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Triple Patterning Aware Detailed Placement Toward
Zero Cross-Row Middle-of-Line Conflict
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Abstract—Triple patterning lithography (TPL) is one of the
most promising lithography technology in sub-14-nm technology
nodes, especially for complicated low metal layer manufactur-
ing. To overcome the intracell routability problem and improve
the cell regularity, recently middle-of-line (MOL) layers are
employed in standard cell design. However, MOL layers may
introduce a large amount of cross-row TPL conflicts for row-
based design. Motivated by this challenge, in this paper we
propose the first TPL aware detailed placement toward zero
cross-row MOL conflict. In standard cell precoloring, Boolean-
based look-up table is proposed to reduce solution space. In
detailed placement stage, three powerful techniques, i.e., local
reordered single row refinement, min-cost flow-based conflict
removal, and local cell interleaving, are proposed to provide zero
TPL conflict solution. The experimental results demonstrate the
effectiveness of our proposed methodologies.

Index Terms—Design for manufacture, detailed placement,
middle-of-line (MOL), triple patterning lithography (TPL).

I. INTRODUCTION

W ITH the scaling of the feature size in sub-14-nm
technology nodes, semiconductor industry is chal-

lenged by the manufacturability with conventional 193-nm
wavelength immersion (193i) lithography. Although under
intensive research and development, the next generation
lithography techniques, such as extreme ultraviolet lithog-
raphy, directed self-assembly, electron beam lithography,
and nanoimprint lithography, are postponed due to yield
and throughput issues [1], [2]. Multiple patterning lithog-
raphy (MPL), which reuses conventional 193i lithography,
currently has been heavily utilized in industry [3]–[5]. For
instance, double patterning lithography has been introduced in
14-nm technology node [6]. In emerging sub-14-nm technol-
ogy nodes, LELELE type triple patterning lithography (TPL)
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is a very promising option for complicated low metal layer
manufacturing [7].

As a fundamental and critical problem, layout decomposi-
tion for TPL or even general MPL has been studied extensively
in [8]–[16]. Due to the NP-hardness [17], most layout decom-
posers apply heuristic methods to search for near-optimal
solutions, thus there may be a large amount of conflicts left
in decomposed layout. To overcome this limitation, several
studies integrate patterning constraints in early design stages.
For example, how to introduce TPL friendly design in detailed
routing has been discussed in [18]–[21]. Besides, there are sev-
eral studies proposing different methodologies for TPL aware
detailed placement [22]–[27]. For ordered single row (OSR)
problem, Yu et al. [22], [23] proposed a unified graph model
to cell placement and coloring assignment, which was further
improved by a technique based on dynamic programming for
quality and efficiency. The dynamic programming algorithm
to solve OSR problem can achieve further speedup if the cost
of each cell is independent to other cells in a row [28], [29],
but it is not applicable to TPL awareness because the conflict
cost is determined by two adjacent cells. Kuang et al. [24]
and Chien et al. [25] recently further improved the detailed
placement solutions in [22]. A special case of TPL aware sin-
gle row placement was considered in [26] and [27], where
each type of standard cell has only one final coloring solu-
tion. Lin et al. [30] summarized recent detailed placement
challenges and techniques for advanced nodes.

Since the 20-nm technology node and beyond, to over-
come the intracell routability problem and improve the cell
regularity, a Tungsten-based middle-of-line (MOL) structure
is employed for standard cell design [31]. MOL structure is
made up of two different local interconnection layers, namely
CA and CB (also called IM1 and IM2 [32]). An example of
MOL enabled standard cell structure is shown in Fig. 1(a),
where CA and CB layer features are labelled as blue and red,
respectively. We can see from Fig. 1(b), if placement is not
carefully designed, on CA layer there are several native TPL
conflicts cross different standard cell rows (see the red edge
which denotes a coloring conflict). Therefore, for advanced
technology nodes where MOL layers are employed, standard
cell coloring and placement should take the cross-row con-
flicts into account. However, all existing TPL aware placement
works assume there is no conflict between cells in different
rows.

In this paper, motivated by the particular structures of MOL
layers, we propose a comprehensive study to TPL aware
detailed placement to overcome cross-row TPL conflicts. To
the best of our knowledge, this paper is the first TPL aware
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Fig. 1. Example of MOL-based standard cell structure. (a) MOL consists of
CA and CB layers. (b) If placement is not carefully designed, CA layer may
involve lots of TPL cross-row conflicts. The circles denote the abstraction
of CA layer features in the conflict graph and an edge between two circles
denote that the corresponding features should be printed by different masks.
The number in each circle represents the mask/color used for the feature.

detailed placement targeting at cross-row conflict removal. The
contributions of this paper can be highlighted as follows.

1) We carry out a comprehensive study on standard cell
level coloring strategy and Boolean-based look-up table
(BLUT) construction for MOL structures.

2) We propose single row placement techniques that allow
local reordering for conflict and stitch minimization.

3) We develop a concurrent approach for multirow conflict
removal.

4) We propose a dynamic programming algorithm to solve
general q-partition interleaving for post wirelength and
stitch refinement.

5) Experimental results demonstrate the effectiveness of
our proposed framework.

The rest of this paper is organized as follows. Section II
shows the definitions of related concepts and our overall flow.
Sections III and IV propose the cell level decomposition
and TPL aware detailed placement, respectively. Section V
gives the experimental results, followed by the conclusion in
Section VI.

