
AutoGTCO: Graph and Tensor Co-Optimize for
Image Recognition with Transformers on GPU

Yang Bai1, Xufeng Yao2, Qi Sun1, Bei Yu1
1The Chinese University of Hong Kong 2SmartMore

{ybai,qsun,byu}@cse.cuhk.edu.hk,xufeng.yao@smartmore.com

Abstract—Performance optimization is the art of continu-
ously seeking an effective mapping between algorithm and
hardware. Existing deep learning compilers or frameworks
optimize the computation graph via adapting transformations
manually designed by expert efforts. We argue that these
methods ignore some possible graph-level optimizations, thus
it is difficult to generalize to emerging deep learning models or
new operators. In this work, we propose AutoGTCO, a tensor
program generation system for vision tasks with the transformer
architecture on GPU. Compared with existing fusion strategies,
AutoGTCO explores the optimization of operator fusion in
the transformer model through a novel dynamic programming
algorithm. Specifically, to construct an effective search space
of the sampled programs, new sketch generation rules and a
search policy are proposed for the batch matrix multiplication
and softmax operators in each subgraph, which are capable
of fusing them into large computation units, it can then map
and transform them into efficient CUDA kernels. Overall, our
evaluation on three real-world transformer-based vision tasks
shows that AutoGTCO improves the execution performance
relative to deep learning engine TensorRT by up to 1.38×.

I. INTRODUCTION

Recent years have witnessed a surge of industry-scale ap-
plication of deep learning models, ranging from autonomous
driving, augmented reality, human pose estimation, language
translation, to billion-scale search and recommendation sys-
tems. In computer vision, the most popular line of work is
based on convolutional neural networks, which has led to
a plethora of methods for CNN-based network architectures
[1]–[4]. Despite its huge success, increasing attention has
been paid to combining CNN-based architectures with self-
attention mechanisms [5]. The design ethos is inspired by
the successful application of transformer-based architecture on
neural language processing. Many methods have successfully
replaced the CNN with a standard transformer entirely [6].
The great successes of using transformer have been proved in
various tasks [7]–[10].

The deep learning models can be expressed as a directed
acyclic computation graph (DAG), in which nodes verbalize
the operators and edges represent the relationship between
adjacent operators. These computation graphs are mapped to
hardware accelerators (e.g., GPUs [11], [12], FPGAs [13]–
[15], ASICs [16]) through existing deep learning frameworks
(e.g., TensorFlow [17], PyTorch [18], Caffe [19]) by vendor-
provided kernel libraries (e.g., cuDNN [20], MKL-DNN
[21]) to achieve high performance computing. These libraries
require significant engineering effort to manually tune for

 Ansor System

Auto
Schedule

Computation
Graph

Tensor
Expression

TVM
CodeGen

Optimized
CUDA Code

 Our AutoGTCO

Auto
Schedule

Computation
Graph

Tensor
Expression

TVM
CodeGen

Optimized
CUDA Code

Dynamic Programming
Operator Fusion

Fig. 1 The system overview of Ansor [22] and AutoGTCO.

different operators on a diversity of hardware platforms.

While previous arts focus on optimizing CNN-based mod-
els, the transformer-based vision models have not yet been
scaled effectively on accelerators due to the use of specialized
attention mechanisms. Though the existing deep learning
libraries (e.g., cuDNN/cuBLAS) are capable of fusing the
element-wise layers into large compute-intensive kernels,
these techniques do not work well for workloads that are
dominated by memory-intensive structures (e.g., transformer).
In addition, the transformer-based vision models have a large
number of fine-grained operators, causing notable runtime
launch overheads when being executed on GPU platforms. For
these reasons, traditional optimization methods, (e.g, Halide
[23]) optimizing compute-intensive operators alone, fail to
unlock the full potential of execution efficiency of transformer
models.

To alleviate these burdens of optimizing, some works pro-
pose to optimize model from graph-level. TensorRT [24] uses
two-steps fusion strategy to optimize the computation graph.
Some operators (e.g., convolution, batch normalization [25],
and ReLU [26]) are fused vertically via the specific rules
in the first step. In the second step, all of the operators
in the same stage are fused horizontally. This optimization
can achieve good performance for CNN-based architecture
with multiple branches. Some popular frameworks, e.g., Ten-
sorFlow, PyTorch, TVM [27], and Ansor [22], optimize the
computation graph by performing greedy rule-based subgraph
substitutions. Although manually designed substitutions im-
prove the performance, they fall short in maintenance respect.
The maintenance problem is aggravated by the fact that
new operators or models are continuously introduced because
hand-written graph substitution rules require significant engi-

neering effort. To find performant graph substitutions, search-
based approaches are proposed by TASO [28] and IOS [29]
to explore a large search space to cover the useful graph
optimizations. TASO automatically generates graph substitu-
tions and employs formal verification to ensure the correctness
of the generated graph substitutions. IOS combines intra-
operator and inter-operator parallelism to find an efficient
schedule that better utilizes the hardware accelerator. How-
ever, these approaches fail to capture effective code generation
techniques, since they rely on deep learning library cuDNN to
implement each kernel in their runtime engine, which prevents
them from covering a comprehensive search space for operator
optimization.

To address these challenges, we propose AutoGTCO, a
framework based on a novel dynamic programming algorithm
to explore operator fusion strategy automatically for generat-
ing high-performance tensor programs on GPUs. Our work is
based on Ansor, shown in Fig. 1. The dynamic programming
algorithm is to find possible fusion relationships between
adjacent operators in the transformer model. After getting
different kinds of subgraphs, AutoGTCO can dynamically
prioritize subgraphs of transformer that are more likely to im-
prove the end-to-end performance. Then AutoGTCO employs
a hierarchical representation to cover a large search space,
which is created automatically for a given subgraph. Complete
tensor programs are sampled from the search space and a
learned cost model is introduced to fine-tune these programs.
In summary, our paper makes the following contributions:
• We introduce a novel dynamic programming algorithm

to solve the operator fusion problem for transformer
models. This technique can automatically generate the
optimal combination for adjacent operators in the graph-
level, which explores a large combination space than the
rule-based method in other libraries.

• We propose new sketch generation rules and a search
policy for the batch matrix multiplication and softmax
operators in subgraphs. This mechanism constructs an
effective search space for the kernel generation. To get
high-performance and end-to-end compilation flow, a
learned cost model is used to fine-tune the performance
of each kernel.

• We apply our method to currently popular image recogni-
tion tasks with transformer models including DETR [7],
SETR [9], and ViT [10]. Our method can automatically
generate corresponding CUDA code on GPU under dif-
ferent inference configurations. Empirical studies show
the superiority of our optimized CUDA code which
outperforms TensorRT with 1.01 to 1.38× measured
speedup in the inference stage.

