
Imbalance aware lithography hotspot
detection: a deep learning approach

Haoyu Yang
Luyang Luo
Jing Su
Chenxi Lin
Bei Yu

Haoyu Yang, Luyang Luo, Jing Su, Chenxi Lin, Bei Yu, “Imbalance aware lithography hotspot detection:
a deep learning approach,” J. Micro/Nanolith. MEMS MOEMS 16(3), 033504 (2017),
doi: 10.1117/1.JMM.16.3.033504.

Imbalance aware lithography hotspot detection:
a deep learning approach

Haoyu Yang,a Luyang Luo,a Jing Su,b Chenxi Lin,b and Bei Yua,*
aChinese University of Hong Kong, Department of Computer Science and Engineering, New Territories, Hong Kong
bASML Brion Inc., San Jose, California, United States

Abstract. With the advancement of very large scale integrated circuits (VLSI) technology nodes, lithographic
hotspots become a serious problem that affects manufacture yield. Lithography hotspot detection at the post-
OPC stage is imperative to check potential circuit failures when transferring designed patterns onto silicon
wafers. Although conventional lithography hotspot detection methods, such as machine learning, have gained
satisfactory performance, with the extreme scaling of transistor feature size and layout patterns growing in com-
plexity, conventional methodologies may suffer from performance degradation. For example, manual or ad hoc
feature extraction in a machine learning framework may lose important information when predicting potential
errors in ultra-large-scale integrated circuit masks. We present a deep convolutional neural network (CNN)
that targets representative feature learning in lithography hotspot detection. We carefully analyze the impact
and effectiveness of different CNN hyperparameters, through which a hotspot-detection-oriented neural network
model is established. Because hotspot patterns are always in the minority in VLSI mask design, the training
dataset is highly imbalanced. In this situation, a neural network is no longer reliable, because a trained
model with high classification accuracy may still suffer from a high number of false negative results (missing
hotspots), which is fatal in hotspot detection problems. To address the imbalance problem, we further apply
hotspot upsampling and random-mirror flipping before training the network. Experimental results show that
our proposed neural network model achieves comparable or better performance on the ICCAD 2012 contest
benchmark compared to state-of-the-art hotspot detectors based on deep or representative machine leaning.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.16.3.033504]

Keywords: lithography; hotspot detection; deep learning.

Paper 17066P received May 10, 2017; accepted for publication Aug. 1, 2017; published online Aug. 24, 2017.

1 Introduction
As circuit feature size shrinks down to 20 nm, lithographic
hotspots have become a serious factor that affects manufac-
ture yield. A hotspot is a region of mask layout patterns
where circuit failures are more likely to happen during the
manufacturing process because of light diffraction, etch
proximate effects, overlay control, and so on. Therefore, hot-
spot detection at the post-OPC stage is imperative before
transferring designed patterns onto a silicon wafer.

Many studies were carried out for lithography hotspot
detection. The state-of-the-art methods include lithographic
simulation1,2 assisted with pattern matching3,4 and current
machine learning techniques.5–9 Lithographic simulation
can imitate fabrication results accurately, but it is computa-
tionally expensive. Because problematic region area is much
smaller than the full chip area, modern physical verification
flow usually performs fast classification to extract hotspot
candidates for lithography simulation. Pattern matching pro-
vides speed improvements in comparison with full chip
lithographic simulation, but it only applies to detecting
already known or similar patterns, thus, it has a poor hotspot
recognition rate on unknown patterns. Machine learning (In
this paper, we refer to machine learning as the methods that
require manually feature design as opposite to deep learning
where features are obtained through training neural net-
work.) is an emerging technique that can achieve reasonably

good hotspot detection results with fast throughput. In a
machine learning flow, raw data should be preprocessed
in the feature extraction stage to convert complicated layout
patterns into low-dimensional vectors before being fed into
the learning engine. The low-dimensional vector, also known
as feature representation, directly affects hotspot prediction
performance. For a very large scale integrated circuits (VLSI)
layout, the conventional density-based feature4,10 and the
recently proposed concentric circle area sampling (CCAS)
feature11 capture layout properties and the lithography proc-
ess, respectively, and made considerable improvements on
hotspot detection accuracy. However, with circuit feature
size reduced to several nanometers, layout patterns are
more complicated, and ad hoc feature extraction may suffer
from important information loss when predicting potential
hotspots in ultra-large-scale integrated circuit masks.

Convolutional neural networks (CNN) have proved
capable of extracting appropriate image representations
and performing accurate classification tasks benefitting
from high-efficiency-feature learning and high-nonlinear
models.12–14 However, to take advantage of powerful deep
learning models, there are still several aspects that should
be considered: (1) hyperparameters are required to be suit-
able for the nature of the circuit layout. The conventional
deep learning model has a pattern shift invariance, due to
the nature of convolution and pooling operations. For the
lithography hotspot detection problem, whether a pattern

*Address all correspondence to: Bei Yu, E-mail: byu@cse.cuhk.edu.hk 1932-5150/2017/$25.00 © 2017 SPIE

J. Micro/Nanolith. MEMS MOEMS 033504-1 Jul–Sep 2017 • Vol. 16(3)

J. Micro/Nanolith. MEMS MOEMS 16(3), 033504 (Jul–Sep 2017)

http://dx.doi.org/10.1117/1.JMM.16.3.033504
http://dx.doi.org/10.1117/1.JMM.16.3.033504
http://dx.doi.org/10.1117/1.JMM.16.3.033504
http://dx.doi.org/10.1117/1.JMM.16.3.033504
http://dx.doi.org/10.1117/1.JMM.16.3.033504
http://dx.doi.org/10.1117/1.JMM.16.3.033504
mailto:byu@cse.cuhk.edu.hk
mailto:byu@cse.cuhk.edu.hk
mailto:byu@cse.cuhk.edu.hk
mailto:byu@cse.cuhk.edu.hk

is a hotspot or not is affected by nanometer-level shifts of
mask patterns, thus, it is necessary to design compatible con-
volution and pooling kernel values. (2) Layout datasets are
highly imbalanced because after resolution enhancement
techniques, the number of lithography hotspots is much less
than the number of nonhotspot patterns. Figure 1 shows the
percentages of hotspot and nonhotspot patterns for each test
case of the ICCAD 2012 benchmark suite.15 We can see that
the number of nonhotspot patterns is much larger than the
number of hotspot patterns, especially for cases ICCAD-
2, ICCAD-4, and ICCAD-5, where nonhotspot patterns
occupy more than 99% of the total patterns. As a result,
under conventional training strategies, the neural network
may not be able to correctly predict hotspot patterns even
with ignorable training loss. (3) For hotspot detection
tasks, the mask image size is much larger than those in tradi-
tional object recognition tasks, meaning that the neural net-
work should be specifically designed to handle large size
inputs.

