions. Then we discuss the gap
between the prefix architectural solution space and physical
solution space in adders, which motivates the need of the
machine learning-based approach for optimal adder explo-
ration. Finally, a domain knowledge-based feature selection
details are presented along with training data sampling for the
learning models.

2302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

Fig. 5. Hypervolume with two objectives in objective space.

A. Preliminaries

Definition 1 (Pareto Optimality): An objective vector f(x)

is said to dominate f(x′) if

∀i ∈ [1, n], fi(x) ≤ fi
(
x′

)
and ∃j ∈ [1, n], fj(x) < fj

(
x′

)
. (7)

A point x is Pareto-optimal if there is no other x′ in design
space such that f(x′) dominates f(x).

As in this paper for adder design, a Pareto-optimal design
is where none of the objective metrics, such as area, power,
or delay, can be improved without worsening at least one of
the others. The Pareto Frontier is the set of all the Pareto-
optimal designs in the objective space. Therefore, the goal is
to identify the Pareto-optimal set P for all the Pareto-optimal
designs.

Definition 2 (Hypervolume): The hypervolume computes
the volume enclosed by the Pareto frontier and the reference
point in the objective space [26].

In Fig. 5, the shaded area is an example of the hypervolume
of a Pareto set with two objectives. Then the hypervolume
error for a predicted Pareto set P̂ is defined as

η = V(P)− V(P̂)

V(P)
(8)

where P is the true Pareto-optimal set, and V(P) is the hyper-
volume of the Pareto set P. Note that a prediction P̂ which
contains the whole design space has an error of 0. Thus the
predicted set P̂ with less points is desired.

B. Gap Between Logic and Physical Design

Since we focus on high performance adders and explore
the prefix adders of logic level L = log2 n, the metrics at this
architecture stage are prefix node size s and mfo. These two
metrics are conflicting, i.e., if we reduce mfo, s increases
and vice-versa. Similar competing relationship exists between
delay and power/area after physical design. It should be
stressed that power and s are correlated, and mfo indirectly
controls the timing as more restricted fan-out can mitigate
congestion and load-distribution, thereby improving the delay
of the adder. However, this relationship between architectural
synthesis and physical design is approximate, and not a very
high-fidelity one.

To demonstrate this, we plot node size s versus mfo and
power versus delay in Fig. 6 for several 64-bit adder solutions.
In this experiment, we have generated the prefix architec-
ture solutions by PGG, and the final power/delay numbers

(a) (b)

Fig. 6. Gap between prefix structure and physical design of adders.
(a) Architectural solution space. (b) Physical solution space.

are obtained by running those solutions through EDA tools as
explained later in Section VI. An example of the prefix archi-
tecture and the corresponding physical solution is presented
in Fig. 7. In Fig. 6(a), we broadly categorize the solutions
into two groups: 1) G1 with higher node size and lower mfo
and 2) G2 with lower node size and higher mfo. In Fig. 6(b),
the same designs as Fig. 6(a) are projected into the physi-
cal solution space, restoring the group information. Design
Compiler [27] (version F-2011.09-SP3) is used for logical syn-
thesis, and IC Compiler [28] (version J-2014.09-SP5-3) is used
for the placement and routing. Nonlinear delay model (NLDM)
in 32-nm SAED cell-library [29] is used for technology map-
ping. The key observations here are first, there is a correlation
between architectural solution space and physical design solu-
tion space. For instance, the solutions from G1 are mostly on
the upper side, and those of G2 are mostly on the lower side in
Fig. 6(b), thereby indicating a correspondence between s and
power. Nevertheless, it is not completely reliable. For example:
1) the delay numbers for G1 and G2 are very much spread;
2) a cluster can be observed where the solutions from G1 and
G2 are mixed up in Fig. 6(b); and 3) several solutions of G1
are better than several solutions of G2 in power, which is not
in accordance with the metrics at the prefix adder architec-
ture stage. So we can not utterly rely on architectural solution
space to achieve the optimal output in physical solution space.

However, since our algorithm generates hundreds of thou-
sands of prefix graph structures, it is intractable to run
synthesis and physical design flows for even a small percent-
age of all available prefix adder architectures. To address this
fidelity gap between the two design stages and the high com-
putational cost together, we come up with a novel machine
learning guided design space exploration as replacement of
exhaustive search.

C. Feature Selection

The feature is a representation which is extracted from the
original input representation, and it plays an important role
in machine learning tasks. We now discuss the features to be
used for the learning model. Features are considered from both
prefix adder structure and tool settings, with a focus on the
former. We select node size and maximum-fan-out (mfo) of
a prefix adder as two main features for our learning model.
However, for any given mfo and node size, there will be
hundreds or even thousands of different prefix architectures.
Therefore, additional features are required to better distin-
guish individual prefix adder attributes. We define a parameter

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2303

(a) (b)

Fig. 7. (a) Example of architectural solution: bit-width = 64, size = 201, max. level = 6, and max. fanout = 12. (b) Corresponding physical solution.

Fig. 8. Defining spfo of a node.

sum-path-fan-out (spfo) for this. Let a and b are the fan-in
nodes of a node n, then spfo(n) is defined recursively as:

spfo(n) =
⎧⎨
⎩

0, if n ∈ input
sum(fo(a)+ spfo(a),

fo(b)+ spfo(b)), otherwise.
(9)

Here fo(n) denotes the fan-out of any node n. Consider the
prefix adder structure in Fig. 8, and according to the definition
we have

spfo(o1) = sum(fo(i0)+ spfo(i0), fo(i1)+ spfo(i1))

= sum(1, 1) = 2

spfo(b1) = sum(fo(i2)+ spfo(i2), fo(i3)+ spfo(i3))

= sum(2, 1) = 3

spfo(b2) = sum(fo(i4)+ spfo(i4), fo(i5)+ spfo(i5))

= sum(2, 1) = 3.

