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Abstract—Modern technologies provide wide and thick metal
layers that must be wisely used to reduce the delay of critical
interconnections. After global routing, incremental layer assign-
ment can improve the circuit timing by properly selecting critical
interconnect segments to be routed in the faster (but very limited)
wires on upper layers. Existing techniques based on net-by-net
iterative improvement may get stuck at locally-optimal solutions
depending on net ordering. Recent techniques rule out such draw-
back through the simultaneous iterative improvement of all nets,
but they unfortunately rely on objective functions that may guide
the optimization off critical paths. As opposed to all reported
techniques, which rely on simplified, overly pessimistic timing
models, this paper proposes the decoupling of incremental layer
assignment from the timing analysis and the exploitation of flow
conservation conditions so as to enable the use of an external
signoff timing engine. The novel technique was experimentally
compared with two state-of-the art works, leading to 50% less
timing violations under total negative slack metric and 35% less
timing violations under worst negative slack metric with similar
overhead in number of vias.

Index Terms—Incremental layer assignment, Lagrangian
relaxation (LR), min-cost network flow, signoff timing
engine.

I. INTRODUCTION

THE INCREASING impact of interconnect delay on the
overall circuit performance represents a bottleneck for

timing closure. The worse scaling of interconnect delay, as
compared to cell delay, is a consequence of the quadratic
increase of wire resistance per unit length [1]. Such scenario
has shifted the research spotlight toward efficient intercon-
nect synthesis and timing optimization techniques like buffer
insertion, timing-driven placement, and layer assignment.
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Modern technologies may provide twelve or more metal
layers with different widths and thicknesses [2], where upper
layers are wider and thicker than lower ones. Albeit their resis-
tance is reduced quadratically, the upper layers require more
area and therefore offer less resources for routing. This raises
the importance of incremental timing-driven layer assignment
techniques, which must properly reassign critical intercon-
nect segments to upper layers in order to improve the overall
circuit timing, no matter how global routing was performed
(either through 3-D or 2-D routers, whether timing-aware or
not) [2]–[4].

Although the choice of a proper timing engine is crucial,
previous works have relied on simplified models for intercon-
nect capacitance (lumped capacitance) and delay (Elmore’s
model). Such models are pessimistic because they ignore sec-
ond order effects (like resistive shielding), which become
prominent in the face of multiple metal layers with very
different electrical characteristics. Being overly pessimistic,
they end up hindering timing closure and resulting in over-
allocation of resources (such as vias) [5]–[7].

Albeit accurate timing engines (e.g., signoff timing analyz-
ers) are available from conventional electronic design automa-
tion (EDA) packages, they have not been exploited for layer
assignment because industrial engines (to preserve intellec-
tual property) do not report timing information for (inner) net
segments, but only for cell pins and timing endpoints. The
techniques proposed so far seem to take such opacity for a
barrier and keep relying on inaccurate built-in engines [8], [9].

Another limitation of such techniques lies in the inaccurate
objective function [4], [8], [10]. Since they minimize the sum
of net delays, which might not lead to timing improvements
in the critical paths, they further hinder timing closure.

This paper proposes a novel incremental layer assignment
technique that overcomes such limitations of previous works.
It not only handles critical and noncritical net segments simul-
taneously, but also exploits flow conservation conditions to
extract information for each net segment individually, thereby
enabling the use of an external signoff timing engine. The
main contributions of this paper are as follows.

1) A binary integer programming formulation for incre-
mental layer assignment targeting at total negative slack
(TNS) optimization while modeling each net segment
separately.

2) A cast of the binary integer programming into a
Lagrangian relaxation (LR) formulation that exploits
flow conservation conditions to decouple the layer
assignment technique from the timing analysis engine.

3) A min-cost network flow technique (to solve the LR
formulation) that independently models each net seg-
ment while capturing the impact of capacitance and slew
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variation on neighboring segments and cells. Besides, an
efficient edge-pruning methodology reduces runtime and
via count.