II. PRELIMINARIES AND OVERALL FLOW

A. MOL Structure

As shown in Fig. 1(a), MOL layers typically include CA
and CB [32]. In this paper, we focus on CA layer colorability
since this layer is more likely to cause TPL conflicts across
different rows. In a row-based layout structure, standard cells
are aligned to placement rows with identical height. Horizontal
power and ground (PG) rails are shared by neighboring rows.
Thus neighboring rows have to be aligned in a back-to-back
manner; i.e., a row orientated to N must have neighbors ori-
entated to FS, as shown in Fig. 2(b), vice versa. CA features
can touch the PG rails. For simplicity, we define a touching
finger as a CA feature that touches the PG rails, and a non-
touching finger as a CA feature that does not hit any PG rail.
All fingers are aligned to specific grids since they are aligned
between features of gate layer according to the self-aligned

Fig. 2. Example of conflicts on (a) intrarow metal-1 layer and (b) cross-row
MOL layer.

manufacturing process. Due to the existence of touching fin-
gers, it is very likely to introduce conflicts between cross-row
CA features. Fig. 1(b) shows an example of coloring failure
caused by cross-row conflicts if only three masks are avail-
able. We also assume that there is no conflict between MOL
fingers within a standard cell.

B. Colorability Analysis for Advanced Standard Cell

In advanced standard cell design, the standard cell colorabil-
ity is different from conventional one (e.g., 45-nm technology
node). On one hand, due to the employment of MOL layers for
local connection near PG rails, there is no cross-row conflict
on metal-1 layers and the metal-1 layer conflict can only hap-
pen between two abutting cells in the same row, as shown in
Fig. 2(a). On the other hand, if cells are not carefully placed,
there would be a large amount of cross-row conflicts on MOL
layers. Fig. 2(b) shows such conflicts.

C. Overview of Proposed Flow

The overall flow of our methodologies is shown in Fig. 3.
There are two main phases, standard cell phase and detailed
placement phase. In the standard cell phase, given standard cell
library as the input, we perform precoloring for metal layers in
standard cells, generate look-up table (LUT) for metal-1 layer
and extract MOL features for next phase. In the second phase,
TPL aware detailed placement is performed to optimize wire-
length, assign coloring solution, and minimize conflicts and
stitches. This phase consists of different placement approaches
with TPL constraint consideration and post placement color
assignment for MOL layer. The density-driven global move is
very similar to [33], so we skip it for brevity. The output of
the framework is decomposed layouts with optimized place-
ment solution and color assignment for both metal-1 and MOL
layer.
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Fig. 3. Overall flow of the methodologies for TPL detailed placement.

III. STANDARD CELL LAYOUT DECOMPOSITION

In TPL, features of a certain layer are decomposed into three
masks. Two features that are too close to each other cannot
be assigned to the same mask; otherwise, it will introduce
a conflict. For standard cells, we consider metal-1 layer and
MOL layer for TPL layout decomposition.

A. Standard Cell Precoloring

For metal-1 layer, the cell precoloring problem in a row-
based layout structure is the same as that in [22]–[24]. That
is, given a standard cell and coloring distance for metal-1
layer, generate all candidate coloring solutions where no two
solutions are redundant to each other [23]. The redundancy is
defined by the fact that one candidate coloring solution has
the same color assignment to left and right boundary features
as another solution of the cell. Although the solution space
for a whole standard cell can be very large, there is no need
to enumerate all possible coloring solutions for placement.
Due to the fact that conflicts come from boundary features of
cells in the TPL detailed placement problem, only boundary
conditions need to be considered. In our metal-1 layer decom-
position flow, we apply the backtracking algorithm from [23]
and enumerate all color combinations for boundary features.
Features not belong to the boundaries are assigned with any
color combination that carries out a legal coloring solution.
Due to limited number of boundary features, it is applicable to
store the coloring solutions as an input for detailed placement
stage.

For MOL layer precoloring, similar to metal-1 layer, we
only consider coloring solutions of features that are close to
cell top or cell bottom. As suggested in [34], we forbid stitch-
ing for CA layer. At first glance, the precoloring problems
of metal-1 layer and MOL layer are very similar. However,
the difference lies in the problem size. In advanced technol-
ogy node, for metal-1 layer, there are usually fewer than five
boundary features for left or right side of a standard cell, while
the number of fingers for MOL layer is much larger. Usually
large cells have even more fingers; e.g., a D flip-flop has more
than twenty fingers at top boundary.

Fig. 4. Example of discrete conflict-free offset values between two vertically
stacked cells for LUT of MOL layer.

Fig. 5. Example of LUT sizes for metal-1 and MOL layers.

B. BLUT Construction

According to previous analysis, we generate precoloring
solutions of metal-1 layer for each cell and precompute the
minimum colorable distance for every cell pair with different
coloring solutions. The distances are stored in an LUT.

For MOL layer, the LUT is discrepant to that of metal-1.
Fig. 4 gives an example to explain the difference. Suppose
we have cell Ci at bottom and cell Cj is on top of cell Ci.
Conflicts may occur at discrete values of the position pairs.
For simplicity, let the horizontal position of cell Ci be pi.
Possible situation is that conflicts occur if cell Cj is placed to
position pi+ 1, pi+ 2, pi+ 5, and pi+ 6, while positions like
pi, pi+3, pi+4, and pi+7 are safe for cell Cj. Therefore, the
LUT for MOL should contain a set of conflict ranges instead
of a single required distance like metal-1.

Nevertheless, as mentioned in Section II-A, such kind of
approach may suffer from large problem sizes. Fig. 5 gives
an example of solution spaces of four particular cells. The
maximum amount of candidate coloring solutions for metal-1
comes from XOR2_X2, which is 12, but its MOL layer has
more than 100 000 coloring solutions. It is no longer feasible
to store all the solutions in the LUT. One way is to select
partial solutions, but it will increase the difficulty to resolve
conflicts for fewer coloring options.

Due to the regularity of MOL features, we can solve the
problem more efficiently. All possible topological patterns of
four abutting fingers can be represented by the patterns listed
in Fig. 6 with proper flipping and rotation. Most of these pat-
terns are TPL friendly except pattern F which results in a
four-clique structure (K4). It is impossible to resolve a K4
with only three colors. As the topological patterns depend on
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Fig. 6. Possible patterns of four abutting MOL fingers.