II. RELATED WORK AND BACKGROUND

A. Image Recognition
Image recognition has been significantly boosted with the

development of deep neural networks. There are three par-
ticularly important tasks in image recognition: image classi-
fication, object detection, and semantic segmentation. Image

classification [30] can classify what is contained in an image.
Object detection [31] is a combination of image location and
classification. Image localization specifies the location of a
single object in an image whereas object detection specifies
the location of multiple objects with their labels in the image.
Image segmentation [32] creates a pixel-wise mask of each
object in the image.

B. Transformers
The transformer model, originally developed for a new

attention-based building block for machine translation. Trans-
former models make two main contributions. First, it popu-
larizes attention mechanisms to a particular module named
multi-head attention (MHA) [9]. Second, it does not rely on
recurrent or convolutional algorithms. Besides, transformer
models contain many similar subgraph structures which can
be executed in parallel with the same configuration.

Encoder. The encoder module is composed of a stack of
attention-based layers with identical structures. There are two
sub-layers in each layer. The first sub-layer is a multi-head
attention mechanism, and the second sub-layer is a simple,
position-wise fully dense layer. A residual connection layer
is used between each of the two sub-layer with a layer
normalization.

Decoder. The structure of the decoder is akin to the
encoder. In addition to the two sub-layers mentioned in
the encoder module, a third sub-layer is inserted into the
decoder module. The function of it is to perform multi-
head attention over the output of the encoder part. Besides,
some modifications about masking mechanisms in the self-
attention sub-layer are to prevent positions from attending to
subsequent positions.

Multi-Head Attention. Multi-head Attention generalizes
attention mechanisms and employs h attention heads parallelly
to get different learned projections of a given sequence. Each
attention head is an instance of scaled dot-product attention,
and takes queries (q), keys (k), values (v) as its input.
The function of attention is to find values corresponding
to the keys closest to the input queries. The functions of
heads are also augmented with linear layers that project their
inputs into a lower-dimensional space. The three inputs are
first multiplied by weight tensors wq, wk, wv, respectively,
as a learned input projection. The query and key tensors
are subsequently multiplied together and scaled, followed
by applying the softmax operation to weight and select the
most relevant results. This is then multiplied with vv to
produce the per-head output. The outputs of all the heads are
finally concatenated and linearly projected back to the input
dimensional size, as depicted in Figure 2.

C. Deep Learning Compiler
Ansor [22] is a framework for automated tensor program

generation, which is equipped with a hierarchical search space
that decouples high-level structures and low-level details.
Ansor constructs the search space for a computation graph
automatically, eliminating the need for manually develop-
ing high-performance computing templates by experienced

MatMul

SoftMax

Scale

MatMul

Query ValueKey

Scaled Dot-Product Attention Multi-Head Attention

Linear

Concat

Query Key Value

Scaled Dot-Product Attention

Linear Linear Linear

Fig. 2 Scaled Dot-Product and Multi-Head Attention (MHA).

engineers. Then, it uses an auto-tuner to sample complete
programs from the search space and implements fine-tuning
on complete programs under the XGBoost cost model [33].
The brief flow of Ansor is shown in Fig. 1. Tensor Compre-
hensions (TC) [34] has its unique design, which combines the
Halide and polyhedral model [35]. It uses Halide-based IR to
represent the computation and adopts the polyhedral-based IR
to represent the loop structures.

D. Hierarchy of 2080 Ti GPUs
Compute Unified Device Architecture (CUDA) is a parallel

computing platform and programming model for GPUs, which
exposes high-performance computing programmers to the
concepts of memory hierarchy and threads hierarchy. Under
the hood, accelerating deep learning models on complex mem-
ory hierarchy needs to make good use of memory units and
computation units. As shown in Fig. 3, there are many pro-
grammable units at different levels of GPU devices. RTX 2080
Ti GPU follows the Turing microarchitecture and contains 68
parallel streaming multiprocessors (SMs). SM is partitioned
into 4 processing blocks. Each processing block possesses
a 64 KB register file, and the 4 processing blocks share a
combined 96 KB shared memory. And each thread block
contains a group of threads that can execute the same code
on different data, following the Single Instruction Multiple
Thread (SIMT) mechanism.

III. PROBLEM FORMULATION

Definition 1 (Computation Graph). A transformer model is
defined by a computation graph G = (V,E), where V is
the set of vertices and E is the edge set. Each vertex can
represent an operator such as GEMM and softmax operation
in the computation graph. Each edge (u, v) ∈ E is to describe
the dependencies between node u and v.

Operator Pattern. Operator fusion combines multiple
adjacent operators into a single kernel rather than storing
the intermediate results into the global memory for data
movement. This optimization can greatly improve perfor-
mance, particularly in throughput oriented architectures such
as GPUs. In order to combine operators efficiently, we define
the pattern of each operator in the computation graph. In
Ansor, it has five patterns for each operator: (1) injective, (2)

L1 Data Cache / Shared Memory (96KB)

CUDA
Core

Tensor
Core

Fetch
Decoder

CUDA
Core

Tensor
Core

Fetch
Decoder

CUDA
Core

Tensor
Core

Fetch
Decoder

CUDA
Core

Tensor
Core

Fetch
Decoder

Memory
(11GB)
HOST

616 GB/S

DEVICE

L2 Cache (5632KB)

68 SMs

Streaming Multiprocessor (SM)

Fig. 3 A streaming multiprocessor and the memory architec-
ture of GeForce RTX 2080 Ti GPU.

reduction, (3) complex-out-fusable, (4) element-wise, and (5)
opaque. And it provides generic rules to fuse these operators
[27]. From the Section II, we know that transpose of a matrix,
batch matrix multiplication, layer normalization, softmax, and
dense layer occur frequently in the transformer computation
graph. In the meantime, the default configuration of these
operators is defined as follow: Softmax is tagged as the opaque
pattern. Batch matrix multiplication and dense are tagged as
the complex-out-fusable pattern. Layer normalization [36] can
be decomposed to be a set of add/ subtract/ multiple operators
which are all tagged as the element-wise pattern.

Fusion Strategy and Schedule. We define a schedule S
of a computation graph G as follow:

S = {(V1, F1), (V2, F2), ..., (Vk, Fk)} , (1)

where Vi represents a group of operators in the i-th phase
and Fi is a pair to describe the fusion relationship between
two nodes. Finally, computation graph can be executed under
the schedule S from the first phase (V1, F1) to the last phase
(Vk, Fk) consecutively.

Problem 1. Given a computation graph G and fusion sched-
ule S on GPU, our goal is to search for a schedule S∗:

S∗ = argmin
S

Cost(G,S), (2)

where Cost is the latency of executing G according to the
schedule S.