In this paper, we develop a deep learning-based hotspot
detection flow, as shown in Fig. 2. Every original training
dataset is divided into two parts: 75% of the samples are
preprocessed for deep learning model training, whereas
the other 25% of the samples are used for validation.
Validation is used to monitor training status and can indicate
when to stop training. After obtaining the trained model,
instances in the testing dataset are fed into the neural network
and their labels will be predicted moving forward. Accuracy
and false alarms can then be calculated by comparing pre-
diction results with the corresponding actual results. We
carefully analyze impact and effectiveness of different CNN
hyperparameters, through which a hotspot-detection-ori-
ented neural network model is established. To address the

imbalance problem, we further apply hotspot upsampling
and random-mirror flipping of the hotspot patterns before
training the network. Finally, we verify our proposed
model on the ICCAD 2012 contest benchmark suite.15

Experimental results show that the proposed model outper-
forms several state-of-the-art hotspot detectors in most cases
while attaining a comparable test runtime.

The rest of this paper is organized as follows: Section 2
studies the effect of hyperparameters and the establishment
of a neural network architecture. Section 3 provides a com-
prehensive study on different learning strategies including
imbalance-aware processing and parameters. Section 4
lists the experimental results, followed by a conclusion in
Sec. 5.

2 Convolutional Neural Network Architecture
Neural network architecture describes what layers are in the
network and how the layers are connected together. Many
studies have shown that network architecture can promi-
nently impact model performance.16–18 In this section, we
will discuss the basic layer types of deep learning used in
our study and their associated hyperparameters (i.e., param-
eters or settings that affect the architecture including the ker-
nel size, pooling methods, and activation functions), based
on which the effectiveness of our network architecture is fur-
ther described.

2.1 Convolutional Neural Network Elements

2.1.1 Convolution layer

Convolution layers are the key structure in the CNN, which
are applied for feature extraction. In neural networks, each
layer can be regarded as a computational graph that consists
of input nodes, edge weights, (In the context of neural net-
works, it is more common to use the term neuron weights.)
and output nodes (or feature maps) that are obtained from the
inner product between the input and weights. A characteristic
of the convolution layer is that most of the neuron weights
are shared, which enables common local feature extraction.19

There are only a small number of unique weights known as
the convolution kernel. Because the input layout image is
square, we choose square kernel for better compatibility.
Obviously, the kernel size is much smaller than the input
size. The operation within each convolution layer becomes
the kernel scanning all over the input and within each scan-
ning step, one output node is calculated from the inner prod-
uct between the kernel and a region of the input, as shown in

Fig. 1 Breakdown of hotspot and nonhotspot pattern percentages for
ICCAD 2012 contest benchmark.

Training
data set

Validation

Testing
data set

Upsampling

Validation

Trained
model

Training

Model testing

Accuracy

False
alarm

Random
mirroring

Fig. 2 The proposed deep learning-based hotspot detection flow.

J. Micro/Nanolith. MEMS MOEMS 033504-2 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

EQ-TARGET;temp:intralink-;e001;63;516I ⊗ Kðx; yÞ ¼
Xc

i¼1

Xm

j¼1

Xm

k¼1

Iði; x − j; y − kÞKði; j; kÞ; (1)

where Iði; j; kÞ is the pixel value of location ðj; kÞ at the i’th
feature map output of the previous layer, whereas K is the
convolution kernel. After scanning from the upper-right to
the bottom-left corner, a new feature map is generated.
Moreover, stacked convolution layers grasp image attributes
in different hierarchical levels and generate better feature
representation.

A convolution layer is specified by hyperparameters
including kernel size m (here, we assume square kernel)
and stride s. The stride defines the overlapping between
scanning windows, which is set to one in Eq. (1). Note
that when efficient dimension reduction is required, stride
can be set to any positive integer. Figure 3 shows two sce-
narios, where stride is set to 1 and 2, respectively.

In traditional computer vision classification tasks, a non-
unit stride and a large receptive field (kernel size) are induced
for both dimension reduction and feature learning with good
performance.14,20 However, mask layout patterns are more
sensitive to small variations than normal objects, as tiny
shifts of pattern edges may change a hotspot to a nonhotspot
and vice-versa. As far as hotspot detection is concerned,
extracting detailed local information in a global scheme is
a good choice. Inspired by the work of the ImageNet
Challenge 2014,21 we apply a fixed small receptive field
(3 × 3) to gain sufficient local attributes within each convolu-
tional layer while not extracting image information, pixel by
pixel, with a kernel size that is too small. In Fig. 4, we
present training curves with different kernel sizes, and we
can see that the 3 × 3 kernel size generates stable and rela-
tively lower validation losses with a limited iteration number.
Even when all three kernel sizes have similar performance
over time, a kernel size of 3 × 3 is preferable for the sake
of training time. Note that padding is changed along with
the kernel sizes in order to maintain a constant output
layer size.

Because local regions in the layout are highly correlated,
large overlap windows promise to gather sufficient information.

Additionally, previous work has shown that a smaller stride
ensures that the model is translationally invariant.21

Therefore, we employ stride s ¼ 2 in the first convolution
layer to perform dimension reduction and stride s ¼ 1 for
other convolution layers to acquire enough information.

2.1.2 Rectified linear unit

Activation functions have been widely used in multilayer
perceptron (neural networks) to perform output
regularization.14,17,22,23 Prevailing candidates are sigmoid
and tanh functions that scale the entries of each layer into
an interval of (0,1) and ð−1; 1Þ, respectively. However,
these activation functions suffer from a gradient vanishing
problem24 because of the chained multiplication of numbers
within the range (0,1) during back-propagation. In other
words, the training of early layers is inefficient in deep neural
networks. Nari and Hinton25 proposed a rectified linear unit
(ReLU) for a restricted Boltzmann machine that performs
element-wise operations on a feature map as shown in

EQ-TARGET;temp:intralink-;e002;326;127ReLUðxÞ ¼ maxfx; 0g: (2)

The equation indicates that by applying a ReLU, the
feature map no longer has an upper boundary, but network
sparsity (i.e., the number of nodes with zero response) is

a_11 a_12 a_13 a_14 a_15

a_21 a_22 a_23 a_24 a_25

a_31 a_32 a_33 a_34 a_35

a_41 a_42 a_43 a_44 a_45

a_51 a_52 a_53 a_54 a_55

a_11 a_12 a_13 a_14 a_15

a_21 a_22 a_23 a_24 a_25

a_31 a_32 a_33 a_34 a_35

a_41 a_42 a_43 a_44 a_45

a_51 a_52 a_53 a_54 a_55

Stride = 1 Stride = 2

(a) (b)

Fig. 3 3 × 3 convolution example with stride set to (a) 1 and (b) 2, respectively.