Fig. 7. Example of Boolean representation for MOL fingers.

cross-row cell positions, it has to be avoided during place-
ment stage. If we can produce a K4-free placement solution
for MOL layer, it should not be difficult to find a legal col-
oring solution by post placement color assignment due to the
regularity. Actually we will show later that it is guaranteed to
find a legal coloring solution if K4 is avoided. Hence, there
is no need to explore the coloring solutions for MOL layer
before placement.

The checking for K4 can be dynamically performed in
placement instead of keeping an LUT. To further simplify
the problem, we classify MOL fingers according to the ver-
tical distances to cell boundary. Without loss of generality,
we assume all touching fingers have the same distance to cell
boundary, so do nontouching fingers. A BLUT is applied to
represent the existence of different finger types. For each stan-
dard cell, four bitsets are required to store the fingers, as shown
in Fig. 7. Bottom fingers are represented by BT1 and BN1 which
denote the existence of touching fingers and nontouching fin-
gers, respectively. If no finger exists at a certain grid j, both
BT1(j) and BN1(j) are set to 0, where the grid is defined by
tracks of gate layer. Top fingers are represented by BT2 and
BN2. The bottom and top concepts here are determined when
a cell is orientated to N. Similar to cells, each row needs four
bitsets RT1, RN1, RT2, and RN2. Note that all the four bitsets are
necessary, because if there is neither touching nor nontouch-
ing finger at a grid, like that in the bottom right of Fig. 7,
we need to set both corresponding touching and nontouching
bitsets to zero at that grid.

The checking for K4 between two neighboring row i and
row i + 1 is summarized in Algorithm 1. As the orientation
of a placement row is fixed, we assume row i is orientated
to N and row i + 1 is orientated to FS. So bitset RT2

i and
RN2

i of row i interact with bitset RT2
i+1 and RN2

i+1 of row i+ 1.

Algorithm 1 Row K4 Checking

Require: Bitsets RT2
i , RN2

i , RT2
i+1, RN2

i+1.
Ensure: Whether there exists K4 between rows i and i+ 1.

1: A1 = RT2
i &RN2

i+1;
2: A2 = RN2

i &RT2
i+1;

3: n = length of A1;
4: for j = 1 to n do
5: if A1(j− 1)A1(j) or A2(j− 1)A2(j) then
6: return true;
7: end if
8: end for
9: return false;

The basic idea is to perform bitwise and operations for bitsets
and check consecutive 1 s. Same approach can be applied to
check K4 between a cell and its neighboring rows. Considering
that the size of bitsets for a cell is smaller than that for a row,
we can truncate the row bitsets by shifting before performing
the checking.

It should be noted that the application of BLUT involves
both precoloring and placement stages, since both standard
cells and placement rows keep their own BLUTs. The BLUT
for each cell is extracted in the precoloring stage accord-
ing to the positions and types of MOL fingers, while during
placement each row keeps a BLUT for all the cells it holds.
The BLUT for each row is updated dynamically with cell
movement.

IV. TPL AWARE DETAILED PLACEMENT

In this section, we present our scheme of TPL aware detailed
placement to remove conflicts and minimize wirelength. To
maintain the properties of input placement solutions such as
wirelength and routability, the maximum displacement con-
straint is introduced to limit the amount of movement for each
cell in Manhattan distance. For simplicity, if not specially men-
tioned, we use flipping to represent flipping a cell in horizontal
direction.

A. Single Row Placement Problem

Previous studies have shown that single row placement
has impressive performance in simultaneous color assignment,
conflict removal, and wirelength minimization for metal-1
layer [22], [24], [26], [27]. In our scheme, the cost of sin-
gle row placement problem comes from both horizontally and
vertically abutting cells. Hence the information of neighboring
rows should also be considered.

Problem 1 (Single Row Placement Problem): Given a row
of standard cells and its neighboring rows, determine the
position, orientation, and coloring for cells to minimize cost

cost = �WL+ α · NST + β · NCF (1)

where NST denotes the number of stitches and NCF stands for
the number of conflicts.

When an algorithm for the single row placement problem
is performed in a row, all cells on the other rows are fixed.
In our implementation, parameter α is set to 1 and β is set to
a very large value, e.g., 32 times of perimeter of the layout.
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Fig. 8. Simplified example of single row placement problem.

The cells in the neighboring rows are fixed when optimizing
current row. Both metal-1 conflicts and MOL K4 structures
are generalized to NCF. An example for our single row place-
ment problem is shown in Fig. 8. Blue rectangles stand for
MOL fingers and orange rectangles represent boundary metal-
1 features. Note that orientations of cells should correspond to
their rows; i.e., if the row orientation is N, then cell orientation
must be N or FN; if the row orientation is FS, then cell orien-
tation must be S or FS. Although conflicts can be resolved by
inserting whitespaces between abutting cells, flipping is also
very effective due to the asymmetry of boundary features. For
example, by flipping cell 1, both its vertical and horizontal
conflicts are removed. Flipping is even more important when
whitespaces are very limited in highly congested regions.

1) Ordered Single Row Placement: Single row place-
ment problem with arbitrary order is well known NP-
hard [35]–[37]. However, optimal solutions can be found in
polynomial time if the order of the cells is fixed [37]–[40].
Previous studies on TPL aware placement have already
explored different algorithms for the application of intrarow
conflicts [22]–[24], [26]. Here we adopt the linear dynamic
programming algorithm in [23] as it is more compatible to
maximum displacement constraints. The cost function for the
algorithm is extended to check cross-row K4 which will be
counted into conflicts, shown as (1), where NCF includes the
number of both metal-1 conflicts and cross-row K4.

2) Local Reordered Single Row Refinement: With only
OSR, the performance is limited in terms of conflict removal
owing to the high demands for whitespaces. If local reorder-
ing is available, larger solution space will contribute to fewer
conflicts and stitches. In spite of the NP-hardness of the arbi-
trary order single row placement, polynomial time algorithm
is available for the problem with local reordering.