IV. DETAILS OF AUTOGTCO
A. Overview

Our tensor generation framework is shown in Fig. 4, com-
posed of four important modules, i.e., dynamic programming-
based operator fusion (DPOF), subgraph scheduler, CUDA
program sampler, and performance tuner. The input of DPOF
is a transformer model without any operator fusion. Each
operator is tagged with a type label to determine whether
it is fused with other adjacent operators or not. After running
through the DPOF module, each operator is given a new tag,
and adjacent operators are possibly merged into subgraphs

DPOF

Operator
Arrangement

Operator
Fusion

CUDA Program
Sampler
Sketch

Customization

Random
Annotation

Performance
Tuner

NVIDIA GeForce RTX 2080 Ti GPU

Subgraph
Scheduler
Subgraph 1

Subgraph 2

…

Transformer Model

Encoder Decoder

Cost Model
Subgraph 3

Fig. 4 Overview of our system. The arrows show the flow of
the optimized subgraphs from transformer model and tensor
programs generation on GPU platform.

according to the relationship of the predicted tags. It then
generates the high-performance tensor programs for each
subgraph. Our framework is summarized as follows:
• A DPOF that finds an optimized operator fusion schedule

for the transformer model.
• A subgraph scheduler that allocates time resources for

optimizing multiple subgraphs generated by the DPOF.
• A program sampler that delineates a large search space

and randomly samples various programs from it.
• A performance tuner that trains a cost model to measure

the performance of sampled tensor programs.

B. Dynamic Programming-based Operator Fusion (DPOF)
Operator Arrangement. To find an optimized schedule for

a transformer model, we first use topological sort to obtain
the execution order of the computation operators. Second,
we build a computation Queue to store these operators. It
is convenient for us to find a good schedule based on the
Queue rather than the graph data structure. For the placeholder
variables, we do not consider them because they only store the
input and output and do not mitigate the performance of the
whole graph. As mentioned in the section (III), each operator
has its own type and the same operator with different types
make the difference in the inference stage. Third, we set all
of the operators as opaque type and assume that there is no
fusion relationship between them. The size of the Queue is
the maximum number of phase in the scheduling algorithm
which is defined in the section (III).

Operator Fusion. Getting the execution order of the
computation operators and the maximum number phase of
our schedule, we partition the original computation graph
G = (V,E) into V −V

′
and V

′
. The edges in set of V −V

′

have the pointing relationship with the edges in set of V ′. That
is, all of the edges start from V −V

′
and end up with V ′. We

call V ′ the segmentation set. The relationship between the V
′

and V − V
′

is illustrated in Fig. 5. Following the dynamic
programming, we can enumerate the segmentation sets V ′ of
V and convert the problem into a sub-problem that attains the

A B

C D E

G

F

<latexit sha1_base64="CAQ7zVEIVzfNqIlIT6dcbG1PkD4=">AAAB/3icbVA9SwNBEN3zM8aop4KNIItBsAp3KdQyYGOpaGIgF8LeZi5ZsvfB7pwYzhQW/hEbC0Us9W/Y+Rv8E24+Ck18MPB4b4aZeX4ihUbH+bLm5hcWl5ZzK/nVwtr6hr25VdNxqjhUeSxjVfeZBikiqKJACfVEAQt9Cdd+73ToX9+A0iKOrrCfQDNknUgEgjM0Usve8RBuMbvkXWinEjwaBwOP1lp20Sk5I9BZ4k5IsVJ4v/h+2Hs/b9mfXjvmaQgRcsm0brhOgs2MKRRcwiDvpRoSxnusAw1DIxaCbmaj+wf0wChtGsTKVIR0pP6eyFiodT/0TWfIsKunvaH4n9dIMThpZiJKUoSIjxcFqaQY02EYtC0UcJR9QxhXwtxKeZcpxtFEljchuNMvz5JaueQelcoXJo0yGSNHdsk+OSQuOSYVckbOSZVwckceyTN5se6tJ+vVehu3zlmTmW3yB9bHD6N+mX4=</latexit>

Schedule of V

<latexit sha1_base64="mUHs6FN516gff+tFmLVg1IggzJA=">AAACUHicbVHLahsxFL3jPpK6j7jtMptLTWlKqZkxoc0mEOgmyxRqJ+AZjEa+Y4tImkG6UzCDPzGb7PId3XTR0sqPtnn0gNDhnHORdJRXWnmO46uode/+g4db24/aj588fbbTef5i6MvaSRrIUpfuLBeetLI0YMWazipHwuSaTvPzT0v/9Cs5r0r7hecVZUZMrSqUFBykcWfaTKpUU8E4wiGmTk1njBkeYmqUxbWzh9cz77EZLt78i+I7ZDJ/AzfNDXm7GHe6cS9eAe+SZEO6sMHJuHOZTkpZG7IstfB+lMQVZ41wrKSmRTutPVVCnospjQK1wpDPmlUhC3wdlAkWpQvLMq7U6xONMN7PTR6SRvDM3/aW4v+8Uc3FQdYoW9VMVq4PKmqNXOKyXZwoR5L1PBAhnQp3RTkTTkgOf9AOJSS3n3yXDPu95EOv/3m/e9Tf1LENu/AK9iCBj3AEx3ACA5BwAd/gB/yMLqPv0a9WtI7+2eEl3ECr/RsWILBI</latexit>

dp [V] = min (dp [V � V 0] + temp [V 0])

<latexit sha1_base64="6Lcn1HRWGlLysJgObDv5u+kpNgM=">AAACAnicbVC7SgNBFJ2NrxijRq1EkMEgWoXdFGoZsLGwSMA8IBvC7GQ2GTL7YOauuCzBRj/FxkIRmxR+hZ3f4E84m6TQxAMDh3Pu5c45Tii4AtP8MjJLyyura9n13EZ+c2u7sLPbUEEkKavTQASy5RDFBPdZHTgI1golI54jWNMZXqZ+85ZJxQP/BuKQdTzS97nLKQEtdQv7NrA7SK4JMJ/GNg5cG49w0hiddAtFs2ROgBeJNSPFSn5c+348HFe7hU+7F9DIYz5QQZRqW2YInYRI4FSwUc6OFAsJHZI+a2vqE4+pTjKJMMLHWulhN5D6+YAn6u+NhHhKxZ6jJz0CAzXvpeJ/XjsC96KTcD+M0oTTQ24kMAQ47QP3uGQURKwJoZLrv2I6IJJQ0K3ldAnWfORF0iiXrLNSuabbKKMpsugAHaFTZKFzVEFXqIrqiKJ79IRe0KvxYDwbb8b7dDRjzHb20B8YHz+C15p+</latexit>