Fig. 4 Comparing different kernel sizes.

J. Micro/Nanolith. MEMS MOEMS 033504-3 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

augmented and the model is still nonlinear. In particular,
overfitting can be reduced with a sparse feature map.
These properties are necessary to train a deep neural network
model efficiently and reliably. Because of these reasons, each
convolution layer is followed by a ReLU in convolutional
neural network design.

To evaluate the effectiveness of a ReLU layer, we replace
the ReLU with several classical activation functions, includ-
ing sigmoid, tanh, and binomial normal log likelihood
(BNLL) during training. The experimental results in Table 1
show that the deep neural network model with ReLU layers
reports the best performance (0.16 of validation loss). We
can also notice that the networks with sigmoid, BNLL, or
without active functions (WOAF) suffer from extremely
large validation loss.

2.1.3 Pooling layer

In CNN design, following one or more convolution and
ReLU layers, the pooling layer extracts the local region stat-
istical attributes in the feature map. Typical attributes include
the maximum or average value within a predefined region
(kernel) that corresponds to max pooling and average pool-
ing as shown in Fig. 5. Similar to a convolution layer, a pool-
ing kernel also scans over the feature map and generates
more compact feature representations.

Pooling layers make the feature map invariant to minor
translations of the original image and a large pooling kernel
enhances this property. When we perform hotspot detection,
however, we do not benefit much from translation-invariance
since pattern locations do affect the classification result. In
this situation, the main purpose of pooling layers in this work
is to reduce the feature map dimensions.26 To decide the best

pooling method, we compare the performance of models
with maximum pooling, average pooling, and random choos-
ing a value from the scan window (stochastic pooling). As
shown in Table 2, max and average pooling do not show
obvious result differences and both pooling methods outper-
form the stochastic approach. For best results in this work,
we use max pooling in our network.

2.1.4 Fully connected layer

Following the convolution hierarchy, a feature map will
become smaller and deeper, and finally reach the unit size.
The layer generating unit size feature is called fully con-
nected (FC) layer. The FC layers form the last several layers
of the convolutional neural network and can be regarded as a
special case of a convolution layer with a kernel size equal to
the feature map size of the previous layer. If the kernel and
feature map are square, we have the following parameter
relationship as in Eq. (1)

EQ-TARGET;temp:intralink-;e003;326;435size ofðIÞ ¼ size ofðKÞ: (3)

Note that vertexes reflect the probability of an object
being predicted as each class. The main difference between
a flattened deep learning feature vector and machine learning
features (e.g., CCAS feature and density features) is that each
node in the FC layer contains the information from a global
view while user-designed features extracted through sam-
pling may lose spatial information.

The FC layers in the deep neural network also play a role
to prevent overfitting. Srivastava et al.27 discovered that
when there is a random percentage drop of vertexes and con-
nected neurons in an FC layer during training, deep neural
network performance significantly improves. To evaluate the
effect of dropout, we trained the network with variant drop-
out ratios from 0 to 0.8. As shown in Fig. 6, the validation
curve indicates that the model performance is best when the
dropout ratio is between 0.4 and 0.7, therefore, we set the
dropout ratio to 0.5 in our FC layer.

Table 1 Comparison on different activation functions.

Activation function Expression Validation loss

ReLU maxfx;0g 0.16

Sigmoid 1
1þexpð−xÞ 87.0

TanH expð2xÞ−1
expð2xÞþ1 0.32

BNLL log½1þ expðxÞ� 87.0

WOAF NULL 87.0

Bold value stands for the best results among all the values in the col-
umns or rows.

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

6

1614

8

MAXPOOL

3.5

13.511.5

5.5

AVEPOOL

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

(a) (b)

Fig. 5 Examples of (a) max pooling and (b) average pooling.

Table 2 Comparison on different pooling methods.

Pooling method Kernel Test accuracy (%)

Max 2 × 2 96.25

Ave 2 × 2 96.25

Stochastic 2 × 2 90.00

J. Micro/Nanolith. MEMS MOEMS 033504-4 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

2.2 Architecture Summary

According to the above analyses on deep neural network ele-
ments and layout clip size, we can apply the architecture as
shown in Fig. 7. The architecture differs from Ref. 28 on the
first two layers. Because the layout clip of 1024 × 1024 nm2

is much larger than the image size of a conventional
computer vision benchmark dataset such as ImageNet,29

in Ref. 28, we set a 2 × 2 convolution and 2 × 2 pooling
with a stride of 2 to reduce the feature map to benefit
both storage and training. However, the CNN is applied
on post-OPC masks, small edge displacements will be fil-
tered by the nonoverlapped pooling. For that reason, we
replace the first two layers with two 3 × 3 convolution layers
with stride 2 that reduce the input dimension while attaining
the edge displacement information. Following the first two
convolution layers are four convolution stages, each of which
contains three 3 × 3 unit stride convolutions and one stride-2
2 × 2 pooling.

The feature map depth is doubled at the first four convo-
lution stages to obtain deeper representation. After layer-by-
layer abstraction, deep feature representation is obtained and
flattened by the first FC layer. However, the flattened feature
vector still has a high dimension. To generate the final out-
put, we add two additional FC layers to reduce the output
vertex number to two, then output hotspot/nonhotspot prob-
ability for each input target. Note that each convolution layer
is followed by one ReLU. More configuration information is
listed in Table 3.

Hotspot

Non-Hotspot

512x512x4

256x256x4
256x256x8

128x128x16
128x128x8

64x64x16 64x64x32
32x32x32 32x32x32

16x16x32

2048

512

C1-1

C1-2 C2-1 C2-2 C2-3

P2 C3-1 C3-2 C4-1P3C3-3 C4-2 C4-3

C5-1 C5-2 C5-3P4 P5

Fig. 7 Architecture overview.

Fig. 6 Dropout ratio effect.

Table 3 Neural network configuration.