Inspired by Du and Wong [41], we construct a graph model
to handle flipping, local reordering, local shifting, and metal-1
color assignment simultaneously. The difference of our method
is that three vertices are introduced for each cell during local
reordering to reduce number of edges. For simplicity, we
explain the graph model for different techniques separately and
then show the unified model. In the LRSR problem, the input
has been optimized by OSR for wirelength, the main target is
to further refine conflicts and stitches with small wirelength
degradation. Therefore, displacement cost is applied instead of
wirelength. The cost function can be rewritten as follows:

cost = D+ α · NST + β · NCF (2)

where D denotes the total movement of cells.
Consider the placement row shown in Fig. 8, whose the

orientation is N. As only flipping is allowed within a row, a cell
can be orientated to N or FN. Then for each cell, two vertices
are introduced to represent its orientation, as Fig. 9 shows.

Fig. 9. Example of cell flipping graph.

Fig. 10. Example of local cell reordering graph.

For instance, vertex N1 represents that cell 1 has an orientation
of N, while vertex FN1 denotes it is flipped to FN. If a flipping
solution for two abutting cells results in metal-1 conflicts, the
edge is assigned to a very large cost, such as the edge between
N1 and N2. If a flipping solution of one cell leads to cross-row
K4, all its input edges are assigned to a large cost like the edge
connects s to N1. These edges are marked in red. The problem
of computing the best flipping solution is equivalent to finding
the shortest path from s to t in the graph. In Fig. 9, we can
find a legal path s→ FN1 → N2 → N3 → FN4 → FN5 → t.

The local reordering technique enables local swap of neigh-
boring cells within a row. It can be stated by the following
definition.

Definition 1 (P-Reordering): Given a row of standard cells,
select p consecutive cells to switch positions between them,
such that the cost defined in (2) is minimized.

Fig. 10 gives an example of the reordering graph when p is
equal to 2. Each cell i corresponds to three vertices Cl

i, Cm
i , and

Cr
i , as it can swap with its preceding cell or its succeeding cell.

In Fig. 10, the edge from Cm
1 to Cm

2 stands for the condition
that cells 1 and 2 are kept in original order. The edge from Cl

2
to Cr

1 represents the swap of cells 1 and 2. In this problem, if
cell i has swapped with cell i+ 1, it is not allowed to further
swap with cell i+ 2.

We can summarize the graph construction of two-reordering
problem for a row with N cells as follows.

1) For each cell i (2 ≤ i ≤ N), vertex Cl
i has an output

edge to vertex Cr
i−1.

2) For each cell i (1 ≤ i ≤ N−1), vertex Cm
i has an output

edge to vertex Cm
i+1.

3) For each cell i (1 ≤ i ≤ N−2), vertex Cm
i has an output

edge to vertex Cl
i+2.

4) For each cell i (1 ≤ i ≤ N− 2), vertex Cr
i has an output

edge to vertex Cm
i+2.

5) For each cell i (1 ≤ i ≤ N− 3), vertex Cr
i has an output

edge to vertex Cl
i+3.

As additional source vertex s and target vertex t are introduced,
extra edges s → Cm

1 , s → Cl
2, Cr

N−1 → t, and Cm
N → t are

inserted.
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For further flexibility, small movement at the original posi-
tion and swapped positions for a cell is allowed. Let pm

i be
the original position of cell i, pl

i denote the position if cell i is
swapped with cell i − 1, and pr

i denote the position swapped
with cell i+1. Additional vertices are inserted to enable posi-
tions such as [pl

i−d, pl
i+d], [pm

i −d, pm
i +d], and [pr

i−d, pr
i+d],

where d is the maximum shifting value for this step. At the
same time, the graph model can also determine the coloring
solutions for metal-1 layer.

The full algorithm uses a unified graph model that com-
bines all the techniques mentioned above. In the unified graph
model, each vertex has four attributes. Swapping attribute con-
tains the swapping status (Cl

i, Cm
i , or Cr

i ) of current cell.
Shifting attribute di represents the shifting amount from cur-
rent or swapped position. Color attribute ki represents the
metal-1 coloring solution and flipping attribute fi represents
the flipping status of a cell. The interconnection of the uni-
fied graph can be derived from previous cell flipping graph
and local reordering graph. Edge cost is determined by all the
attributes of two vertices. Unified graph model is used in the
implementation to solve the LRSR problem optimally.

Let N be the total number of cells, d be the maximum
shifting value for LRSR and K be the maximum number of
coloring solutions. Since three types of vertices are introduced
for local reordering and there are 2d+1 candidate positions in
local shifting for each vertex, the total number of vertices in
the graph is 3N · (2d+ 1) ·K · 2. As the graph model turns out
to be a directed acyclic graph, the shortest path problem can
be solved with O(d2K2N) time complexity. In the experiment
we set d to 1, so the time complexity is O(K2N). It should
be noted that although not explicitly shown in Figs. 8 and 10,
the algorithm is not limited by any whitespace between cells.
Because in the graph model shifting values are enumerated by
vertices and we always know the vertices from the neighboring
cells of each target cell. If any overlap occurs between any pair
of vertices, no edge is inserted between them.

B. Multiple Row Conflict Removal Based
on Min-Cost Flow

While it is true that single row placement can remove most
conflicts, it tends to fail in very dense regions. Movement
between multiple rows is necessary to resolve all the con-
flicts. Conventional approaches such as global move are able
to iteratively move cells out of congested regions. But due
to the greedy nature, the solution may not be good from a
global view. When cells compete for whitespaces, greedy-
based method may process the less “urgent” cells before the
most urgent one. For example, cell i and cell j share one candi-
date whitespace; cell i has another candidate whitespace, while
cell j does not. The desired procedure is to place cell j to its
only whitespace and move cell i to the remaining candidate
position. It is very difficult for greedy approaches to handle
such kind of situations.

Problem 2 (Conflict Removal Problem): Given a set of cells
with conflicts, move these cells to eliminate conflicts with
minimum degradation of the solution quality, i.e., minimum
displacement to previous placement solution.