Therefore, we can use the recursive definition to calculate

spfo(o3) = sum(fo(o1)+ spfo(o1), fo(b1)+ spfo(b1))

= sum(3+ 2, 2+ 3) = 10

spfo(o5) = sum(fo(o3)+ spfo(o3), fo(b2)+ spfo(b2))

= sum(3+ 10, 3+ 3) = 19.

In our methodology, we use the spfo of the output nodes
which are at log2 n level (there are 32 nodes at level 6 for
64-bit adder) as the features to characterize the prefix struc-
tures, in addition to mfo, size and target delay. The basic
intuition for selecting spfo of the output nodes as the features
is that the critical path delay of the adder is the longest path
delay from input to output. So it depends on the: 1) path-
lengths, which can be represented at the prefix graph stage
by the logic level of the node and 2) the number of fan-outs
driven at every node on the path. Note that we have skipped
the spfo of the output nodes which are not at log2 n level as

for those nodes, the path length is smaller, and those would
not potentially dictate the critical path delay.

Apart from these prefix graph structural features, we also
consider tool settings from synthesis stage and physical design
stage as other features. We have synthesized the adder struc-
tures using industry-standard EDA synthesis tool [27], where
we can specify the target-delay for the adder. The tool then
adopts different strategies internally to meet that target-delay
which we can hardly take into account during prefix graph
synthesis. Consequently, changing the target-delay can lead to
different power/timing/area metrics. So we have considered
target-delay as a feature in our learning approach.

In physical design, utilization is an important parameter,
which defines the area occupied by standard cell, macros and
blockages. Different utilization values can lead to different
layouts after physical design. Therefore, we take utilization as
another feature in the learning model.

In addition to the target delay and utilization, other tool
settings have also been explored. The optimization level
setting in logical synthesis has a potential impact on the
performance of adders, which can be adjusted by compile
and compile_ultra commands with different options.
After synthesizing, it is observed that the solutions generated
with compile_ultra can significantly dominate the solu-
tions generated by compile. Therefore, this setting is fixed to
compile_ultra level as we are aiming at superior designs.

In this paper, the technology node is not used as a feature.
From the machine learning perspective, there is a common
assumption for conventional machine learning applications
that the training and test data are drawn from the same fea-
ture space and the same distribution [30]. The values of
area/power/delay may vary a lot under different technology
nodes, which results in different underlying data distribu-
tions. Therefore, the technology node for synthesis should
be consistent. The proposed approach for feature extraction
can also be applied to other technology nodes as long as
the technology node is consistent during the design flow. If
the technology node of the testing data switches to another
one, the machine learning model should be retrained using the
data from that technology node to ensure the accuracy of the
model.

D. Data Sampling

Since we can not afford to run the physical design flow for
too many architectures, and too few training data may degrade
the model accuracy significantly, a set of adders need to be

2304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

Fig. 9. Overall flow of α-sweep learning.

selected to represent the entire design solution space. However,
finding a succinct set of representative training data for the
traditional supervised learning is difficult. In order to tackle
this difficulty, we come up with two learning approaches in
the next two sections. The first one is the passive supervised
learning where a quasi-random data sampling is performed to
obtain the training data, followed by multiobjective scalariza-
tion to achieve the Pareto-optimal solutions. The second one is
the active learning approach where model training is integrated
to finding Pareto-optimal frontiers of the design space.

IV. α-SWEEP LEARNING

In this section, we propose a Pareto frontier exploration
flow which is based on support vector machine. The overall
flow of our α-sweep supervised learning-based Pareto frontier
exploration is presented in Fig. 9.

A. Scalarization to the Single-Objective

In this paper, supervised learning is preferred over unsu-
pervised learning since supervised learning has a substantial
advantage over unsupervised learning for our problem. In par-
ticular, supervised learning allows to take advantage of the
golden result, i.e., the true area/power/delay, generated by
the synthesis tools for each design, instead of just letting the
algorithm work out for itself what the classes should be. In
general, supervised learning usually outperforms the unsuper-
vised learning for this kind of regression and classification
tasks.

Before applying machine learning for exploring Pareto fron-
tier, we first validate the effectiveness of the features we extract
by building regression models for single metric prediction. For
learning models, we explored: 1) several supervised learning
techniques, such as linear regression, Lasso/ridge, Bayesian
ridge model and support vector regression (SVR) with lin-
ear, polynomial, and radial-basis-function (RBF) kernel and

2) 36 features, including four primary features, size, mfo, tar-
get delay, and utilization (tool settings), and 32 secondary
features for spfo. We observed that we could get an R2 score
above 0.95 for area and power even with primary features and
linear models. However, we do not get good scores for delay
with only primary features. Best model fitting for delay is
achieved with SVR (RBF kernel) with these four primary and
32 secondary features. Since SVR with RBF kernel give good
mean-squared-error (MSE) scores for all metrics, delay, area,
and power, we have used this model throughout for design
space exploration.

The model experiments give us the following key insights.
1) Tool setting can play an important role in building the

learning models in EDA. For instance, MSE scores for
area and power improve from 0.021 to 0.003 and 0.228
to 0.027, respectively, when we add the “target delay”
feature in our model building.

2) Secondary features play an important role in improv-
ing the model accuracy. For instance, when we include
spfo features in model building, MSE score for delay
improves from 0.200 to 0.170.

3) Linear models are not sufficient for modeling delay. For
instance, MSE scores of delay improve from 0.214 to
0.170 when we go from linear models to SVR with RBF
kernel, with the same set of features.