Layer Kernel size Stride Padding Output vertexes

Conv1-1 3 × 3 × 4 2 0 512 × 512 × 4

Conv1-2 3 × 3 × 4 2 0 256 × 256 × 4

Conv2-1 3 × 3 × 8 1 1 256 × 256 × 8

Conv2-2 3 × 3 × 8 1 1 256 × 256 × 8

Conv2-3 3 × 3 × 8 1 1 256 × 256 × 8

Pool2 2 × 2 2 0 128 × 128 × 8

Conv3-1 3 × 3 × 16 1 1 128 × 128 × 16

Conv3-2 3 × 3 × 16 1 1 128 × 128 × 16

Conv3-3 3 × 3 × 16 1 1 128 × 128 × 16

Pool3 2 × 2 2 0 64 × 64 × 16

Conv4-1 3 × 3 × 32 1 1 64 × 64 × 32

Conv4-2 3 × 3 × 32 1 1 64 × 64 × 32

Conv4-3 3 × 3 × 32 1 1 64 × 64 × 32

Pool4 2 × 2 2 0 32 × 32 × 32

Conv5-1 3 × 3 × 32 1 1 32 × 32 × 32

Conv5-2 3 × 3 × 32 1 1 32 × 32 × 32

Conv5-3 3 × 3 × 32 1 1 32 × 32 × 32

Pool5 2 × 2 2 0 16 × 16 × 32

FC1 — — — 2048

FC2 — — — 512

FC3 — — — 2

J. Micro/Nanolith. MEMS MOEMS 033504-5 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

3 Imbalance Aware Learning
The previous sections describe the effects of different net-
work configurations. Preliminary results show that our
designed CNN has the potential to perform well on hotspot
detection problems. Because hotspot patterns are always in
the minority in VLSI mask design, the training dataset is
highly imbalanced. In this situation, a neural network is
no longer reliable because a trained model with high classi-
fication accuracy may still suffer from a high number of false
negative results (missing hotspots), which is fatal in hotspot
detection problems. The rest of this section will focus on the
imbalanced layout dataset and basic learning strategies.

3.1 Random-Mirror Flipping and Upsampling

Existing methods to handle imbalanced data include multi-
label learning,30 majority downsampling,31 pseudoinstance
generation,32 and so on, which are general solutions aiming
to make the dataset more balanced. Because of the nature of
mask layout and CNN, these approaches are not directly
applicable. For instance, Zhang et al.30 assigned different
labels to the majority to balance the number of instances
in each category. However, this may cause insufficient train-
ing samples of individual classes, as a large training dataset is
needed to efficiently train deep neural networks. Similarly,
majority downsampling cannot apply to the deep neural
network-based method either. Recently, Shin and Lee33 per-
formed layout pattern shifting to artificially generate hotspot
patterns, but the approach might be invalid because a shift
larger than 10 nm is enough to change the layout pattern
attribute. It should be noted that a straightforward way
to handle imbalanced mask patterns is naïve upsampling,
i.e., duplicating hotspot samples. Here, we use α to denote
the upsampling factor and intuitively

EQ-TARGET;temp:intralink-;e004;63;381α ¼ # of nonhotspot

of hotspot
: (4)

As it is normal to find only one hotspot instance within
more than 100 samples, directly duplicating them may raise
the following problems: (1) in mini-batch gradient descent
(MGD),26 if one batch contains too many identical instances,
a large gradient will be generated in one direction that will
lead the training procedure away from the optimal solution.
(2) Even with duplicated instances, hotspot pattern types are
still limited. Therefore, the trained model will suffer from
overfitting and have low detection accuracy.

Assume that the source of the lithography system is up–
down and left–right symmetric, we first propose augmenting
the training dataset with mirror-flipped and 180-deg-rotated
version of the original layout clips to enhance the effective-
ness of hotspot upsampling. In this case, each hotspot in-
stance has equal probabilities of taking one of four
orientations (see Fig. 8). Because MGD randomly picks
training instances for some mini-batch size, we fix the
batch size to 8 to ensure diversity of each mini-batch.
Overfitting can also be reduced through random mirroring.
We study the impact of different upsampling factors on a
highly imbalanced dataset (i.e., hotspot 95 and nonhotspot
4452). The experimental results indicate that validation per-
formance does not show further improvement when the
upsampling factor increases beyond a certain value (∼20)
(see Fig. 9).

3.2 Training Neural Networks

We use the prevailing MGD method to train the neural net-
work. As described in Sec. 2, there are lots of hyperpara-
meters associated with learning that can affect learning
speed and determine the final model performance.16 This
makes tuning hyperparameters a very important part of neu-
ral network design.

3.2.1 Learning rate

In MGD, the learning rate γ defines how fast the neuron
weights are updated. When the gradient on one node ∂l

∂wi
is obtained, connected neuron weight is updated according
to the following strategy:

EQ-TARGET;temp:intralink-;e005;326;254wi ¼ wi − γ
∂l
∂wi

: (5)

In general, the classifier will learn faster with a larger γ,
but it may never reach an optimal solution. Conversely, we
cannot benefit much with a smaller γ either, as under this
condition, the learning procedure is time consuming and
can be easily trapped at the local minimum and saddle
point. Therefore, it is reasonable to apply an adaptive learn-
ing rate that starts from some initial value and decays after a
fixed iteration interval. This scheme ensures a stable and
quick training process. We study the effect of γ by choosing
the initial values of 0.1, 0.01, 0.001, 0.0001, and decaying
them by a factor of 10 at every 500 iterations. The corre-
sponding learning curves are presented in Fig. 10. We
can see that the network is trained more efficiently with

Fig. 8 Random-mirror flipping with X , Y , and XY .

Fig. 9 Upsampling effects.

J. Micro/Nanolith. MEMS MOEMS 033504-6 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

γ ¼ 0.001. It also shows that nonsuitable initial learning rate
might cause an unstable network. In particular, when
γ ¼ 0.1, the network cannot learn any useful information
from the training dataset and the training loss diverges.

3.2.2 Momentum

Polyak34 analyzed the physical meaning of gradient descent
and proposed the momentum method, which can speed up
convergence in iterative learning. The key idea is to modify
the weight update scheme according to

EQ-TARGET;temp:intralink-;e006;63;486v ¼ μv − γ
∂l
∂wi

; (6)

EQ-TARGET;temp:intralink-;e007;63;443wi ¼ wi þ v; (7)

where v is the weight update speed initialized as 0 and μ is
the momentum factor. Equations (6) and (7) indicate that in
gradient descent optimization, the update speed is directly
associated with the loss gradient. The momentum μ here
slightly reduces the update speed and produces better train-
ing convergence.35 Momentum by default is set to 0.9; how-
ever, the efficiency varies for different applications. We test
normal momentum values of 0.5, 0.9, 0.95, 0.99 (see
Table 4), as suggested in CS231n.36 The results show that
the momentum of 0.99 has the lowest validation loss.