Latency of V 0

<latexit sha1_base64="1L7uHZeIfTS9OyWRrKsP1lvi4GI=">AAAB/nicbVC7SgNBFJ31GeNrjVjZLAYhFobdFGoZsLGMYB6QDWF2MpsMmZ1ZZu6KYQn4B36DjYUittZ+gp0fYu9skkITDwwczrmHe+cEMWcaXPfLWlpeWV1bz23kN7e2d3btvUJDy0QRWieSS9UKsKacCVoHBpy2YkVxFHDaDIaXmd+8pUozKW5gFNNOhPuChYxgMFLXPvCB3kFa0klwGitpYtHJON+1i27ZncBZJN6MFKsFv/T98eDXuvan35MkiagAwrHWbc+NoZNiBYxwOs77iaYxJkPcp21DBY6o7qST88fOsVF6TiiVeQKcifo7keJI61EUmMkIw0DPe5n4n9dOILzopEzECVBBpovChDsgnawLp8cUJcBHhmCimLnVIQOsMAHTWFaCN//lRdKolL2zcuXatFFBU+TQITpCJeShc1RFV6iG6oigFD2iZ/Ri3VtP1qv1Nh1dsmaZffQH1vsPbrWYxA==</latexit>

(sub-problem)

<latexit sha1_base64="1zaAr43jtrHxPH+RCxpmnmgpp8I=">AAACCHicbVDLSgNBEJyN7/iKehR0MIheDLs5qEfBi8eIJgayIcxOepPB2QczvWJY9piLv+LFg2K8+gne/AZ/wtnEg6+ChqKqm+4uL5ZCo22/W4Wp6ZnZufmF4uLS8spqaW29oaNEcajzSEaq6TENUoRQR4ESmrECFngSrrzr09y/ugGlRRRe4iCGdsB6ofAFZ2ikTmnbRbjF9IL3oZtIcGnkuzSjDXpA00a2V+yUynbFHoP+Jc4XKZ8sjc4/hlujWqf05nYjngQQIpdM65Zjx9hOmULBJWRFN9EQM37NetAyNGQB6HY6fiSju0bpUj9SpkKkY/X7RMoCrQeBZzoDhn3928vF/7xWgv5xOxVhnCCEfLLITyTFiOap0K5QwFEODGFcCXMr5X2mGEeTXR6C8/vlv6RRrTiHleq5SaNKJpgnm2SH7BOHHJETckZqpE44GZJ78kierDvrwXq2XiatBetrZoP8gPX6CV9wm+Q=</latexit>

Schedule of V � V 0

Fig. 5 Dynamic Programming Operator Fusion.

optimal schedule for V −V
′
. Therefore, the whole graph can

be solved by employing the segmentation set recursively.

We define dp[V] as the latency of the graph with the node
set V under an optimal schedule S. And then we define
temp[V

′
] as the latency of phase (V

′
, F). F is the better

fusion strategy for the segmentation set V
′
. Consequently,

we can get the state transition equation as follow:

dp[V] = min
v∈V ′

(dp[V − V
′
] +

∑

v

temp[v]), (3)

where v is the node in segmentation set V
′

and the boundary
value of the state transition equation is dp[∅] = 0. In order
to get the optimal schedule, we store the each node v in a
segmentaion set V

′
that can make the latency of each V in

action[V]. Following the above information, we implement
the operator fusion scheduling as shown in Algorithm 1.

C. Subgraph Scheduler

A transformer model can be partitioned into kinds of
independent subgraphs. In the process of optimization, it is
meaningless to spend much time to tune some subgraphs that
can not improve the execution performance. There are two
reasons: (1) the subgraph is not a performance bottleneck, or
(2) spending much time tuning only brings minimal improve-
ment. Therefore, we should dynamically allocate different
amounts of time resources to different kinds of subgraphs.
It means that obtaining a well-optimized transformer needs
completing lots of scheduling tasks and we define a scheduler
to optimize this part.

When tuning a set of subgraphs, we combine three types
of goals: (1) reducing the whole latency of transformer, (2)
meeting latency requirements for a set of subgraphs, or (3)
minimizing tuning time when tuning no longer improves the
performance of transformer significantly. We define t as the
allocation vector, where ti is the number of time units spent
on i-th task and the initial value of t is (1, 1, ..., 1). We also
define gi(t) as the minimum subgraph latency under the i-
th task with ti time units. Therefore, f(g1(t), g2(t), ..., gn(t))
can describe the end-to-end latency of the model and our goal
is to minimize this function. We define the following objective

Algorithm 1 Operator Fusion Scheduling

Input: A computation graph G = (V,E) with the opaque
type for ∀v ∈ V , pattern(v) = 0;

Output: A operator fusion strategy with the type of each
operator v ∈ V, pattern(v);

1: Defining dp[∅]← 0, dp[V]← +∞, action[V]← ∅;
2: Defining S ← [∅] (A Stack data structure to store the

phase of optimial schedule for operator fusion);
3:
4: function SelectSchedule(G)
5: V = all operators in computation graph G;
6: Scheduler(V);
7: while V 6= ∅ do
8: V

′
, F = action[V];

9: Put phase (V
′
, F) into the stack S;

10: V = V − V
′

11: end while
12: return the Fusion Strategy S
13: end function
14:
15: function Scheduler(V)
16: if dp[V] 6= +∞ then
17: return dp[V]
18: end if
19: for all v ∈ V

′
do

20: TV ′ , FV ′ = PhasePartition(V
′
)

21: TV = Scheduler(V − V
′
) +

∑
vi∈V ′ TV ′

22: if TV ≤ dp[V] then
23: dp[V] = TV

24: action[V] = (V
′
, FV ′)

25: end if
26: end for;
27: return dp[V]
28: end function
29:
30: function PhasePartition(V

′
)

31: for all operators vi ∈ V
′

do
32: if pattern(vi, vj) 6= opaque then
33: Tfused(i,j) = Runtime(pair(vi, vj))
34: else
35: Tfused(i,j) = +∞
36: end if
37: end for
38: return Tfused(i,j), pattern(vi, vj)
39: end function

function:

f = max

[
n∑

i=1

wi ×max(gi(t), ES(gi, t)), Lj

]
. (4)

In the above function, wi is the number of appearances of
task i. We define Lj as the latency requirement of subgraph
j, meaning that we do not want to spend tuning time on a
subgraph if its latency has already met the requirement. In
order to achieve the effect of early stopping, we also define a
function named ES(gi, t) by looking at the history of latency
of i-th task. Unlike the objective functions defined in Ansor,
we first make a comparison between meeting the requirement
and early stopping, and then optimize each task sequentially.
Finally, we use a scheduling algorithm based on gradient
descent to efficiently optimize the objective function.