The problem of exploring the Pareto frontier of rich pre-
fix adder space can be approached by first sampling a subset
of prefix adder architectures, and generating the power, area,
delay numbers of each prefix adder by running through the
logic synthesis and physical design flow. Those known data
set will be used as the training and testing data for supervised
machine learning guided model fitting. Once the model is fit-
ted, we can apply the exhaustive prefix adder architectures
to this model and get the predicted Pareto frontier solution
set. This is due to the merit of much faster runtime for a
machine learning model in prediction stage than running the
entire VLSI CAD flow.

However, conventional machine learning problem aims at
maximizing the prediction accuracy rather than exploring a
Pareto frontier out of a solution set. Improving the model accu-
racy does not necessarily improve the Pareto frontier and the
direct use of the fitted model for Pareto frontier exploration can
even miss up to 60% Pareto frontier points [3]. We therefore
need a machine learning integrated Pareto frontier exploration
methodology, where the Pareto frontier selection does not rely
only on the model accuracy. So we develop a fast yet effec-
tive algorithmic methodology, enabled by regression model to
explore the Pareto frontier of prefix adder solutions.

First we consider two spaces for Pareto frontier exploration:
the delay versus area as well as the delay versus power. For
either space, there exists a strong tradeoff between the two
metrics. For delay versus power space, we propose to use a
joint output power-delay (PD) function as the regression output
rather than using any single output

PD = α · Power+ Delay. (10)

The rationale of using scalarization [31] or the linear sum-
mation of the power and delay metrics is that such a linear
relation provides a weighted bonding between the power and

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2305

the delay so that by changing the α value, the regression model
will try to minimize the prediction error on the more weighted
axis hence leads to more accuracy on that direction. In con-
trast, the other metric direction will be predicted with less
accuracy hence introducing some level of relaxations. It can be
foreseen that changing the α value can lead to different fitting
accuracies of the regression model. By sweeping α over a wide
range from 0 to large positive values, each time the regression
model will be fitted to predict different best solutions which
altogether form the Pareto frontier. We call this approach
α-sweep. Note that, the power and delay values in (10) are
normalized and scaled to the range between 0 and 1 by

x = x−min(X)

max(X)−min(X)
, x ∈ X. (11)

Similarly, we have a joint output area-delay (AD) function
for Pareto frontier exploration on area and delay space

AD = α · Area+ Delay. (12)

This α-sweep technique can be extended to simultaneously
consider power, performance or delay, and area (PPA), using
two scalars (α1 and α2) instead of one scalar factor α. The
joint output function for Pareto frontier exploration on area-
power-delay space can be formulated as

PPA = α1 · Area+ α2 · Power+ Delay. (13)

The results of α-sweep for both 2-D space and 3-D space
are shown in the Section VI.

V. PARETO ACTIVE LEARNING

In our adder design problem, obtaining the true
area/power/delay values or the labeled data for each
adder requires running logic synthesis and physical design
flow, which is often time-consuming if the amount of data
is huge. Active learning is an iterative supervised learning
which is able to interactively query the data pool to obtain
the desired outputs at new data points. Since the samples are
selected by the learning algorithm, the number of samples to
fit a model can often be much lower than the number required
in traditional supervised learning. Since an active sampling
strategy is required in active learning, an “uncertainty estima-
tion” of the prediction is needed. GP can make predictions
and, more importantly, provide the uncertainty estimation of
its predictions by nature. Therefore, in this paper we further
propose a Pareto active learning (PAL) algorithm based on
GP regression.

A. Overall Flow

The overall flow of the PAL is shown in Fig. 10. Given
all the prefix adder structures, first we extract the feature
vector for each adder as introduced in Section III-C. The
active learning starts with GP regression which will be illus-
trated later. Unlike the passive supervised learning in which
all the features and the corresponding labels are prepared in
advance, the active learning derives the labels of each training
data during the learning process on-demand. To be specific,
the algorithm incrementally identifies the most representative
instances along with their features which are later fed into

Fig. 10. Overall flow of PAL.

EDA synthesis flow (synthesis, placement, and routing) for
true area/power/delay numbers. Namely, the EDA synthesis
flow and the learning process are interleaving. As more and
more designs being selected, the model gets more and more
accurate till convergence.

B. Gaussian Process Prediction

A GP is specified by its mean function and covari-
ance function. A PAL scheme based on GP regression is
proposed in [32]. The prior information is important to
train the GP model, which is a parameterized mean and
covariance functions. Conventionally, the training process
selects the parameters in the light of training data such that
the marginal likelihood is maximized. Then the GP model
can be obtained and the regression can be proceeded with
supervised input [33]. The ability of GP indicating prediction
uncertainty reflects in GP learner providing a Gaussian dis-
tribution N (m(x), σ (x)) of the values predicted for any test
input x by computing

m(x) = k(x, X)�
(

k(X, X)+ σ 2I
)−1

Y

σ 2(x) = k(x, x)− k(x, X)�
(

k(X, X)+ σ 2I
)−1

k(x, X)

(14)

where X is the training set and Y is the supervised informa-
tion of trained set X. For GP regression, a prediction of a
design objective consists of a mean and a variance. The mean
value m(x) represents the predicted value and the variance
σ(x) represents the uncertainty of the prediction.

2306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

C. Active Learning Algorithm

The ability of GP learners in quantifying prediction uncer-
tainty enables a suitable application for active learning.
Basically, three sets are maintained during the PAL process,
including a set of Pareto-optimal designs (P), non-Pareto-
optimal designs (N), and “unclassified” designs (U).