4) A strategy to exploit the slacks reported by a signoff
timer to obtain accurate Lagrange multipliers (LMs) for
net segments. A detailed analysis of the impact of the
timing engine accuracy in the proposed technique is also
presented.

The impact of such contributions on timing closure
was experimentally compared with two state-of-the-art tech-
niques [4], [9] for circuits derived from those available within
the ICCAD 2015 Contest infrastructure [11]. A signoff ana-
lyzer was used as a golden timing engine to evaluate the final
3-D routing solutions obtained after the application of each of
the three incremental layer assignment techniques under com-
parison. The proposed technique resulted in 50% less timing
violations (under TNS metric) while using a similar number of
vias, as compared to the best results obtained from the related
works.

The remaining of this paper is organized as follows.
Section II reviews the state-of-the-art of timing-driven layer
assignment while Section III details the adopted timing
modeling and the problem definition. Then Section IV presents
the proposed mathematical formulation for the target problem.
Section V describes the proposed technique. Section VI details
its experimental evaluation. Finally, Section VII draws the
main conclusion and points out future directions.

II. RELATED WORK

Global routing can be accomplished either by direct 3-D
routing (native layer assignment) [12], [13] or through 2-D
routing followed by a layer assignment step [14], [15].
Incremental layer assignment plays the important role of
improving global routing and it can target different objec-
tives, such as via count minimization [16], antenna allevia-
tion [8], [17], and timing optimization [4], [9], the latter being
the focus of this paper. That is why this section addresses
only related works on incremental layer assignment for timing
optimization.

Most methods addressing incremental layer assignment rely
on a 3-D routing grid that is defined by parallel routing
planes (layers), which are divided into rectangular cells, called
G-cells, as illustrated in Fig. 1(a). The boundaries between
adjacent cells on the same plane are associated with intraplane
routing tracks. Two G-cells from different but consecutive
planes are interconnected through vias. As a result, most layer
assignment techniques model the routing grid as a graph whose
vertices represent G-cells and whose edges represent the con-
nectivity between two adjacent G-cells, as shown in Fig. 1(b).
Capacities are associated with the edges (to capture routing
constraints) and net pins are associated with vertices.

Several techniques perform net-by-net iterative improve-
ment steps to accomplish the overall timing optimization.
A fast iterative heuristic [10] was proposed to minimize the
worst net delays. It relies on the notion of area quota to
mimic edge capacities. In every iteration, the area quota of
each net is kept proportional to its Manhattan wirelength.
Li et al. [18] presented an interconnect synthesis technique
for simultaneous buffer insertion and layer assignment when
targeting slew and net delay recovery. The authors extended
the classic Van Ginneken’s dynamic programming algorithm to

(a) (b)

Fig. 1. (a) 3-D global routing grid with three layers and nine G-cells each.
(b) Grid graph and 3-D routing for a 3-pin net.

accommodate new pruning strategies. The work in [19] proved
that layer assignment under timing constraints is NP-complete
and devised a polynomial time approximation scheme. The
authors proposed a fast binary search technique that queries
a dynamic programming oracle about lower and upper-bound
solutions. Later on, Hu et al. [3] proposed a new polyno-
mial algorithm to improve the theoretical complexity derived
in their previous work [19]. The authors revisited some lim-
itations of the dynamic programming oracle and proposed
a linear-time algorithm. Dong et al. [8] combined dynamic
programming and negotiation strategies to minimize the max-
imum net delay with low overhead in via count. The main
limitation of all such techniques results exactly from their net-
by-net approach, which may lead to locally-optimal solutions,
as highlighted in [4]. The very limited availability of wide
and thick wires may lead to poor timing optimization when
an inadequate net ordering is adopted. Besides, some of those
techniques assume that all segments of a given net must share
the same layer, which may induce over-allocation.