D. Program Sampler
To sample the tensor program effectively, we also define a

hierarchical search space with two levels like Anosr: sketch
and annotation. We define the high-level structures of tensor

programs as our sketches and set millions of low-level choices
(e.g., blocking size, virtual thread tiling, cooperative fetching)
as our annotations. The generated tensor program is composed
of two levels. The component of the first level are sketches
generated by the derivation rules which are designed specifi-
cally on the GPU platforms. The detailed information of the
second level is randomly annotated from the annotation space.
To generate sketches for each subgraph, we visit all of he
computation nodes in a topological order and iteratively build
a generation structure. For compute-intensive or the nodes
with a high chance of data reuse, we build a classic tile and
fusion structures for them as the sketch. It is worth noting
that some new nodes for caching will also be introduced to
increase memory usage during the generation of sketch.

Fig. 6 (left) shows an example of the generated sketches for
a subgraph that contains matrix multiplication ([1050, 8, 32]×
[32, 8, 1050]) and softmax operators in MHA. For the example
subgraph, the sorted order of the five nodes in the DAG
is (A,B,M ,S,D). To get the sketches for the subgraph,
we start from the output node D and apply the generation
rules to the computation node one by one. We can get the
generated sketch 1 by Anosr. From the generated sketch 1,
we find that the matrix multiplication and softmax operators
are performed separately, and they are not integrated into a
computation kernel. In order to optimize multiple operators
as a computation kernel to unlock the full potential of ex-
ecution efficiency, we design new derivation rules for batch
matrix multiplication and softmax operators in transformer
architecture. We integrate them seamlessly with existing rules
to optimize the execution performance for tensor programs.

Sketch Customization. The default sketch configuration of
Anosr for the multi-level tiling structure to match the GPU
backend is “SSSRRSRS”. The first three “S” corresponds to
BlockIdx, Virtual thread, and ThreadIdx in the GPU program-
ming model, respectively. The “SSSRRSRS” tile structure for
matrix multiplication expands the original 3-level for-loop into
a 19-level for-loop. Even if we do not enumerate the loop
order, this multi-level tiling structure can take loop order into
consideration. As shown in Fig. 6, we design an effective
operator fusion strategy for the sketch generation. The “SSSR-
RSRS” tile structure is for batch matrix multiplication and
softmax operators. To fuse more operators and make full use
of computation resources on GPUs, we insert a caching node
with the “SS-S” tile structure to store the sketch generation
of the matrix multiplication in it, and then send the result to
the sketch generation of softmax to get the final sketch of the
subgraph. From Fig. 6, we can find that the generation sketch
of matrix multiplication and softmax operators are fused into
the same computation kernel.

Random Annotation. The sketches generated by our cus-
tomization are incomplete programs because they only have
thread parallel structures without the specific value. Therefore,
we should turn them into complete programs and then evaluate
the performance of tensor programs. We randomly pick one
sketch from a list of generated sketches by our customizations.
For the outer loops, we use parallelize intrinstics to generate

[Placeholder: A, B

]

for i�0 in range(None):
for j�0 in range(None):…
for ic�2 in range(None):

for jc�2 in range(None):
for k.0 in range(None):

for k.1 in range(None):
for k.2 in range(None):

for i.3 in range(None):
for j.3 in range(None):

C = …

C.local = …

for i.0 in range(0, 1050):
for k.0 in range(0, 33):

threadIdx.x k.1 [0, 32]
T_softmax_maxelem = …

for i.0 in range(0, 1050):
for k.0 in range(0, 1050):

T_softmax_expsum = …
for i.0 in range(0, 1050):
for i.1 in range(0, 1050):

T_softmax_norm = …

Generated Sketch 1:
[Placeholder: A, B

]

for i�0 in range(None):
for j�0 in range(None):…
for ic�2 in range(None):

for jc�2 in range(None):
for k.0 in range(None):

for k.1 in range(None):
for k.2 in range(None):

for i.3 in range(None):
for j.3 in range(None):

C = …

C.local = …
for i.0 in range(0, 1050):
for k.0 in range(0, 33):

threadIdx.x k.1 [0, 32]
T_softmax_maxelem = …

for i.0 in range(0, 1050):
for k.0 in range(0, 1050):

T_softmax_expsum = …
for i.0 in range(0, 1050):
for i.1 in range(0, 1050):

T_softmax_norm = …

Generated Sketch 2:
The mathmetical expressions:

MatMul

SoftMax

Ansor

A

B

D

Our Sketch Customization and Policy

D[i, j] = SoftMax(m[i, j])

<latexit sha1_base64="9Mns8V5JWv5XJ8vJU+K8sqXzsvw=">AAACA3icbVDLSgMxFM3UV62vUXe6CRahgpQZqehGKejCjVDRPqAdSibNtLGZZEgyYhkKbvwVNy4UcetPuPNvTNtZaPXAhcM593LvPX7EqNKO82VlZmbn5heyi7ml5ZXVNXt9o6ZELDGpYsGEbPhIEUY5qWqqGWlEkqDQZ6Tu989Gfv2OSEUFv9GDiHgh6nIaUIy0kdr21nmT7sNbD57AaxHoS3RfCCfKXtvOO0VnDPiXuCnJgxSVtv3Z6ggch4RrzJBSTdeJtJcgqSlmZJhrxYpECPdRlzQN5SgkykvGPwzhrlE6MBDSFNdwrP6cSFCo1CD0TWeIdE9NeyPxP68Z6+DYSyiPYk04niwKYga1gKNAYIdKgjUbGIKwpOZWiHtIIqxNbDkTgjv98l9SOyi6peLhVSlfPk3jyIJtsAMKwAVHoAwuQAVUAQYP4Am8gFfr0Xq23qz3SWvGSmc2wS9YH9+wl5Wi</latexit>

m[i, j] =
X

k

A[i, k]⇥B[k, j]

<latexit sha1_base64="MS8j78r3na2gotCf3/XRwzAXiN8=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0UUoiFd0oVTcuK9hWSEKYTCftNDNJmJkIJfQT3Pgrblwo4talO//G6WOhrQcuHM65l3vvCVJGpbKsb6OwsLi0vFJcLa2tb2xumds7LZlkApMmTlgi7gMkCaMxaSqqGLlPBUE8YKQdRNcjv/1AhKRJfKcGKfE46sY0pBgpLfnmIXdope/Bc+jKjPt5NLzUAow86CrKiYRXTlSBfc83y1bVGgPOE3tKymCKhm9+uZ0EZ5zECjMkpWNbqfJyJBTFjAxLbiZJinCEusTRNEZ6mZePHxrCA610YJgIXbGCY/X3RI64lAMe6E6OVE/OeiPxP8/JVHjm5TROM0ViPFkUZgyqBI7SgR0qCFZsoAnCgupbIe4hgbDSGZZ0CPbsy/OkdVy1a9WT21q5fjGNowj2wD44AjY4BXVwAxqgCTB4BM/gFbwZT8aL8W58TFoLxnRmF/yB8fkD5ZybOw==</latexit>