The GP models with discrepant prior are applied to learn the
objective functions farea(x), fpower(x), and fdelay(x). PAL calls
GP inference to predict the mean vector m(x) and the standard
deviation vector σ (x) of all unsampled x in the design space
based on (14). Unlike other regression models such as linear
regression and SVR, whose outputs are in form of numeri-
cal or categorical result, the output of GP is a distribution
where uncertainties are involved. To capture the prediction
uncertainty for a design x, a hyper-rectangle is defined as

HR(x) =
{

y : mi(x)− β
1
2 σi(x) ≤ yi ≤ mi(x)+ β

1
2 σi(x)

}

where i ∈ {1, 2, 3} corresponding to area, power, and delay
metrics in physical space. β is a user-defined parameter
which determines the impact of σi(x) on the region. In
our implementation, β is set to 16 based on the analysis
in [32] and [34].

As shown in Fig. 10, the PAL algorithm is an iterative pro-
cess. A few new points are selected in each iteration, and the
GP model is retrained with new training set. Note that the
model is supposed to be more and more accurate as more
data being sampled. Therefore, the uncertainty region should
be smaller and smaller. In order to ensure the nonincreasing
monotonicity of the uncertainty region while sampling and
incorporating the previous evaluations, the uncertainty region
of x in the (t + 1)th iteration is defined as

Rt+1(x) = Rt(x) ∩ HR(x) (15)

where the initial R0 = R
n which is the entire objective space.

The numbers of designs in Pareto-optimal set P and non-
Pareto-optimal set N are non decreasing as iteration t incre-
ments. Thus, at iteration t, the points in P and N keep their
classification. Intuitively, if one wants to compare the pre-
dicted performance of two designs, two extreme cases, i.e.,
optimistic prediction min(Rt(x)) and the pessimistic prediction
max(Rt(x)) of each design, can be applied. If the opti-
mistic prediction of design x is dominated by the pessimistic
prediction of other design x′, then x is classified as non-Pareto-
optimal; and if the pessimistic prediction of design x is not
dominated by optimistic prediction of any other design x′, then
x is classified as Pareto-optimal; a design will remain unclas-
sified if neither condition holds. Fig. 11 is presented here as
an example.

In the implementation, an error tolerance δ with value 0.001
is applied during classification. The rules for classification can
be represented as follows:

x ∈
⎧⎨
⎩

P, if max(Rt(x)) ≤ min
(
Rt

(
x′

))+ δ

N, if max
(
Rt

(
x′

)) ≤ min(Rt(x))+ δ

U, otherwise.
(16)

After classification in each iteration, a new adder design
with the largest length of the diagonal of its uncertainty region

Fig. 11. Example of classification.

Algorithm 1 Active Learning for Pareto Frontier Exploration
Require: Adder architectural design space E, GP prior, max-

imum iteration number Tmax;
Ensure: predicted Pareto-optimal set P̂;

1: P← ∅, N ← ∅, U← E;
2: Randomly select a small subset X = {xi} of E;
3: Get true values Y = {yi|yi = EDAFlow(xi)};
4: S← X;
5: R0(x)← R

n,∀x ∈ E;
6: t← 0;
7: while U �= ∅ and t < Tmax do
8: Building GP model with {(xi, yi):∀xi ∈ S};
9: Obtain Rt(x),∀x ∈ E;

10: for all x ∈ U do
11: if x is Pareto-optimal based on Equation (16) then
12: P.add(x), U.delete(x);
13: else if x is non-Pareto-optimal based on

Equation (16) then
14: N.add(x), U.delete(x);
15: end if
16: end for
17: Obtain wt(x),∀x ∈ (U ∪ P) \ S;
18: Choose x′ ← argmax{wt(x)};
19: S← S ∪ x′;
20: t← t + 1;
21: Obtain new data (x′, y′) by running EDA flow;
22: end while
23: P̂← P;

R(x) is selected for sampling. The value is attached to x as

wt(x) = max
y,y′∈Rt(x)

||y− y′||2. (17)

Intuitively, (17) picks the points which are most worthy explor-
ing. Afterwards, these designs are going through EDA flow to
get the real area, power and delay numbers, and the GP model
will hence be improved with those feedback results.

The entire process is presented in Algorithm 1. It starts with
the initialization (lines 1–6). In each iteration, the GP model
is trained with the current training set S, and the uncertainty
region for each design is obtained (lines 8–9). Then the designs
in the U set are classified based on uncertainty regions and
classification rules (lines 10–16). After that, the design with
the largest uncertainty is sampled and the sampling set S is
updated (lines 17–19). The newly sampled design is fed into
synthesis tools to get the label which is used for training GP
model in the next iteration (line 21). The learning process

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2307

stops after all adder designs in architectural design space are
classified. The prediction is P̂ = P (line 23). Suppose Tmax
is the maximum number of iterations, and |E| is the size of
solution set, then the complexity of Algorithm 1 is at most
O(Tmax|E|), as maximum size of U can be |E|. However, it
should be stressed that although there are Tmax|E| operations
for PAL algorithm, the cost of each operation (which is a sim-
ple inference based on the GP regression model) is negligible
in comparison to EDA synthesis flow run-time, and we will
demonstrate later in Table IV that the total run-time of differ-
ent approaches are dictated by the number of EDA synthesis
flow runs needed in the respective approaches.

VI. EXPERIMENTAL RESULTS

In this section, we show the effectiveness of the proposed
algorithms and methodologies. First we compare the physical
solution space before/after applying PGG algorithm. Then the
Pareto frontier obtained by α-sweep is presented. Next, we
demonstrate the Pareto frontier obtained by active learning,
and compare the quality of Pareto frontiers generated by two
approaches. Finally, we compare our explored optimal adders
against legacy adders.