This step aims at eliminating the metal-1 conflicts and MOL
K4 during post single row placement stage. We need to move

Algorithm 2 Min-Cost Flow-Based Conflict Removal
Require: A set of cells C1, C2, ..., Cn and a set of whitespaces

W1, W2, ..., Wm.
Ensure: Assign cells to whitespaces with minimum costs

1: Detect conflicts and select candidate cells;
2: Collect whitespaces near candidate cells;
3: Construct graph G and candidate solution map S:
4: Add source vertex s and target vertex t to G;
5: Add edge s→ Ci and edge Wj → t with cost 0 and

capacity 1 for all i and j;
6: Add edge Ci → Wj iff Ci can be placed to Wj legally:
7: Calculate the best cost b with Eq. (2) when Ci is

placed to Wj by enumerating all combinations of
position, flipping and coloring solutions;

8: Assign b to the edge cost and 1 to edge capacity;
9: Add the corresponding solution of b to S;

10: Solve min-cost flow for G;
11: Assign cell Ci to whitespace Wj if the edge Ci → Wj

has nonzero flow and apply corresponding flipping and
coloring solutions stored in S;

Fig. 11. Example of min-cost flow-based whitespace assignment.

the conflict cells to whitespaces with minimum conflicts and
displacement. To solve this problem, a min-cost flow-based
algorithm is proposed to add concurrent characteristics by
assigning conflict cells to whitespaces simultaneously. Fig. 11
shows an example of the constructed graph for min-cost flow
algorithm. Vertex Ci indicates cells and Wj denotes whites-
paces. Edges are marked with (cost, capacity) pairs. In current
implementation, the capacity is set to 1, which means we
only support assigning one cell to one whitespace, because
it is difficult to guarantee free of conflicts within one whites-
pace if multiple cells are assigned. The basic procedure of this
algorithm is summarized in Algorithm 2.

When selecting candidate cells, we detect conflict chains
and group related cells; A conflict chain is a set of cells that
form a connected component if we connect them with conflict
edges. For example, if there is conflict between cells 1 and 2,
and also conflict between cells 2 and 3, then these cells are
grouped together, called a conflict chain. For a conflict chain
with n cells, only smallest n − 1 cells will be selected for
movement, because it is easier for small cells to fit into whites-
paces. The whitespaces are collected in the following way.
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For each candidate cell at row i, scan from rows i − 3 to
i + 3 and collect all whitespaces without any repeated one.
For any pair of whitespaces, if the distance between them is
smaller than coloring distance, only the larger one is kept to
avoid potential conflicts after cell assignment. Once the min-
cost flow is solved, we iterate through the edges from all Ci to
Wj to check the amount of flow; if the flow on the edge is 1,
Ci is assigned to Wj with the position, flipping and coloring
solution the same as that computed in the cost cij.

C. Stitch and Wirelength Refinement With Interleaving

With previous approaches to remove conflicts in
Sections IV-A and IV-B, it is likely to result in wirelength
and stitch degradation since they try to resolve conflicts while
minimizing displacement. Inspired by Mongrel [42], we try
to refine wirelength and stitch by interleaving a sequence
of cells within a row. The interleaving problem defined by
Mongrel only allows two partitions. We extend it to general
q-partition interleaving that allows any arbitrary number of
partitions q. Whitespaces are also integrated as dummy cells
for interleaving such that cells are able to shift around.

Definition 2 (Q-Partition Interleaving): Given a sequence
of standard cells and whitespaces in a row, extract q sub-
sequences (partitions) with the relative order of cells in
each subsequence fixed and interleave the subsequences to
minimize the cost defined in (1).

Fig. 12 gives an example of two-partition interleaving and
three-partition interleaving. Although the subsequence in each
partition can be randomly picked, we classify consecutive
cells into different partitions periodically; i.e., cell i goes to
partition (i− 1 mod q)+ 1, where i starts from 1. A whites-
pace can be split into several small pieces and incorporated
into interleaving as dummy cells. The subsequence of cells in
each partition must preserve their relative order, while there
is no ordering requirement for cells from different partitions.
It can be seen that with larger q, cells have more freedom to
move around.

Let Si1,i2,...,iq denote the optimal arrangement consisting of
i1 cells from partition 1, i2 cells from partition 2, . . . , iq
cells from partition q. Let ci

j denote the jth cell in the sub-
sequence of partition i. Let C(Si1,i2,...,iq) denote the cost of
partial placement defined by Si1,i2,...,iq . The wirelength cost in
C(Si1,i2,...,iq) only computes the total horizontal wirelength up
to the right boundary of Si1,i2,...,iq . The interleaving problem in
Mongrel is a special case of two-partition interleaving problem
with only wirelength cost, which can be solved by dynamic
programming with following recurrence relation:

S0,0 = ∅ (3a)

C
(
S0,0

) = 0 (3b)

Si,j =
{

Si−1,jc1
i , if C

(
Si−1,jc1

i

)
< C

(
Si,j−1c2

j

)

Si,j−1c2
j , otherwise.

(3c)

The process of solving (3) is equivalent to filling up the
((N/2)+1)×((N/2)+1) entries for the dynamic programming
table in Fig. 13 from top left corner to bottom right, where N
is the total number of cells; i.e., m × n entries if we use the
notations in Mongrel. Starting from empty set, the cells in dif-
ferent partitions are gradually inserted to the partial placement

Fig. 12. Example of (a) two-partition interleaving and (b) three-partition
interleaving.

Fig. 13. Example of dynamic programming table for two-partition interleav-
ing with wirelength cost only.

set of S. However, the q-partition interleaving problem tries to
minimize the cost function in (1), which consists of wirelength,
stitch and conflict costs, where the conflict cost comes from
metal-1 and MOL K4 structure. Wirelength cost has already
been discussed in Mongrel. Costs from stitch and MOL K4
structure do not involve interaction between cells; in other
words, they only depend on the cell itself. metal-1 conflict
cost has to be computed from two horizontally neighboring
cells, which breaks the independency. Equation (3) cannot be
applied to solve even the two-partition interleaving problem,
because the metal-1 coloring solution of rightmost cell in Si,j,
i.e., cell c1

i or c2
j , has interaction with the next cell c1

i+1 or c2
j+1

for computing Si+1,j or Si,j+1. As a result, we are not able to
prune the partial placement of either Si−1,jc1

i or Si,j−1c2
j for Si,j.