Input

Output

MatMul_1

MatMul_2

SoftMax

M1: MatMul_1
M2: MatMul_2
S: SoftMax

V’= {M2}
V = {M1, S}
dp[{M1, S, M2}]
action[{M1, S, M2}]

MatMul_1

SoftMax

V’= {M2}
V = {M1, S}

MatMul_1_SoftMax

V’= {M2, SoftMax}
V = {M1}

MatMul_1

V’= {M1, SoftMax, M2}
V = {}

V = {} MatMul_1

SoftMax_MatMul_2

V = {}

Phase 1

Phase 2

MatMul_1

SoftMax

MatMul_2

Phase 1

Phase 2

Phase 3

V’= {S}
V = {M1}

MatMul_1

MatMul_1

SoftMax

MatMul_2

Phase 1

Phase 2

Phase 3

V = {}

MatMul_1_SoftMax

MatMul_2

Phase 1

Phase 2

Input

Output

MatMul_2

MatMul_1_SoftMax

Phase 1

Phase 2

Fig. 6 An example to illustrate how to do operator fusion in MHA (right) and sketch generation for the subgraph (left).

complete tensor programs and optimize them. And for the
inner loops, we use vectorize and unroll intrinstics to optimize
them. All valid parameters for the random values are sampled
from a uniform distribution.

Performance Tuner. Auto-tuning [37] is to find the best
schedule of the tensor programs from a search space. There-
fore, a cost model is particularly important in the process
of evaluating the performance. The extracted features include
arithmetic and memory access features, which includes the
number of float operations, the number of integer opera-
tions, vectorization related features, unrolling related features,
parallelization related features, GPU thread binding related
features, buffer access feature, and allocation related feature.
More specifically, we use weighted squared error as the loss
function, and the loss function of the model f on a sampled
program P with throughput y can be defined as follow:

loss(f, P, y) = wp

 ∑

s∈S(P)

f(s)− y

2

, (5)

where S(P) is the set of innermost non-loop statements in
P and we train a gradient boosting decision tree as the
underlying model f . In the actual calculation, we directly
make y approximately equal to w.

A search policy is also necessary for the performance tuner.
The evolutionary search leverages mutation and crossover
mechanism to generate a new set of candidates repeatedly
for several rounds and outputs a small set of programs with
the highest scores. The generated programs will be compiled
and measured on the GPU to obtain the real runing time. In
the meantime, the collected data from the training is then used
to improve the performance of the cost model. Therefore, we
adopt the search policy by designing corresponding evolution
operations to rewrite and fine-tune the sampled programs.

V. EVALUATION RESULTS

A. Experimental Setup
We evaluate the fusion optimization and kernel generation

mechanisms on three modern vision tasks with transform-
ers: DETR [7] for object detection, SETR [9] for semantic
segmentation, and ViT [10] for image classification. We
use PyTorch 1.7.1, cuDNN V7.6.5, CUDA 10.0, NVIDIA
driver 460.67, and adopt TensorRT V7.0.0.11 [24] and TVM

0.8.dev0 [27] as baselines for comparisons. All evaluation
results are collected on a NVIDIA GeForce RTX 2080Ti GPU.
Workflow. The pipeline of our workflow can be summarized
in the following two patterns: 1) For high-performance com-
puting library TensorRT, we first use PyTorch to build models
with different parameters, and then use the ONNX export
interface to obtain ONNX model. We use ONNX-Simplifier
to simplify the ONNX model, and then convert it into an
executable engine defined in the TensorRT environment; 2) In
terms of the compilation flow like Ansor and AutoGTCO, we
first compile the model into the TorchScript format, and then
use the PyTorch interface defined in Relay to read it. For the
subgraphs, the corresponding tensor programs are generated
by TVM code generation.
Workloads. Details of the models tested in this work are listed
in TABLE I, including the number of encoders, the number
of decoders, etc. We report all of experiment results for batch
size 1.

B. End-to-End Performance
Baselines and Configurations. We use PyTorch JIT [18],

TensorRT [24], TVM [27], and Ansor [22] as baseline frame-
works. Generally, there are two ways to improve the runtime
speedup on GPUs. One way is to optimize operators by
the vendor-provided library cuDNN/cuBLAS such as Py-
Torch and TensorRT. Another strategy is to use machine
learning algorithm to search the schedule of tensor program
for each computation kernel such as TVM and Ansor. Like
the definition in Section IV, we expect that the end-to-end
execution time can be represented as the sum of the latency
of all subgraphs in the computation graph. We let Ansor
and AutoGTCO run auto-tuning 10000 measurement trails
unless runtime converges to a stable value. The objective of
the subgraph scheduler is set to minimize the total execution
time of the model and then generate efficient tensor programs.
Results.TABLE II shows the results. Compared with vendor-
specific high-performance computing library TensorRT, Auto-
GTCO consistently outperforms all benchmark models except
for ViT-Base vision model with 1.01 to 1.38× speedup.
The reason for the drop in performance on ViT-Base is that
ViT-Base is composed of a small number of encoder layers
and the input shape (197, 1, 768) of the encoder in ViT-
Base is relatively limited compared with ViT-Large and ViT-

TABLE I Architecture of the Benchmark Model and Configurations of all Experiments

model ec dc width mlp-dim nh input shape patch mha input encoder input decoder input Params