Since high performance adders are commonly used in CPU
architectures which are typically 64 bits, we have mainly
presented the results for 64-bit adders to demonstrate the
methodology. However, the approach is very general to be
used for adders of arbitrary bit-width. The flow is implemented
in C++ and Python on Linux machine with 72-GB RAM
and 2.8-GHz CPU. We use Design Compiler [27] (version
F-2011.09-SP3) for logical synthesis, and IC Compiler [28]
(version J-2014.09-SP5-3) for the placement and routing.
“tt1p05v125c” corner and NLDM in 32-nm SAED cell-
library for LVT class [29] (available by University Program)
is used for technology mapping. Primary input activity of 0.1
is used along with 1-GHz operating frequency for power esti-
mation. Regarding the tool settings, target delays of 0.1, 0.2,
0.3, and 0.4 ns are used. Utilization values are set to 0.5, 0.6,
0.7, and 0.8. We used Python based machine learning package
scikit-learn [35] for the predictions. Throughout our all exper-
iments, the run time for machine learning predictions is less
than a minute.

We relied more on the fidelity of the SAED library rather
than accuracy considering that SAED library may not be very
realistic as that used in industry. For instance, the FO4 delay
for a unit sized inverter for this library in the operating corner
is 36 ps [20], [36]. So 11 FO4 delay, typically being presented
to be the delay for 64-bit adders in [37], is approximately
400 ps which is close to the reported delays for 64-bit adders
in this paper. To further demonstrate the fidelity of this library,
we run the Kogge–Stone adders with bit-widths of 8, 16, 32,
64, 128, and 256 through the synthesis flow using this library.
Then we normalize the measured delay in terms of FO4 delay,
and plot it with bit-width (n) as shown in Fig. 12. It can be seen
that the delay is linear with log2 n, which is expected for a log-
arithmic tree adder such as Kogge–Stone adder. So we believe
if this algorithmic methodology is applied to more realistic
industrial libraries, it can show similar benefit as demonstrated
with SAED 32-nm library.

Fig. 12. Delay values (× FO4 delay) of Kogge–Stone adders with various
bit-width.

To validate the optimality and the hypervolume error of the
two learning approaches against the real world solution space,
we need to run the logical/physical EDA flow on a large set of
adder solutions. Our machine and tool set takes about 5.5 min
to complete this full flow of a single prefix adder. Therefore,
we select a reasonable number (3000) of prefix adder solu-
tions, which eventually took about 300 h to complete, but still
a comparatively larger data set in comparison to our training
data set. Crucially, those 3000 adders are also sampled in a
Quasi-random manner in order to represent the entire solution
space.

A. Pareto Frontier Predicted by α-Sweep Learning

In this experiment, we show the effectiveness of our α-
sweep learning approach. We apply the α-sweep method
with 15 different α values of (1000, 0, 100, (1/100),

50, (1/50), 20, (1/20), 10, (1/10), 8, (1/8), 2, (1/2), 1), and
collect the best 150 solutions for delay-area and delay-power
spaces where for each α value, the best ten architectures with
lowest PD or AD values are fed into the logical/physical EDA
flow to generate similar Pareto points. Note that 15+15 = 30
learning models have been derived for this for all, but it is
very fast as the same training data have been used, and the
models are regression based.

Fig. 13(a) and (b), respectively, shows the corresponding
Pareto frontiers of the α-sweep approach and the ground truth
Pareto frontiers for the 3000 representative adders. Each dot in
the delay-area or delay-power space indicates one adder solu-
tion after going through the logical/physical EDA flow. We can
see that generally the predicted Pareto frontier solutions are
fairly close to the real Pareto frontier, with some exceptions.
Overall, the proposed approach can effectively achieve near
optimal Pareto frontier without affording to spend expensive
runtime on every adder. So this learning based methodol-
ogy can be readily adopted to achieve Pareto frontiers for
much larger solution space which is intractable for exhaustive
exploration by conventional design flow.

We have conducted additional experiments to show the
impacts of the low accuracy of the machine learning model.
The basic idea is to inject random noise in the prediction
stage, i.e., additional Gaussian noise is added into the predicted
value. The accuracy will be lower than original results. Then
we explore the Pareto frontier based on the noisy prediction.
Generally, the quality of the final Pareto frontier is worse than
original model. The comparison of Pareto frontier quality is
presented in Table II.

2308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

TABLE II
COMPARISON OF DIFFERENT MODEL ACCURACIES

(a) (b)

Fig. 13. (a) Pareto Frontier: area versus delay. (b) Pareto Frontier: power
versus delay.

B. Comparison of the Quality of Pareto Frontier Between
PAL and α-Sweep

We implement PAL to predict Pareto-optimal designs in
both 2-D design spaces which are AD space and PD space,
as well as 3-D space which is area-power-delay space. The
results are compared with those of [38]. The initial input
set for both AD and PD is of size 250, which are ran-
domly selected from the exhaustive design space. The curves
of Pareto frontiers for 2-D spaces are shown in Fig. 13.
the hypervolume of AD Pareto frontiers are calculated with
reference point (max(delay), max(area)). Similarly, the hyper-
volume of PD Pareto frontiers are calculated with reference
point (max(delay), max(power)). Note that the unit for delay
is nanosecond when calculating the hypervolume. It should
be stressed that there is a sort of randomness in both α-sweep
and PAL algorithm. For α-sweep, the training set is selected
randomly. On the contrary, the initial set in PAL is randomly
selected (line 2), thereby may result in different outputs. So the
experiments are conducted for 1000 times such that the gen-
eral performance is reflected. The comparison between two
approaches are shown in Table III. Comparing the hypervol-
ume error of Pareto frontier obtained by PAL and α-sweep, it
can be seen that PAL achieves better performance in predicting
Pareto frontier in all design spaces, including AD, PD, and
area-power-delay spaces.