3.2.3 Weight decay

A common problem in training large neural networks is that
when a training dataset is not informative, network overfit-
ting is more likely to happen. Instead of adding a weight
penalty on the loss function, constraints can be applied on
the gradient descent procedure by introducing a weight
decay term −γwi when learning neuron weights.37 Then,
Eqs. (6) and (7) become

EQ-TARGET;temp:intralink-;e008;326;610v ¼ μv − γ
∂l
∂wi

− γλwi; (8)

EQ-TARGET;temp:intralink-;e009;326;577wi ¼ wi þ v; (9)

where λ is the decay factor and is usually around 10−4 to
10−6.22 A virtue of Eq. (8) is that when neuron weights
are small, the term γλwi is ignorable and neuron weights
can get penalties from the decay factor when they are
large. Therefore, neuron weights can be kept from increasing
infinitely. To show the effect of different weight decay fac-
tors, we train the neural network with the solver configura-
tion listed in Table 5, and the results show that the model is
learned more efficiently with λ ¼ 10−6.

3.2.4 Weight initialization

The weight initialization procedure determines the initial val-
ues assigned to each neuron before the gradient descent
update starts. Because weight initialization defines the opti-
mization starting point, an improper initialization may cause
bad performance or even failed training, and it requires care-
ful determination.

Many approaches were studied in the literature, and in
most applications, random Gaussian enjoys the best perfor-
mance. However, the results are highly affected by standard
deviation. To make the training procedure more efficient, ini-
tial weight distribution should ensure the variance remains
invariant when passing through each layer. Otherwise, the
neuron response and the gradient will suffer from unbounded
growth or may vanish. To address this problem, Glorot and
Bengio38 proposed an initialization method by taking the
variance of each layer into consideration, and experiment
results have shown that it is more efficient than general
Gaussian initialization. Consider the layer represented as fol-
lows:

EQ-TARGET;temp:intralink-;e010;326;216y ¼
XN

i¼1

xiwi; (10)

where xi is the i’th input and wi is the corresponding neuron
weight. The variance relationship can be written as

EQ-TARGET;temp:intralink-;e011;326;144V̂ðyÞ ¼
XN

i¼1

V̂ðxiÞV̂ðwiÞ: (11)

We assume all the variables are identically distributed,
then

Fig. 10 Effect of initial learning rate.

Table 4 Momentum configuration.

μ Learning rate Validation loss

0.5 0.001 0.21

0.9 0.001 0.22

0.95 0.001 0.21

0.99 0.001 0.16

Table 5 Effect of weight decay.

λ Learning rate Momentum Validation loss

10−3 0.001 0.99 0.95

10−4 0.001 0.99 1.19

10−5 0.001 0.99 0.37

10−6 0.001 0.99 0.2

J. Micro/Nanolith. MEMS MOEMS 033504-7 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

EQ-TARGET;temp:intralink-;e012;63;611V̂ðyÞ ¼ NV̂ðxiÞV̂ðwiÞ: (12)

Equation (12) indicates that input and output have the
same variance if and only if

EQ-TARGET;temp:intralink-;e013;63;566NV̂ðwiÞ ¼ 1; (13)

EQ-TARGET;temp:intralink-;e014;63;534V̂ðwiÞ ¼
1

N
; (14)

which is the rule of Xavier weight initialization. Figure 11
shows the validation loss during training and illustrates that
Xavier outperforms ordinary Gaussian initialization. It is
also notable that improper weight initialization might cause
a training failure (dashed curve).

4 Experimental Results
We have discussed how our neural network architecture is
designed and some techniques adopted for applying hotspot
detection. In this section, we will focus on the experimental
results. We first introduce evaluation metrics and the
ICCAD 2012 contest benchmark15 information. Then, we
exemplify feature learning by visualizing intermediate neu-
ron responses. Next, we compare our framework with other
deep learning solutions in the hotspot detection literature,
and finally, we compare the result with two machine learn-
ing-based hotspot detectors that have achieved satisfactory
performance. All experiments are conducted using caffe39

on a platform with an Intel Xeon processor and a GTX
Titan graphic card.

4.1 Evaluation Metrics and Benchmark Information

As described in Ref. 15, a good hotspot detector should be
able to recognize hotspot patterns as much as possible and
have a low false alarm rate. Therefore, the following evalu-
ation metrics are adopted:

Definition 1 (accuracy). The ratio between the number
of correctly detected hotspot clips and the number of all hot-
spot clips.15

Definition 2 (false alarm). The number of nonhotspot
clips that are reported as hotspots by the detector.For the
actual design flow, lithographic simulation should be per-
formed on all detected hotspot clips including false alarms.
As suggested in Ref. 9, a unified runtime evaluation metric
called overall detection and simulation time (ODST) is
defined.15

Definition 3 (ODST). The sum of all lithographic sim-
ulation time for clips predicted as hotspots and the elapsed
deep learning model evaluation time.9

Note that an industrial lithography simulator40 adopted in
this paper takes 10 s to perform lithography simulation on
each clip, therefore, ODST can be calculated using

EQ-TARGET;temp:intralink-;e015;326;499ODST ¼ test timeþ 10 s × # of false alarm: (15)

The evaluation benchmark contains five test cases:
“ICCAD-1” to “ICCAD-5.” The benchmark details are
listed in Table 6. The “training HS#” and “training
NHS#” columns denote the number of hotspot and nonhot-
spot patterns in training sets. The “testing HS#” and “testing
NHS#” columns are for the number of hotspots and nonhot-
spots in testing sets. We can see that in the training set, the
number of hotspots and the number of nonhotspots are
highly imbalanced, which induces pressure on normal neural
network training procedures.

4.2 Layer Visualization

Deep neural networks enhance classification tasks by learn-
ing representative features efficiently. In our designed
network architecture, there are five convolution stages
that extract different levels of feature representations.
Figure 12 shows the neuron response for one input example.
Subfigures “origin,” “pool1,” “pool2,” “pool3,” “pool4,” and
“pool5” correspond to the original clip and the neuron
response of the first, second, third, fourth, and fifth pooling
layers, respectively. Tiles within each subfigure are features
extracted by specific convolution kernels. The visualization
of neuron responses illustrates that different convolution ker-
nels focus on different image properties and learned feature
maps are associated with each other as well as the origi-
nal input.

4.3 Receiver Operating Characteristic

Hotspot detection is a binary classification problem where
only positive or negative is reported by the classifier.
There are four cases of prediction results: (1) true positive
(TP): hotspot instances that are predicted as hotspots;
(2) false positive (FP): nonhotspot instances that are pre-
dicted as hotspots; (3) true negative (TN): nonhotspot
instances that are predicted as nonhotspot; (4) false negative
(FN): hotspot instances that are predicted as nonhotspots.