DETR-ResNet50-E3 3 6 256 2048 8 [1,3,800,1333] N/A
query[1050,1,256]
key[1050,1,256]
value[1050,1,256]

src[1050,1,256] tgt[100,1,256]
mem[1050,1,256] 37.40M

DETR-ResNet50-E6 6 6 256 2048 8 [1,3,800,1333] N/A
query[1050,1,256]
key[1050,1,256]
value[1050,1,256]

src[1050,1,256] tgt[100,1,256]
mem[1050,1,256] 41.30M

DETR-ResNet50-E12 12 6 256 2048 8 [1,3,800,1333] N/A
query[1050,1,256]
key[1050,1,256]
value[1050,1,256]

src[1050,1,256] tgt[100,1,256]
mem[1050,1,256] 49.20M

SETR-Naive-Base 12 1 768 4096 12 [1,3,384,384] 16
query[576,1,768]
key[576,1,768]
value[576,1,768]

src[576,1,768] tgt[576,1,768] 87.69M

SETR-Naive 24 1 1024 4096 16 [1,3,384,384] 16
query[576,1,1024]
key[576,1,1024]
value[576,1,1024]

src[576,1,1024] tgt[576,1,1024] 305.67M

SETR-PUP 24 1 1024 4096 16 [1,3,384,384] 16
query[576,1,1024]
key[576,1,1024]
value[576,1,1024]

src[576,1,1024] tgt[576,1,1024] 310.57M

ViT-Base-16 12 0 768 3072 12 [1,3,224,224] 16
query[197,1,768]
key[197,1,768]
value[197,1,768]

src[197,1,768] N/A 86.00M

ViT-Large-16 24 0 1024 4096 16 [1,3,224,224] 16
query[197,1,1024]
key[197,1,1024]
value[197,1,1024]

src[197,1,1024] N/A 307.00M

ViT-Huge-14 32 0 1280 5120 16 [1,3,224,224] 14
query[257,1,1280]
key[257,1,1280]
value[257,1,1280]

src[257,1,1280] N/A 632.00M

TABLE II End-to-End Exeuction Performance on the Benchmark (ms)

PyTorch JIT [18] TVM-CUDA [27] TVM-cuDNN/BLAS [27] TensorRT [24] Ansor [22] AutoGTCO

DETR-ResNet50-E3 18.62 54.73 54.43 6.97 5.85 5.32
DETR-ResNet50-E6 23.67 93.59 88.25 7.73 6.78 5.60
DETR-ResNet50-E12 33.01 171.96 157.97 15.79 14.29 13.18
SETR-Naive 68.26 753.25 742.21 33.71 34.22 28.65
SETR-Naive-Base 31.06 186.13 187.39 16.97 15.44 14.21
SETR-PUP 37.62 199.42 189.21 18.61 17.89 16.01
ViT-Base-16 24.92 91.86 96.31 5.87 8.57 8.43
ViT-Large-16 52.96 329.74 334.38 18.45 18.99 18.41
ViT-Huge-14 76.07 846.87 846.27 34.14 32.53 29.89

TABLE III The Number of Subgraphs and Scheduling Weights for Graph Partition

n1 Weight-Encoder n2 Weight-Decoder n3 Weight-Transformer

Ansor [22] 9 {[6 ∗ 7], [12 ∗ 2]} 13 {[6 ∗ 10], [18 ∗ 3]} 22 {[6 ∗ 17], [13 ∗ 2], [19 ∗ 2], [18 ∗ 1]}
AutoGTCO 6 {[8 ∗ 4], [10 ∗ 2]} 11 {[8 ∗ 6], [20 ∗ 5]} 17 {[9 ∗ 12], [20 ∗ 3], [16 ∗ 2]}

Huge, which limits the search space of the specific fusion
operator (such as batch matrix multiplication and softmax) in
MHA. Compared with automatical search-based Ansor [22],
AutoGTCO outperforms it in all benchmark models with
1.01 to 1.21× speedup. It proves that our operator fusion
strategy and sketch generation rules have achieved good
performance on image recognition with transformer models
on GPU. TVM-cuDNN/BLAS is the TVM compiler that
implements operators in computation graphs with cuDNN and
cuBLAS library. Compared with TVM-cuDNN/BLAS [27],
AutoGTCO consistently outperforms all benchmark models
with significant speedup. The reason for this phenomenon is
that TVM-cuDNN/BLAS only uses the operator fusion rules

defined in Relay to partition the entire computation graph into
some kinds of subgraphs, and then replace each operator in
the subgraph with the template in cuDNN or cuBLAS library.
In the process of optimization, it does not involve searching
the tensor program schedules and fine-tuning the performance
of each kernel by cost model. Therefore, AutoGTCO has
more advantages on uncommon operator fusion patterns in the
emerging image recognition with transformer models, because
it is not easy for vendor-specific static libraries to manually
optimize for all the cases. The only difference between TVM-
CUDA and TVM-cuDNN/BLAS is that the operators in
subgraphs are implemented by the default schedule template.

Ablation study.We run variants of AutoGTCO on DETR-

TABLE IV Performance on DETR with different settings

AutoGTCO

Setting (a) (b) (c) (d)

DPOF X X X
Sketch Customization X X
Subgraph Scheduler X

Speedup 1.00× 1.19× 1.34× 1.38×

ResNet50-E6 benchmark. “DPOF X” means we use the
dynamic programming algorithm to do operator fusion rather
than the rule-based operator fusion strategy defined in Relay.
“Sketch Customization X ” means we use the sketch gen-
eration rules and search policy defined in AutoGTCO rather
than default configurations in Ansor. “subgraph scheduler X”
means we use the object function defined in Equation (4).
Design (a) is the Ansor system and we set the execution
time of Design (b)-(d) to be the speedup against Ansor. From
TABLE IV, we can find that Design (d) performs the best in
speedup performance among all of the designs. It can prove
that the graph and tensor co-optimize is very important for
the transformer model acceleration in our system. In graph-
level, AutoGTCO employs the DPOF module to optimize the
operator fusion and then uses a subgraph scheduler designed
for transformer architecture to schedule different tasks. In
tensor-level, the tensor programs are optimized and generated
by our sketch generation rules and search policy.

C. Subgraph Benchmark
Baselines and Configurations. We perform the subgraph

benchmark on three common subgraphs in DETR-ResNet-50-
E6: MHA, Encoder, and Decoder. We run auto-tuning with
up to 20,000 measurement trails per test case, and report the
execution time. We use the same set of baseline frameworks
and run three benchmarks on one NVIDIA GeForce RTX
2080Ti GPU.

Results. Fig. 7 shows that AutoGTCO outperforms Py-
Torch JIT on the Encoder and Decoder by 2.47× and 11.67×
speedup. For high-performance computing library TensorRT,
AutoGTCO can achieve 2.47×, 1.08×, and 4.19× speedup on
MHA, Encoder, and Decoder. For the compiler-based search
algorithm Ansor, AutoGTCO can achieve 1.29×, 1.17×, and
1.17× speedup on MHA, Encoder, and Decoder. It can prove
that AutoGTCO can generate efficient tensor programs for
these subgraphs on the NVIDIA GPU platform.