C. Runtime Comparisons Among Exhaustive Approach,
α-Sweep, and PAL

There are three factors that will affect the runtime.
1) The total number of EDA synthesis runs required.
2) Among all these required EDA synthesis runs how many

of them can be parallelized.
3) The runtime of the training process in machine learning

model.
All these details are recorded in Table IV. The “INIT” repre-
sents the set of training data in the α-sweep and the initial set
in PAL, which can be parallelized because all the points are

TABLE III
PARETO FRONTIERS FOR PAL VERSUS α-SWEEP [38]

obtained in advance. The “AS” represents the set of designs
which are actively sampled during the learning process, which
cannot be parallelized. The α-sweep approach does not involve
active sampling, so the AS set is none here. The “VERI”
represents the set of designs which are predicted to be Pareto-
optimal. We should run EDA synthesis flow to get the real PPA
values of these designs to extract the Pareto frontier. This set
of designs are obtained after the learning process stops, so
the EDA synthesis runs on these designs are also conducted
offline, which can be parallelized. Each EDA synthesis run
takes about 5.5 min.

Then we can compare the total runtime of different explo-
ration methodologies. For exhaustive exploration, all the prefix
adders should be fed into EDA tools for synthesizing to obtain
the value of each metric, which is extremely time-consuming.
There is no training, additional sampling, and verification. The
total runtime cost involves EDA flows of all the designs in the
design space. The Pareto frontier can be extracted from the
results, whose runtime is much less than synthesizing and can
be neglected. The total runtime is

Texh = 5.5× #INIT

#Machines
. (18)

Since the entire solution space is so huge that one can hardly
run all of them, in our experiment, we sample representative
10K designs by random sampling. The total runtime of syn-
thesizing is about 55 000 min with single machine. It should
be noted that the entire solution space is much more than 10K.

In the exploration by α-sweep, not all adders in the design
space are needed for synthesizing. The total runtime is

Tα = 5.5× (#INIT+ #VERI)

#Machines
+Modeling time. (19)

In our experiment, we select 2500 of the designs out of those
10K designs by random sampling to build the model, including
training and testing phases. It takes about 1.5 min to build the
model and make predictions. When exploring in area-power-
delay design space, 150 designs on average in the design space
are predicted to be Pareto-optimal. So on average 2650 designs
are needed. The runtime for synthesizing is 14 575 min. Note

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2309

TABLE IV
COMPARISON OF RUNTIME WITH SINGLE MACHINE AMONG DIFFERENT APPROACHES

Fig. 14. Comparison of runtime with different number of machines.

that in terms of learning models, the α-sweep method needs
to build 15× 15 = 225 models since α1 and α2 both have 15
values to choose from.

Similarly, the runtime of PAL can be calculated by

TPAL = 5.5× (#INIT+ #VERI)

#Machines
+ 5.5× #AS

+Modeling time. (20)

The size of initial set is fixed, which is 700. It takes about
4 min to build the model and make predictions during the
PAL process. When exploring the Pareto-optimal designs in
area-power-delay space, ten designs on average are sampled
during PAL. Two hundred ninety designs on average in the
design space are predicted to be Pareto-optimal. In total, 1000
designs are needed on average. The runtime is 5500 min with
single machine. PAL algorithm needs to build N models, where
N is the number of iterations in PAL. In our implementation,
the maximum iteration is set to 20. It can be observed that the
active learning approach outperforms the α-sweep learning in
terms of both quality of Pareto frontier and number of EDA
flow runs.

Note that all the runtime calculations are based on single
machine. However, the EDA synthesis runs in all three flows
can be distributed to multiple machines if available, except the
adders sampled during active learning, which (10 on average
in our experiments) is very less in comparison to the total
number of the synthesis runs. So PAL can get a significant
speedup over α-sweep and exhaustive approach with single
machine and multiple machines. The comparison of runtime
with different approach using different number of machines is
shown in Fig. 14.

D. Comparison on Different Sampling Strategies in PAL

In the sampling stage of PAL, the number of instances to
be sampled has impact on the runtime since the EDA flow is

TABLE V
COMPARISON WITH OTHER APPROACHES FOR 64-BIT ADDERS

required to obtain the real value for area, power and delay.
The less instances we sample in each iteration, the more iter-
ations are needed to ensure the PAL process converge, which
is more likely to result in less samples in total. The more
instances we sample in each iteration, the less iterations are
needed. However, the total number of sampled instances would
be large. In practice, the runtime cost of running EDA flow can
be reduced by parallel execution if there are multiple licenses
available. In this section, we explore the effect of different
sampling strategies in terms of the total runtime and the quality
of Pareto frontier in practical scenarios.

The results for different sampling strategies are listed in
Fig. 15. Since the EDA flow for synthesis, placement and
routing takes up the most significant part of the total runtime
cost, the key factor is the number of adders which needs to be
through EDA tool flow. If we have multiple machines available
for the EDA tool flow, the runtime is determined by the total
number of iterations as long as the number of samples does
not exceed the number of machines. From the result, it can be
seen that we can obtain the Pareto frontier with comparable
quality, using less runtime.

Note that when the sample size increases from 1 to 5,
the average hypervolume error increases from 0.056 to about
0.070, which is still less than 0.154 (average hypervolume
error achieved in α-sweep approach). Therefore, batch sam-
pling can not only take care of parallel synthesizing but also
achieve better quality for Pareto frontier than α-sweep, which
can also show the advantages of the PAL.