Fig. 11 Importance of weight initialization.

Table 6 ICCAD 2012 contest benchmark.

Bench
Training
HS#

Training
NHS#

Testing
HS#

Testing
NHS#

ICCAD-1 99 340 226 3869

ICCAD-2 174 5285 498 41,298

ICCAD-3 909 4643 1808 46,333

ICCAD-4 95 4452 177 31,890

ICCAD-5 26 2716 41 19,327

J. Micro/Nanolith. MEMS MOEMS 033504-8 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

True positive rate (TPR) and false positive rate (FPR) are
defined as follows:

EQ-TARGET;temp:intralink-;e016;63;413TPR ¼ TP

TPþ FN
; (16)

EQ-TARGET;temp:intralink-;e017;63;372FPR ¼ FP

FPþ TN
; (17)

which correspond to accuracy and false alarm defined in our
work, respectively. We use a receiver operating characteristic
(ROC) curve to depict the trade-off between TPR and FPR.
In this experiment, we train the CNN model with combined
28-nm benchmarks (ICCAD2 to ICCAD5) and obtain the
corresponding ROC curve as in Fig. 13.

4.4 Downscaling on Input Layout Images

By default configuration, layout patterns are converted into
images with 1-nm resolution, which results in a large clip
image size (1024 × 1024). To improve runtime, it is worth
examining the impact of layout resolution on hotspot detec-
tion accuracy.

In this experiment, we conduct density-based downscal-
ing (In this paper, we refer to downscaling as changing the
resolution of a layout instead of proportionally reducing the
design pitch) on the layout images (implemented by doing
average pooling). Figure 14 shows the performance of mod-
els trained with 2 × 2, 4 × 4, 8 × 8, and 16 × 16 downscaled
layout images, where each pixel in the scaled image has an
average value of the corresponding square region of the
original image. Although smaller input size ensures faster
feed-forward time, the runtime improvements are limited,
possibly because of other bottlenecks. Also, detection accu-
racy drops due to the information loss of density-based
downscaling. To pursue a higher hotspot detection accuracy,
we still apply the original net (Fig. 7) for the following
experiments.

4.5 Result Comparison with Existing Deep Learning
Flow

To the best of our knowledge, there were two attempts that
applied deep learning on hotspot detection.33,41 Because no
detailed results are reported in Ref. 41, we only compare our
framework with Ref. 33. Shin and Lee33 proposed a four-
level convolutional neural network to perform hotspot clas-
sification. Table 7 lists the network configuration, which
differs from our work in three aspects: (1) a 5 × 5 kernel
is employed in each convolution layer while we prefer
a smaller kernel size because the layout is sensitive to

Fig. 12 Neuron response of pooling layers in five convolution stages.

Fig. 13 The ROC curve, where the x -axis corresponds to false alarm
rate, whereas the y -axis is hotspot detection accuracy. Note that TPR
reaches 100% at the cost of FPR of 74.6% (red dashed line).

J. Micro/Nanolith. MEMS MOEMS 033504-9 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

variation. (2) The network scale is much smaller than ours
(10 layers versus 21 layers). (3) In preprocessing, the training
and testing datasets in Ref. 33 are sampled from layout clips
with 10-nm precision (10 nm for each pixel) and training
hotspot patterns are randomly shifted to avoid imbalance
problems that may cause unreliable training instances
because there is enough nanometer level variation to modify
a layout clip attribute.

Experimental results are listed in Table 8. Columns
“FA#,” “CPU (s),” “ODST (s),” and “accu. (%),” correspond
to the number of false alarms, the running time of the pre-
diction flow, ODST as defined above, and the hotspot
detection accuracy, respectively. The rows “ICCAD-1” to
“ICCAD-5” are the results of five test cases, where the
row “average” lists the average value of four metrics, and
the row “ratio” offers normalized comparison by setting
our experimental result to 1.0. Note that for different test
cases, the instance numbers are different, for accuracy, we
adopted a weighted average.

The comparison shows that detection accuracy of our
framework is better than Ref. 33 for each test case and
has a 2.3% advantage of average detection accuracy. As

far as the false alarm is concerned, Ref. 33 takes 104%
more ODST than ours. Results also indicate that our CNN
architecture is effective and efficient. Because we introduce
additional parameters for the network, the average detection
accuracy drops 0.2% compared to our previous architecture
in Ref. 28 caused by overfitting effect.

4.6 Results Comparison with Machine Learning
Hotspot Detectors

Many machine learning technologies were explored for lay-
out hotspot detection and achieved better performance than
the traditional pattern matching approach. Here, we compare
our experiment with two representative machine learning-
based hotspot detectors8,9 that adopt support vector machine
and smooth boosting, respectively.

As shown in Table 9, columns and rows are similarly
defined as in Table 8. For detection accuracy, our framework
achieves the best results on cases ICCAD-2 (98.7%) and
ICCAD-3 (98.0%), meanwhile the framework gains similar
results on rest cases with only a 3.2% difference on ICCAD-
4. On average, the proposed deep learning approach
outperforms8 on accuracy (consistency with total number
of correctly detected hotspots) by 5.3% and achieves the
same detection accuracy as Ref. 9. Our framework also
has approximately a 50,000-s and 3600-s ODST advantage,
respectively.

For some test cases, deep learning does not perform better
than machine learning. The main reason is that the size of
training dataset is much smaller than required to efficiently
train a deep neural network and machine learning is, there-
fore, more suitable. However, with advanced VLSI technol-
ogy nodes, layout patterns will be more and more
complicated, and in real applications, deep learning has
the potential to perform better, thanks to its robustness
and effectiveness.

4.7 Performance Evaluation on Post-OPC Layouts

Hotspot detection tasks for post-OPC mask layouts are more
challenging than the datasets above. We conduct the experi-
ment on three industrial post-OPC datasets and compare the
results with the original architecture, as shown in Table 10.
With the refined architecture, the CNN model improves the
average hotspot detection accuracy by 2.6% and reduces
ODST by 15.9%.

(a) (b)

Fig. 14 The effect of scaling on layout images, where the x -axis corresponds to scale down factors,
whereas y -axes are (a) hotspot detection accuracy and (b) test runtime.

Table 7 Neural network configuration of Ref. 33.