D. Graph Partition and Tuning Time
TABLE III shows the graph partition of our method on the

DETR-ResNet50-E6 benchmark. “n1”, “n2” and “n3” means
the number of subgraphs in encoder, decoder and transformer
model respectively. The first value in “Weight-*” means the
weight of the subgraphs and the second value means the
number of subgraphs. For example, {[6 ∗ 7] , [12 ∗ 2]} means
there are 7 subgraphs with weights 6 and 2 subgraphs with
weights 12. The total number of subgraphs in encoder is 9. As
shown in the table, our graph partition and subgraph scheduler
methods can achieve a more effective operation fusion strategy

MHA
Encoder

Decoder

Transformer
0

1

10

100

PyTorch JIT
TensorRT
Ansor
AutoGTCO

Fig. 7 Sugraph performance benchmark. The y-axis is the
throughput based log 10 and then plus 1.

for the number of subgraphs and weights compared to the
rule-based method in Ansor.

TABLE V shows the search time needed for AutoGTCO to
match the performance of Ansor on the subgraph benchmark.
We use “number of measurement trails” to evaluate the search
time. As shown in the table, AutoGTCO can match the
performance of Ansor with fewer measurement trails. It can
prove that the saving in search time comes from the design
of subgraph scheduler for transformer models, the operator
fusion strategy based on dynamic programming in graph-
level and the sketch generation rules for tensor programs
generation.

TABLE V The Number of Measurement Trails

Ansor [22] AutoGTCO Speedup

Multi-Head Attention 1,600 1,408 1.13×
Encoder-3-Layer 3,008 2,816 1.07×
Encoder-6-Layer 4,992 4,096 1.22×
Encoder-12-Layer 6,528 5760 1.13×
Decoder-6-Layer 2,688 2,432 1.11×
DETR-ResNet-50-E6 8,640 6,784 1.27×

VI. CONCLUSIONS

Existing frameworks do graph-level optimization through
greedy methods designed by human experts, which are strictly
the improvement of execution performance. These approaches
miss the potential performance gains from more effective
operators fusion strategies. This work tackles the problem
from two aspects. First, we introduce a novel dynamic pro-
gramming algorithm to explore operator fusion strategies.
Combined with operator fusion optimizations, we propose
new sketch generation rules and a search policy for the batch
matrix multiplication and softmax operators in transformer
subgraphs, which are capable of fusing them into large
computation units, then mapping and transforming them into
efficient CUDA kernels. To get a high-performance and end-
to-end compilation flow, a learned cost model is used to fine-
tune the performance of each kernel in the code generation
stage. Overall, AutoGTCO can reach up to 1.38× execution
performance speedups compared to the current state-of-the-art
deep learning library TensorRT.

ACKNOWLEDGMENT

This work is partially supported by SmartMore and ITF
Partnership Research Programme (No. PRP/65/20FX).

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015, pp. 1–14.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the inception architecture for computer vision,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818–
2826.

[4] Y. Bai and W. Wang, “ACPNet: Anchor-Center Based Person Network
for Human Pose Estimation and Instance Segmentation,” in IEEE
International Conference on Multimedia and Expo (ICME), 2019, pp.
1072–1077.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Annual
Conference on Neural Information Processing Systems (NIPS), 2017,
pp. 5998–6008.

[6] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” arXiv preprint arXiv:2101.01169,
2021.

[7] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European Conference on Computer Vision (ECCV), 2020, pp. 213–229.

[8] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision Transformers,”
arXiv preprint arXiv:2104.14294, 2021.

[9] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng,
T. Xiang, P. H. Torr, and L. Zhang, “Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers,” in CVPR,
2021.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[11] J. Mu, M. Wang, L. Li, J. Yang, W. Lin, and W. Zhang, “A history-
based auto-tuning framework for fast and high-performance dnn design
on GPU,” in ACM/IEEE Design Automation Conference (DAC), 2020,
pp. 1–6.

[12] Q. Sun, C. Bai, H. Geng, and B. Yu, “Deep neural network hardware
deployment optimization via advanced active learning,” in IEEE/ACM
Proceedings Design, Automation and Test in Eurpoe (DATE), 2021.

[13] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020, pp. 859–873.

[14] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “FPGA/DNN co-design: An efficient design methodology
for IoT intelligence on the edge,” in ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[15] T. Chen, B. Duan, Q. Sun, M. Zhang, G. Li, H. Geng, Q. Zhang, and
B. Yu, “An efficient sharing grouped convolution via bayesian learning,”
in IEEE Transactions on Neural Networks and Learning Systems, 2021,
pp. 1–13.

[16] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), vol. 9, no. 2, pp. 292–308, 2019.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al.,
“TensorFlow: A system for large-scale machine learning,” in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2016, pp. 265–283.

[18] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS Workshop, 2017.

[19] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACM International Multimedia Conference
(MM), 2014, pp. 675–678.

[20] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer, “cuDNN: Efficient primitives for deep learn-
ing,” arXiv preprint, 2014.

[21] “oneAPI Deep Neural Network Library,” https://github.com/oneapi-src/
oneDNN#documentation.

[22] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen et al., “Ansor: Generating high-performance tensor
programs for deep learning,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020, pp. 863–879.

[23] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. P. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimiza-
tion of image processing pipelines,” ACM Transactions on Graphics
(TOG), vol. 31, no. 4, pp. 32:1–32:12, 2012.

[24] “NVIDIA TensorRT,” https://docs.nvidia.com/deeplearning/tensorrt/
index.html.

[25] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,” in International
Conference on Machine Learning (ICML), 2015, pp. 448–456.

[26] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),”
CoRR, vol. abs/1803.08375, 2018.

[27] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-to-end
optimizing compiler for deep learning,” in USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2018, pp. 578–
594.

[28] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“TASO: optimizing deep learning computation with automatic genera-
tion of graph substitutions,” in ACM Symposium on Operating Systems
Principles (SOSP), 2019, pp. 47–62.

[29] Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, “IOS: Inter-
operator scheduler for cnn acceleration,” Machine Learning and Systems
(MLSys), vol. 3, 2021.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248–255.

[31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in Annual
Conference on Neural Information Processing Systems (NIPS), 2015,
pp. 91–99.

[32] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[33] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in ACM International Conference on Knowledge Discovery and Data
Mining (KDD), 2016, pp. 785–794.

[34] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehen-
sive survey,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 32, no. 3, pp. 708–727, 2020.

[35] N. Vasilache, C. Bastoul, and A. Cohen, “Polyhedral code generation in
the real world,” in International Conference on Compiler Construction,
A. Mycroft and A. Zeller, Eds., 2006, pp. 185–201.

[36] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR,
vol. abs/1607.06450, 2016.

[37] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to Optimize Tensor Programs,” in
Annual Conference on Neural Information Processing Systems (NIPS),
2018, pp. 3393–3404.

https://github.com/oneapi-src/oneDNN#documentation
https://github.com/oneapi-src/oneDNN#documentation
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://docs.nvidia.com/deeplearning/tensorrt/index.html