E. Adder Performance Comparison

Finally, we compare our explored adders against
DesignWare adders, legacy adders, such as Kogge–Stone,
Sklansky, as well as a state-of-the-art adder synthesis algo-
rithm in Table V. Since our approach generates numerous

2310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 12, DECEMBER 2019

(a) (b) (c)

Fig. 15. Comparison among different number of samples per iteration.

solutions, it is not feasible to perform a one-to-one com-
parison. Instead for each of the solution points in regular
adders and [19], we have picked the Pareto points from our
solution set which are able to excel them in all metrics.
For instance, P1 could provide around 8ps better delay
with, respectively, 14% and 12% lesser area and power over
Kogge–Stone adder. The DesignWare adders are synthesized
from behavioral description of adder (Y = A + B) with
the 16 configurations of tool settings (combination of four
target delay and four utilization values) that are used in
generating Fig. 4. We pick the one with best delay, denoted
by “DesignWare” in Table V. The same Pareto point P1
dominates that solution by providing around 7.5-ps better
delay, 14% lesser area, and 15% lesser energy. For [19], we
pick the best delay solution. Note for a fixed mfo, [19] can
give prefix network with smaller size, but this approach only
provides a limited set of prefix structures. As a result, it is
hard for [19] to explore the full physical design space of
adders by machine learning. It should be stressed that [19]
beats the custom adders implemented in an industrial design,
and our methodology is able to excel the adders generated by
the algorithm presented in [19].

VII. CONCLUSION

This paper presents a novel methodology of machine learn-
ing guided design space exploration for power efficient high-
performance prefix adders. We have successfully demonstrated
the effectiveness of our learning models, developed by training
with quasi-random sampled data and features encapsulating
architectural and tool attributes. In addition, an active learn-
ing approach is applied to ease the demand of labeled data
and achieves even better Pareto frontier. Our adder synthesis
algorithm is able to generate a wider solution space in compar-
ison to a state-of-the-art algorithm, and when integrated with
the learning model, could provide a remarkable performance
versus power versus area Pareto frontier over a large repre-
sentative solution space. To the best of our knowledge, this
is the first work to bridge the gap between architectural and
physical solution space for parallel prefix adders.

REFERENCES

[1] B. Yu, D. Z. Pan, T. Matsunawa, and X. Zeng, “Machine learning
and pattern matching in physical design,” in Proc. ASPDAC, 2015,
pp. 286–293.

[2] W.-T. J. Chan, K. Y. Chung, A. B. Kahng, N. D. MacDonald,
and S. Nath, “Learning-based prediction of embedded memory tim-
ing failures during initial floorplan design,” in Proc. ASPDAC, 2016,
pp. 178–185.

[3] P. Meng, A. Althoff, Q. Gautier, and R. Kastner, “Adaptive thresh-
old non-Pareto elimination: Re-thinking machine learning for system
level design space exploration on FPGAs,” in Proc. DATE, 2016,
pp. 918–923.

[4] W.-H. Chang et al., “Generating routing-driven power distribution
networks with machine-learning technique,” in Proc. ISPD, 2016,
pp. 145–152.

[5] R. Samanta, J. Hu, and P. Li, “Discrete buffer and wire siz-
ing for link-based non-tree clock networks,” in Proc. ISPD, 2008,
pp. 175–181.

[6] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Comput., vol. C-31, no. 3, pp. 260–264, Mar. 1982.

[7] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solu-
tion of a general class of recurrence equations,” IEEE Trans. Comput.,
vol. C-100, no. 8, pp. 786–793, Aug. 1973.

[8] T. Han and D. A. Carlson, “Fast area-efficient VLSI adders,” in
Proc. ARITH, 1987, pp. 49–56.

[9] J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electron.
Comput., vol. EC-9, no. 2, pp. 226–231, Jun. 1960.

[10] C. Zhou, B. M. Fleischer, M. Gschwind, and R. Puri, “64-bit prefix
adders: Power-efficient topologies and design solutions,” in Proc. CICC,
2009, pp. 179–182.

[11] J. Liu, Y. Zhu, H. Zhu, C.-K. Cheng, and J. Lillis, “Optimum prefix
adders in a comprehensive area, timing and power design space,” in
Proc. ASPDAC, 2007, pp. 609–615.

[12] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Boston, MA, USA: Addison Wesley, 2004.

[13] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for par-
allel prefix adders under bitwise delay constraints,” in Proc. GLSVLSI,
2007, pp. 435–440.

[14] J. Liu, S. Zhou, H. Zhu, and C.-K. Cheng, “An algorithmic
approach for generic parallel adders,” in Proc. ICCAD, 2003,
pp. 734–740.

[15] J. P. Fishburn, “A depth-decreasing heuristic for combinational logic;
or how to convert a ripple-carry adder into a carry-lookahead adder or
anything in-between,” in Proc. DAC, 1990, pp. 361–364.

[16] R. Zimmermann, “Non-heuristic optimization and synthesis of parallel
prefix adders,” in Proc. IWLAS, 1996, pp. 123–132.

[17] M. Snir, “Depth-size trade-offs for parallel prefix computation,” J.
Algorithms, vol. 7, no. 2, pp. 185–201, 1986.

[18] H. Zhu, C.-K. Cheng, and R. Graham, “Constructing zero-deficiency
parallel prefix adder of minimum depth,” in Proc. ASPDAC, 2005,
pp. 883–888.

[19] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Polynomial time algo-
rithm for area and power efficient adder synthesis in high-performance
designs,” in Proc. ASPDAC, 2015, pp. 249–254.

[20] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Towards optimal
performance-area trade-off in adders by synthesis of parallel prefix struc-
tures,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33,
no. 10, pp. 1517–1530, Oct. 2014.

[21] M. Choudhury, R. Puri, S. Roy, and S. C. Sundararajan, “Automated
synthesis of high performance two operand binary parallel prefix adder,”
U.S. Patent 8 683 398, Mar. 2014.