In order to handle conflict costs, a high-dimensional
dynamic programming table is necessary to record partial solu-
tions from different coloring solutions. Considering the fact
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that metal-1 conflict only involves interactions between cur-
rent cell and previous cell, for any Si,j in a 2-D table for
two-partition interleaving, we introduce two more dimensions
to denote the partition of current rightmost cell and its metal-1
coloring solution. We use Si,j,p,k to represent the partial place-
ment, where p = 1, 2 for the rightmost cell from either of
the two partitions, and k = 1, 2, . . . , K for K candidate col-
oring solutions for metal-1. Let cp

i,k denote that the ith cell
in partition p is assigned to kth candidate coloring solution.
Then Si,j,1,k can be derived from Si−1,j,1,k1 c1

i,k or Si−1,j,2,k2 c1
i,k,

where k1 and k2 indicate the coloring solutions of the right-
most cells in the previous partial placement. Similarly, Si,j,2,k
can be derived from Si,j−1,1,k1 c2

j,k or Si,j−1,2,k2 c2
j,k.

With the notations above, the new recurrence relation for
two-partition interleaving can be written as

S0,0,p,k = ∅ (4a)

C
(
S0,0,p,k

) = 0 (4b)

Si,j,1,k = argmin
k1,k2

{
C

(
Si−1,j,1,k1 c1

i,k

)

C
(

Si−1,j,2,k2 c1
i,k

)}
(4c)

Si,j,2,k = argmin
k1,k2

{
C

(
Si,j−1,1,k1 c2

j,k

)

C
(

Si,j−1,2,k2 c2
j,k

)}
(4d)

p ∈ {1, 2} (4e)

k, k1, k2 ∈ {1, 2, . . . , K} (4f)

i, j ∈
{

1, 2, . . . ,
N

2

}
(4g)

where N is the total number of cells in the sequence including
whitespaces as dummy cells, K is the total number of candi-
date coloring solutions for each cell. In (4c), partial placement
Si,j,1,k must be the one in the set {Si−1,j,1,k1 c1

i,k, Si−1,j,2,k2 c1
i,k}

that results in minimum cost by function C, similar is for
Si,j,2,k. If cell c1

i,k is a standard cell, (4c) holds, since it isolates
partial placement Si−1,j,1,k1 and Si−1,j,2,k2 to be independent
problems. If cell c1

i,k is a dummy cell from a whitespace, we
need to ensure it is wide enough to guarantee the indepen-
dency of subproblems; i.e., the whitespace should be able to
resolve metal-1 coloring conflicts between its left cell and right
cell. To ensure each whitespace is wide enough such that no
metal-1 conflict is possible between the cells at its left and
right, we split that whitespace into pieces that can resolve con-
flicts between any pair of cells in the row. Similar argument
holds for (4d). The high-dimensional table for two-partition
interleaving consists of ((N/2) + 1) × ((N/2) + 1) × 2 × K
entries.

Now we generalize to q-partition interleaving from two-
partition interleaving. We represent the vector space defined
by {i1, i2, . . . , iq} with �v. Two functions f and g are introduced
for space transformation

fi(j, p) =
{

j− 1, if i = p
j, otherwise

(5a)

g(�v, p) = {
f1(i1, p), f2(i2, p), . . . , fq

(
iq, p

)}
. (5b)

Functions f and g help find the previous vector space from �v
and p. If p = 1, then g(�v, p) = {i1 − 1, i2, . . . , iq}; if p = 2,

Fig. 14. Example of MOL coloring solutions.

then g(�v, p) = {i1, i2−1, . . . , iq}, and so forth. The assignment
operation �w← g(�v, p) is equivalent to

�w← �v
�w(p)← �w(p)− 1 (6)

where �w(p) indicates the pth dimension of �w. The recurrence
relation for q-partition interleaving can be written as

S�v,p,k = ∅ (7a)

C
(
S�v,p,k

) = 0 (7b)

S�v,p,k = argmin
p′,k′

{
C

(
Sg(�v,p),p′,k′c

p
ip,k

)}
(7c)

p, p′ ∈ {1, 2, . . . , q} (7d)

k′ ∈ {1, 2, . . . , K} (7e)

i1, i2, . . . , iq ∈
{

1, 2, . . . ,
N

q

}
(7f)

where we assume (N/q) is an integer for simplicity. Eventually
S�v,p,k has q+2 dimensions and there are ((N/q)+1)q×q×K
entries in the dynamic programming table.

The details about the algorithm are shown in Algorithm 3.
The dynamic programming table is filled by calling the recur-
sive function SolveDP from lines 13 to 31. To avoid repeating
computation, each entry in the table has a variable to record
whether it is visited, which is shown from lines 14 to 17.
When the recursion reaches to �v′ = �0, cell cp

�v(p),k is inserted
to S�v,p,k as the first cell from lines 19 to 21; otherwise,
S�v,p,k is constructed from the best one among all the com-
binations of S�v′,p′,k′c

p
�v(p),k from lines 22 to 29. The best

solution S∗ has to be selected from q × K last entries where
�v = {(N/q), (N/q), . . . , (N/q)}, which corresponds to lines 4
to 10.