Layer Kernel size Output vertexes

Conv1 5 × 5 × 25 —

Pool1 2 × 2 52 × 25

Conv2 5 × 5 × 40 —

Pool2 2 × 2 24 × 40

Conv3 5 × 5 × 60 —

Pool3 2 × 2 10 × 60

Conv4 5 × 5 × 80 —

Pool4 2 × 2 3 × 80

FC1 — 100

FC2 — 2

J. Micro/Nanolith. MEMS MOEMS 033504-10 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

5 Conclusion
In this paper, we explore the feasibility of deep learning as an
alternative approach for lithography hotspot detection in the
submicron era. We study the effectiveness of the associated

hyperparameters to make the architecture and the learning
procedures match well with the layout nature. In particular,
upsampling and random-mirror flipping are applied to
address the side effects caused by imbalanced datasets.

Table 8 Performance comparisons with Ref. 33.

JM3’1633 SPIE’1728 Ours

Bench FA# CPU (s) ODST (s) Accu. (%) FA# CPU (s) ODST (s) Accu. (%) FA# CPU (s) ODST (s) Accu. (%)

ICCAD-1 386 15 3875 95.1 147 51 1521 99.6 1037 50 10,420 100

ICCAD-2 1790 208 18,108 98.8 561 390 6000 99.8 83 501 1331 98.7

ICCAD-3 7077 322 71,092 97.5 2660 434 27,034 97.8 3108 546 31,626 98.0

ICCAD-4 892 129 9049 93.8 1785 333 18,183 96.4 296 346 3306 94.5

ICCAD-5 172 82 1802 92.7 242 232 2652 95.1 394 264 4204 95.1

Average 2063 151 20,781 96.7 1079 288 11,078 98.2 984 341 10,177 98.0

Ratio — — 2.04 0.99 — — 1.09 1.01 — — 1.0 1.0

Table 9 Performance comparisons with state-of-the-art machine learning.

TCAD’158 ICCAD’169 Ours

Bench FA# CPU (s) ODST (s) Accu. (%) FA# CPU (s) ODST (s) Accu. (%) FA# CPU (s) ODST (s) Accu. (%)

ICCAD-1 1493 38 14,968 94.7 788 10 7890 100 1037 50 10,420 100

ICCAD-2 11,834 234 118,574 98.2 544 103 5543 99.4 83 501 1331 98.7

ICCAD-3 13,850 778 139,278 91.9 2052 110 20,630 97.5 3108 546 31,626 98.0

ICCAD-4 3664 356 36,996 85.9 3341 69 33,478 97.7 296 346 3306 94.5

ICCAD-5 1205 20 12,070 92.9 94 41 980 95.1 394 264 4204 95.1

Average 6409 285 64,377 92.9 1363 67 13,702 98.0 984 341 10,177 98.0

Ratio — — 6.33 0.948 — — 1.35 1.0 — — 1.0 1.0

Table 10 Performance evaluation on post-OPC layouts.

SPIE’1728 Ours

Benchmarks FA# CPU (s) ODST (s) Accu. (%) FA# CPU (s) ODST (s) Accu. (%)

Industry1 519 271 5461 97.7 328 297 3577 98.4

Industry2 760 362 7962 89.6 676 443 7203 90.7

Industry3 1966 416 20,076 77.1 1686 502 17,362 83.4

Average 1082 350 11,166 88.2 897 414 9381 90.8

Ratio — — 1.19 0.971 — — 1.0 1.0

J. Micro/Nanolith. MEMS MOEMS 033504-11 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

The experimental results show that the designed network
architecture is more robust and performs better than existing
deep learning architectures and representative machine lean-
ing approaches. This study also demonstrates that deep neu-
ral networks have potential to offer better solutions to some
emerging design for manufacturability problems as circuit
layouts advance to extreme scale.

Acknowledgments
This work was supported in part by the Research Grants
Council of Hong Kong SAR (Project No. CUHK24209017).
The authors would like to thank Evangeline F. Y. Young
from CUHK, Yi Zou and Lauren Katzive from ASML for
helpful comments.

References

1. J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full
chip simulation based verification tool: a case study with aerial image
simulation,” Proc. SPIE 5256, 919 (2003).

2. E. Roseboom et al., “Automated full-chip hotspot detection and removal
flow for interconnect layers of cell-based designs,” Proc. SPIE 6521,
65210C (2007).

3. Y.-T. Yu et al., “Accurate process-hotspot detection using critical design
rule extraction,” in ACM/IEEE Design Automation Conf. (DAC),
pp. 1167–1172 (2012).

4. W.-Y. Wen et al., “A fuzzy-matching model with grid reduction for
lithography hotspot detection,” IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 33(11), 1671–1680 (2014).

5. D. Ding, J. A. Torres, and D. Z. Pan, “High performance lithography
hotspot detection with successively refined pattern identifications and
machine learning,” IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 30(11), 1621–1634 (2011).

6. J.-R. Gao, B. Yu, and D. Z. Pan, “Accurate lithography hotspot detection
based on PCA-SVM classifier with hierarchical data clustering,” Proc.
SPIE 9053, 90530E (2014).

7. B. Yu et al., “Accurate lithography hotspot detection based on principal
component analysis-support vector machine classifier with hierarchical
data clustering,” J. Micro/Nanolithogr. MEMS MOEMS 14(1), 011003
(2015).

8. Y.-T. Yu et al., “Machine-learning-based hotspot detection using
topological classification and critical feature extraction,” IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 34(3), 460–470
(2015).

9. H. Zhang, B. Yu, and E. F. Y. Young, “Enabling online learning in
lithography hotspot detection with information-theoretic feature optimi-
zation,” in IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD),
pp. 1–8 (2016).

10. T. Matsunawa et al., “A new lithography hotspot detection framework
based on AdaBoost classifier and simplified feature extraction,” Proc.
SPIE 9427, 94270S (2015).

11. T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with
hierarchical bayes model,” J. Micro/Nanolith. MEMS MOEMS 15,
021009 (2015).

12. G. E. Hinton, “What kind of graphical model is the brain?” in Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 1765–1775 (2005).

13. G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput. 18(7), 1527–1554 (2006).

14. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Conf. on
Neural Information Processing Systems (NIPS), pp. 1097–1105
(2012).

15. A. J. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching for
physical verification and benchmark suite,” in IEEE/ACM Int. Conf. on
Computer-Aided Design (ICCAD), pp. 349–350 (2012).

16. Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural Networks: Tricks of the Trade, G. B.
Orr and K.-R. Müller, Eds., pp. 437–478, Springer, Heidelberg,
Germany (2012).

17. L. Deng, “Three classes of deep learning architectures and their appli-
cations: a tutorial survey,” in APSIPA Transactions on Signal and
Information Processing (2012).