MA et al.: CROSS-LAYER OPTIMIZATION FOR HIGH SPEED ADDERS: PARETO DRIVEN MACHINE LEARNING APPROACH 2311

[22] G. Palermo, C. Silvano, and V. Zaccaria, “ReSPIR: A response surface-
based Pareto iterative refinement for application-specific design space
exploration,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 28, no. 12, pp. 1816–1829, Dec. 2009.

[23] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proc. DAC, 2013,
pp. 1–50.

[24] B. R. Zeydel, T. T. J. H. Kluter, and V. G. Oklobdzija, “Efficient mapping
of addition recurrence algorithms in CMOS,” in Proc. ARITH, 2005,
pp. 107–113.

[25] M. Keeter et al., “Implementation of 32-bit Ling and Jackson adders,”
in Proc. Asilomar, 2011, pp. 170–175.

[26] E. Zitzler, D. Brockhoff, and L. Thiele, “The hypervolume indicator
revisited: On the design of Pareto-compliant indicators via weighted
integration,” in Proc. Int. Conf. Evol. Multi Criterion Optim., 2007,
pp. 862–876.

[27] Synopsys Design Compiler. Accessed: Apr. 23, 2016. [Online].
Available: http://www.synopsys.com

[28] Synopsys IC Compiler. Accessed: Apr. 23, 2016. [Online]. Available:
http://www.synopsys.com

[29] Synopsys SAED Library. Accessed: Apr. 23, 2016. [Online]. Available:
http://www.synopsys.com/Community/UniversityProgram/Pages/32-
28nm-generic-library.aspx

[30] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[31] K. Tumer and J. Ghosh, “Estimating the bayes error rate through
classifier combining,” in Proc. ICPR, vol. 2, 1996, pp. 695–699.

[32] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel, “Active learning
for multi-objective optimization,” in Proc. ICML, 2013, pp. 462–470.

[33] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[34] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
in Proc. ICML, 2010, pp. 1015–1022.

[35] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[36] S. Roy, M. Choudhury, R. Puri, and D. Z. Pan, “Polynomial time algo-
rithm for area and power efficient adder synthesis in high-performance
designs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 5, pp. 820–831, May 2016.

[37] T. McAuley, W. Koven, A. Carter, P. Ning, and D. M. Harris,
“Implementation of a 64-bit Jackson adders,” in Proc. Asilomar, 2013,
pp. 1149–1154.

[38] S. Roy, Y. Ma, J. Miao, and B. Yu, “A learning bridge from archi-
tectural synthesis to physical design for exploring power efficient
high-performance adders,” in Proc. ISLPED, 2017, pp. 1–6.

Yuzhe Ma received the B.E. degree from
the Department of Microelectronics, Sun Yat-sen
University, Guangzhou, China, in 2016. He is
currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

He was an Intern with Cadence Design Systems,
San Jose, CA, USA, and NVIDIA Research, Austin,
TX, USA. His current research interests include very
large-scale integration design for manufacturing,
physical design, and machine learning on chips.

Subhendu Roy (S’13–M’16) received the B.E.
degree in electronics and telecommunication engi-
neering from Jadavpur University, Kolkata, India, in
2006, the M.Tech. degree in electronic systems from
the Indian Institute of Technology Bombay, Mumbai,
India, in 2009, and the Ph.D. degree in electrical and
computer engineering from the University of Texas
at Austin, Austin, TX, USA, in 2015.

He is currently a Software Engineer with Intel,
San Jose, CA, USA. He was with Cadence Design
Systems, San Jose, and Atrenta, Noida, India (cur-

rently, acquired by Synopsys). He was a Summer Intern with IBM T. J. Watson
Research Center, Yorktown Heights, NY, USA, and Mentor Graphics,
Fremont, CA, USA. He has researched on various areas, such as clock tree
synthesis, adder synthesis, power optimization, gate-sizing, reliability, and
machine learning guided design space exploration.

Dr. Roy was a recipient of the Best Paper Award at ISPD’14. He
has served as a Reviewer for several journals/conferences, including the
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—
PART I: REGULAR PAPERS, the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—PART II: EXPRESS BRIEFS, the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
TODAES, GLSVLSI, ISLPED, and ISCAS.

Jin Miao received the B.S. degree in electrical engi-
neering from Zhejiang University, Hangzhou, China,
in 2010, and the Ph.D. degree in electrical and com-
puter engineering from the University of Texas at
Austin, Austin, TX, USA, in 2014.

He is currently a Principle Software Engineer with
Cadence Design Systems, San Jose, CA, USA. His
current research interests include emerging science
and technologies, covering approximate computing,
hardware security, and machine learning.

Dr. Miao has been serving as a Reviewer or
a TPC Member for a number of journals or conferences, including the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS, DAC, ASPDAC, and NEWCAS.

Jiamin Chen received the B.S. degree in computer
science from the Chinese University of Hong Kong
(CUHK), Hong Kong, in 2018.

He is currently a Research Assistant with the
Institute of Future Cities, CUHK. His current
research interests include machine learning and deep
learning and their applications in biometrics, com-
puter vision, and multimedia.

Bei Yu (S’11–M’14) received the Ph.D. degree from
the University of Texas at Austin, Austin, TX, USA,
in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of five best paper awards
from the Integration, the VLSI Journal in 2018, the
2017 International Symposium on Physical Design,
the 2016 SPIE Advanced Lithography Conference,
the 2013 International Conference on Computer

Aided Design, and the 2012 Asia and South Pacific Design Automation
Conference, and five ICCAD/ISPD contest awards. He has served in the
Editorial Board for the Integration, the VLSI Journal and IET Cyber-Physical
Systems: Theory and Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