The runtime complexity is highly related to the total number
of entries in the dynamic programming table. A straight-
forward analysis is assuming the computation of each entry
takes O(q × K) runtime complexity because each entry has
to iterate through all the q × K combinations of previous
entries with current cell. So the overall runtime complexity
can be O(((N/q))q×q2×K2) considering all the entries in the
dynamic programming table. In real implementation, it is more
efficient to store indices or pointer of previous entry and cur-
rent cell inserted in each entry such that the best solution can
be obtained from backtracking from the best last entry. Further
speedup can be achieved by avoiding computing some parts of
cost repeatedly; e.g., S�v′,p′,k′c

p
�v(p),k and S�v′,p′,k′c

p
�v(p),k+1 should

have the same cost on wirelength and MOL. As the runtime
increases exponentially with the number of cells, we apply the
algorithm to small sliding windows within each row.
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Algorithm 3 Q-Partition Interleaving
Require: A sequence of N cells and number of partitions q.
Ensure: Interleave cells to minimize wirelength, conflict and

stitch cost.
1: Partition cells into q subsequences;
2: Define S∗ as the placement with best cost, C(S∗)←∞;
3: C(S�0,p,k)← 0,∀p, k;

4: �v←
{

N
q , N

q , . . . , N
q

}
;

5: for each p ∈ 1, 2, . . . , q, k ∈ 1, 2, . . . , K do
6: S�v,p,k ← SolveDP(S�v,p,k);
7: if C(S�v,p,k) < C(S∗) then
8: S∗ ← S�v,p,k;
9: end if

10: end for
11: return S∗;
12:

13: function SOLVEDP(S�v,p,k)
14: if S�v,p,k is visited then
15: return S�v,p,k;
16: end if
17: Set S�v,p,k as visited;
18: �v′ ← g(�v, p);
19: if �v′ = �0 then
20: S�v,p,k ← {cp

1,k};
21: end if
22: for each p′ ∈ 1, 2, . . . , q, k′ ∈ 1, 2, . . . , K do
23: if �v′(p′) > 0 then
24: S�v′,p′,k′ ← SolveDP(S�v′,p′,k′ );
25: if C(S�v′,p′,k′c

p
�v(p),k) < C(S�v,p,k) then

26: S�v,p,k ← S�v′,p′,k′c
p
�v(p),k;

27: end if
28: end if
29: end for
30: return S�v,p,k;
31: end function

D. MOL Layer Color Assignment

After TPL aware placement, we obtain a placement solution
without metal-1 conflicts or MOL K4. We still need to assign
color to MOL layer. Due to the regularity of MOL features,
we can decompose the MOL layer in a row-by-row approach.
Layout decomposition for row-based layout structure has been
well studied by Tian et al. [9] and Chien et al. [14]. The region
we need to perform coloring algorithm is not the placement
row, but the interaction region between two neighboring rows,
shown in the dashed region of Fig. 14 where we consider the
top of row i and bottom of row i+ 1 together in the example.
According to the analysis for different types of patterns in
Fig. 6, we scan the MOL fingers from left to right, construct
a pattern with previous finger pair (left) and current finger pair,
and perform pattern matching to find the coloring solution. For
instance, if a pattern matches pattern B in Fig. 6, the bottom
right finger should be assigned with the same color as the
top left finger; then the top right finger should be assigned to
last available color. The MOL finger color assignment can be
solved in linear time without conflicts as long as no K4 exists.

TABLE I
BENCHMARK STATISTICS

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our algorithms are implemented in C++ and tested on an
eight-core 3.40 GHz Linux server with 32 GB RAM. The
min-cost flow problem is solved by the successive shortest
path algorithm in Boost library [44]. We use Nangate 15-nm
library [45] as our initial standard cell library. Due to different
standard cell libraries, we cannot directly use the benchmark
from [23]. Therefore, we synthesize new placement solu-
tions for OpenSPARC T1 designs using the Nangate 15-nm
library and Cadence Encounter [46]. For each design, we
choose four different utilization rates, 0.7, 0.8, 0.85, and 0.9.
Usually, the higher utilization rate, the harder to find legal
placement and coloring solutions. Table I lists all the statis-
tics of different test cases. Columns “cell#” and “net#” are
the total number of cells and the total number of nets in
each test case, respectively. Column “dmax” is the maxi-
mum displacement constraint for each placement. Column
“Kmetal-1” is the maximum number of cell precoloring solu-
tions among all standard cell types for metal-1 layer. The value
of Kmetal-1 is related to the LUT size. Related benchmarks and
executables are released at link (http://www.cerc.utexas.edu/
utda/download/TPLPlace/index.html).

During standard cell precoloring, the coloring distance for
both metal-1 and MOL layers is set to 80. For metal-1 layer
the upper bound of coloring solutions is set to 50, while for
MOL layer the upper bound is set to 10. During standard cell
placement, since Nangate 15-nm library inserts dummy poly
on the cell boundaries, there is no metal-1 conflict within a
row. Although such design can effectively provide legal single
row coloring solution, the inserted dummy pitch would cause
additional area penalty, as shown in Fig. 1(a). To better com-
pare the performances of different placement techniques, we
increase the coloring distance on metal-1 for neighboring cells
to 110.

B. Detailed Placement Algorithm Comparison

Table II analyzes the performances of the proposed BLUT
construction (see Section III-B) and different detailed place-
ment algorithms (see Section IV). Here we compare four
different design methodologies, as listed in four columns.
Column “LUT+OSR” is based on conventional LUT con-
struction and OSR placement. Here we implement the linear
dynamic programming algorithm in [23] to search for opti-
mal single row placement solution. Column “BLUT+OSR” is
extended from LUT+OSR that instead of conventional LUT
construction, the BLUT introduced in Section III-B is applied
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TABLE II
PERFORMANCE EVALUATION OF LUT CONSTRUCTION AND DETAILED PLACEMENT ALGORITHMS

here. Column “BLUT+All” employs BLUT and all the TPL
aware detailed placement techniques in [43], including all
techniques in Section IV except Section IV-C. Column “Full
Flow” employs BLUT and all the TPL aware detailed place-
ment techniques proposed in Section IV. For each design
methodology, we list four different metrics: “�WL,” “CF,”
“ST,” and “Time(s).” �WL measures the total wirelength
change after optimization. CF gives the total conflict number
on metal-1 and MOL layer. ST gives the stitch number only
on metal-1 layer as stitching is not allowed on MOL layer.
Time(s) lists the process runtime in seconds.