18. Y. Sun, X. Wang, and X. Tang, “Hybrid deep learning for face verifi-
cation,” in IEEE Int. Conf. on Computer Vision (ICCV), pp. 1489–1496
(2013).

19. G. B. Huang, H. Lee, and E. Learned-Miller, “Learning hierarchical
representations for face verification with convolutional deep belief net-
works,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pp. 2518–2525 (2012).

20. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European Conf. on Computer Vision (ECCV),
pp. 818–833 (2014).

21. K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint (2014).

22. L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade, G. B. Orr and K.-R. Müller, Eds., pp. 421–436,
Springer, Heidelberg, Germany (2012).

23. T. Xiao et al., “Learning deep feature representations with domain
guided dropout for person re-identification,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 1249–1258
(2016).

24. S. Hochreiter et al., “Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies,” in A Field Guide to Dynamical
Recurrent Neural Networks, J. F. Kolen and S. C. Kremer, Eds.,
IEEE Press, Hoboken, New Jersey (2001).

25. V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Int. Conf. on Machine Learning (ICML),
pp. 807–814 (2010).

26. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
Cambridge, Massachusetts (2016).

27. N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res. 15(1), 1929–1958 (2014).

28. H. Yang et al., “Imbalance aware lithography hotspot detection: a deep
learning approach,” Proc. SPIE 10148, 1014807 (2017).

29. O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vision 115(3), 211–252 (2015).

30. M.-L. Zhang, Y.-K. Li, and X.-Y. Liu, “Towards class-imbalance aware
multi-label learning,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), pp. 4041–4047 (2015).

31. W. W. Y. Ng et al., “Diversified sensitivity-based undersampling for
imbalance classification problems,” IEEE Trans. Cybern. 45(11),
2402–2412 (2015).

32. H. He et al., “ADASYN: adaptive synthetic sampling approach for
imbalanced learning,” in Int. Joint Conf. on Neural Networks
(IJCNN), pp. 1322–1328 (2008).

33. M. Shin and J.-H. Lee, “Accurate lithography hotspot detection using
deep convolutional neural networks,” J. Micro/Nanolithogr. MEMS
MOEMS 15(4), 043507 (2016).

34. B. T. Polyak, “Some methods of speeding up the convergence of
iteration methods,” USSR Comput. Math. Math. Phys. 4(5), 1–17
(1964).

35. I. Sutskever et al., “On the importance of initialization and momentum
in deep learning,” in Int. Conf. on Machine Learning (ICML), pp. 1139–
1147 (2013).

36. A. Karpathy, “Stanford University CS231n: convolutional neural
networks for visual recognition,” http://cs231n.github.io/neural-
networks-3/ (07 March 2017).

37. J. Moody et al., “A simple weight decay can improve generalization,” in
Conf. on Neural Information Processing Systems (NIPS), pp. 950–957
(1995).

38. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), pp. 249–256 (2010).

39. Y. Jia et al., “Caffe: convolutional architecture for fast feature embed-
ding,” in ACM Int. Multimedia Conf., pp. 675–678 (2014).

40. S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in
mask optimization and benchmark suite,” in IEEE/ACM Int. Conf.
on Computer-Aided Design (ICCAD), pp. 271–274 (2013).

41. T. Matsunawa, S. Nojima, and T. Kotani, “Automatic layout feature
extraction for lithography hotspot detection based on deep neural net-
work,” Proc. SPIE 9781, 97810H (2016).

Haoyu Yang received his BEng degree from Tianjin University,
Tianjin, China, in 2015. He is now a PhD student in the Department
of Computer Science and Engineering, Chinese University of Hong
Kong. His research interests include design for manufacturability
and deep learning.

Luyang Luo is an undergraduate student in the Department of
Computer Science and Engineering, Chinese University of Hong
Kong. He has joined the CUHK summer research program under
the supervision of Prof. Bei Yu. He is currently interested and involved
in deep-learning related study.

Jing Su received his BS degree in physics from the University of
Science and Technology of China in 2008 and his PhD in theoretical
and computational AMO physics from the University of Colorado at
Boulder in 2014. Currently, he is a senior design engineer in the
Advanced Technology Development Group at ASML-Brion. His
present research interest covers a wide range of topics in lithography,
including multiple patterning, advanced mask optimization, and
machine learning.

J. Micro/Nanolith. MEMS MOEMS 033504-12 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

http://dx.doi.org/10.1117/12.517364
http://dx.doi.org/10.1117/12.712491
http://dx.doi.org/10.1109/TCAD.2014.2351273
http://dx.doi.org/10.1109/TCAD.2014.2351273
http://dx.doi.org/10.1109/TCAD.2011.2164537
http://dx.doi.org/10.1109/TCAD.2011.2164537
http://dx.doi.org/10.1117/12.2045888
http://dx.doi.org/10.1117/12.2045888
http://dx.doi.org/10.1117/1.JMM.14.1.011003
http://dx.doi.org/10.1109/TCAD.2014.2387858
http://dx.doi.org/10.1109/TCAD.2014.2387858
http://dx.doi.org/10.1145/2966986.2967032
http://dx.doi.org/10.1117/12.2085790
http://dx.doi.org/10.1117/12.2085790
http://dx.doi.org/10.1117/1.JMM.15.2.021009
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1117/12.2258374
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TCYB.2014.2372060
http://dx.doi.org/10.1117/1.JMM.15.4.043507
http://dx.doi.org/10.1117/1.JMM.15.4.043507
http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
http://dx.doi.org/10.1109/ICCAD.2013.6691131
http://dx.doi.org/10.1109/ICCAD.2013.6691131
http://dx.doi.org/10.1117/12.2217746

Chenxi Lin received his BS degree in electrical engineering from
Peking University, China, in 2008, and his PhD from the University
of Southern California in 2013. His PhD research focused on the
optical characterization and optimal design of nanostructured semi-
conductor thin-film materials for photovoltaic applications. He is cur-
rently a senior design engineer in the Advanced Technologies
Department at ASML Brion Technologies, with a strong interest in
data science and its applications in optical lithography.

Bei Yu is currently an assistant professor in the Department of
Computer Science and Engineering, Chinese University of Hong
Kong. He has served in the editorial boards of Integration, the VLSI
Journal, and IET Cyber-Physical Systems: Theory and Applications.
His current research interests include combinatorial algorithm and
machine learning with applications in VLSI computer aided design
and cyber-physical systems.

J. Micro/Nanolith. MEMS MOEMS 033504-13 Jul–Sep 2017 • Vol. 16(3)

Yang et al.: Imbalance aware lithography hotspot detection. . .