We first compare methodologies LUT+OSR and
BLUT+OSR, where both of them utilize the OSR placement
in [23]. The difference is that the former one employs the
conventional LUT, while the latter one uses the BLUT as
in Section III-B. We can see that, on average LUT+OSR
introduces more than 5000 conflicts, while BLUT+OSR
only reports less than ten conflicts. The reason is that under
MOL-based structure, conventional LUT may contain too
many precoloring combinations. To control the LUT size,
some precoloring solutions are predeleted in cell library.
Therefore, LUT-based method is not able to fix most of the
conflicts. Compared with conventional LUT, the proposed
BLUT enables larger solution space, and thus is more
powerful to fix cross-row conflicts.

We further compare BLUT+OSR and BLUT+All, where
BLUT+All integrates OSR, LRSR, and min-cost flow

techniques for detailed placement developed in this paper.
From Table II, we can see that both BLUT+OSR and
BLUT+All can achieve around 1% improvement in wirelength
compared with LUT+OSR. Compared with BLUT+OSR,
through some powerful techniques, such as local reordered
single row refinement (LRSR) and min-cost flow-based con-
flict removal, BLUT+All can resolve all the TPL conflicts.
It shall be noted that the runtime penalty of BLUT+All
is not significant, i.e., BLUT+All only introduces less
than 11% of runtime overhead against BLUT+OSR. The
reason is that for each single row, OSR-based method
is applied first. Only if there exist remaining conflicts,
more expensive LRSR and min-cost flow-based methods are
applied.

The Full Flow includes all the techniques in BLUT+All
and the interleaving algorithm for post refinement which fur-
ther optimizes wirelength and stitches without creating any
conflict. Compared with BLUT+All, it produces 9% fewer
stitches and further increases the average wirelength improve-
ment from 2.35% to 2.94% with similar runtime. The nature of
the interleaving algorithm for post refinement is a single row
placement algorithm, which can also serve as conflict removal
like OSR placement. However, we observe that it is not as
effective as the OSR placement, since it subjects to strict con-
straints from partitions which limit its solution space. Hence
we apply it in the post refinement stage where OSR placement
has already been applied.
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(a)

(b)

Fig. 15. Example of wirelength, stitch, and runtime tradeoffs for q-partition interleaving. Sweeping over (a) q when sliding window size is set to 8 and
(b) sliding window size when q = 3.

C. Tradeoffs in Wirelength and Stitch Refinement

The performance and runtime of q-partition interleaving in
Section IV-C are highly related to the number of partitions q
and size of sliding window. We study the relation by sweeping
q and sliding window sizes for one randomly picked row in
benchmark “top-85,” as shown in Fig. 15.

The size of sliding windows is set to 8 when sweeping
over q, which means eight standard cells will be included in
a sliding window regardless of whitespaces among them. The
overall number of cells for interleaving including dummy cells
from whitespaces is usually 2–3 times of the total standard
cells in the window, as we split whitespaces into small pieces
for interleaving. With the increase of q, cells have more free-
dom to move around and thus result in better cost including
wirelength and stitches, as shown in Fig. 15(a). It is easier for
wirelength to drop significantly when cells are able to have
large movements, while the number of stitches reduces much
slower. Sometimes, the stitch number may even increase a
little bit to achieve better wirelength. According to the analy-
sis of runtime complexity in Section IV-C, the runtime grows
exponentially with q, which is also shown in the figure.

Fig. 15(b) shows the impact of sliding window sizes on
wirelength and stitches. The smallest sliding window size in
the samples is 8, and the largest size is the total number of
standard cells in the row, i.e., 204. When the window size is
set to largest, the interleaving algorithm gives the optimal cost
in the row; otherwise, it achieves suboptimal solutions as we
divide the problem. It can be seen that the gaps of wirelength

and stitches between the suboptimal and optimal solutions are
not very large, but the runtime increases quickly. To balance
runtime and performance, we set the q to 3 and the size of
sliding window to 8.

Another factor to affect runtime is the maximum number
of pieces that each whitespace is split into. We split a whites-
pace into pieces such that each piece is wide enough to resolve
potential metal-1 conflicts between standard cells in the row.
However, whitespace pieces are regarded as dummy cells in
interleaving, which is directly correlated to the problem size. It
may result in runtime overhead if too many whitespace pieces
are generated, especially in layout with low utilization. Thus
we set an upper bound of pieces that can be generated from
each whitespace. Fig. 16 shows the relation between runtime
and maximum number of pieces for a randomly picked row
for benchmark “top” with various utilizations. The runtime
increases with the upper bounds and saturates at different sat-
urating points where the saturating points of layouts with low
utilizations come later than that with high utilizations. As a
result, layouts with low utilizations may be slower than oth-
ers with high utilizations, though they contain similar number
of standard cells. The phenomenon is still quite significant
in the runtime of “top-70” to “top-90” in Table II. We con-
trol the total number of pieces generated in each window to
be no larger than twice the amount of standard cells for bet-
ter consistency of runtime. The influences to performances
from the upper bound vary from design to design in our
experiment.
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Fig. 16. Sweeping over maximum number of pieces for each whitespace
when q = 3 and sliding window size is 8.

VI. CONCLUSION

Motivated by a large amount of cross-row TPL conflicts
from MOL layers, in this paper we have proposed a compre-
hensive study to TPL aware detailed placement toward zero
cross-row conflict. Several effective techniques, such as BLUT
construction, LRSR, min-cost flow-based conflict removal, and
q-partition interleaving for post refinement, are proposed. Our
framework is verified through a set of placement test cases
using 15-nm standard cell library.

In the future, we will try to further refine the techniques
for conflict removal. For example, the min-cost flow-based
conflict removal algorithm only supports assigning one cell
to one whitespace, which is worthwhile for further explo-
ration of assigning multiple cells into one whitespace. With
further scaling of transistor feature size and MOL layers, the
cross-row conflicts would be an emerging problem for TPL
friendly design. We believe this paper will stimulate more
future research on TPL aware standard cell design and physical
design.
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