A few techniques perform all-net simultaneous optimiza-
tion. Yu et al. [4] observed the limitations of net-by-net
strategies and proposed a min-cost flow technique to simul-
taneously minimize the sum of net segment delays and via
delays. To handle via capacity constraints, the authors devised
an LR formulation that incorporated those capacity constraints
into the objective function. Therefore, the employed min-
cost flow modeling was able to handle simultaneously net
segment delay, edge capacity, and via overflow. Recently,
Liu et al. [9] revisited some of the limitations from [4] and
proposed a semidefinite programming formulation to handle
quadratic constraints, which are used to model via delay and
via capacity. Their proposed framework targets nets belong-
ing to the critical path and employs a self-adaptive algorithm
to balance the distribution of nets among different threads.
Unfortunately, the objective functions adopted in such works,
namely the sum of net delays or the maximum net delay, turns
out limiting potential improvements. Since large net delays
might not lead to a timing violation at a given timing endpoint,
those objective functions may end up inducing improvements
in paths that do not impair timing closure, as illustrated in
Fig. 2. In addition, a net-delay-driven strategy is unaware of
different setup constraints at sequential elements, which is
essential to identify paths with negative slack. Fig. 3 shows
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Fig. 2. Comparison between a noncritical (top) and a critical path (bottom).
Cells and wires are labeled with their delays. Required (r) and arrival (a) times
are indicated at timing endpoints. Note that the noncritical path has the largest
net delays, whereas the critical path has the lowest. Thus, net-delay-driven
approaches may guide optimization off critical paths.

(a) (b)

(c) (d)

Fig. 3. Net delay histograms (left) and timing endpoint slack histograms
(right) for circuit superblue16. (a) and (b) Behavior of the net-delay-driven
technique [9]. (c) and (d) Illustration of the impact of the technique proposed
in this paper.

an example of how a net-delay-driven technique may not be
effective to reduce violations. Although the net-delay-driven
technique [Fig. 3(a) and (b)] leads to a better compression of
the net delay histogram (as expected), this does not translate
into an actual compression of the negative slack histogram at
the circuit’s timing endpoints [Fig. 3(b) and (d)].

Most importantly, the main limitation of all incremental
layer assignment techniques reported so far lies in the sim-
plified timing model adopted to guide the optimization. The
mismatch between the estimated and the actual timing is likely
to hinder timing closure, as illustrated in Fig. 4. Note that the
simplified model overestimates WNS in all cases but one, the
mismatch ranging from 5% to 40%. It also overestimates TNS
in all cases, the mismatch ranging from 20% to almost 400%.
Despite the clear inadequacy of overly pessimistic engines, the
accurate signoff timing analyzers available from conventional
EDA packages were never used by any technique reported so
far. We put this down to the opacity of such analyzers, which
report timing only for cell pins and timing endpoints, but not
for inner net segments. Apparently, previous techniques took
such opacity as an insurmountable barrier to the use of signoff
timers during optimization. On the contrary, we realized that

Fig. 4. Ratio between slack values obtained from a simplified timing engine
(lumped capacitance and Elmore’s delay) and from an industrial signoff tim-
ing engine. The over-estimation is shown for two metrics: Worst Negative
Slack (WNS) and Total Negative Slack (TNS).

the key to overcoming their lack of inner observability is the
exploitation of flow conservation conditions so as to extract
inner timing information. This motivated us to decouple incre-
mental layer assignment from timing analysis and to exploit
flow conservation conditions for enabling the use of an accu-
rate signoff analyzer during optimization, as described in the
next section.

III. PROBLEM DEFINITION

This section discusses the required background and presents
the problem definition. First, Sections III-A and III-B detail
the adopted routing grid and timing modeling. Finally,
Section III-C defines the target problem tackled in this paper.

A. Routing Grid Modeling

The layer assignment problem is usually defined over a 3-D
routing grid, as already illustrated in Fig. 1. The routing grid
can be modeled as a graph G = (V, E), where each vertex
represents a G-cell and each edge represents the connectivity
between two adjacent G-cells. The set of edges is a parti-
tion E = Ew + Ev, where Ew is the set of edges induced
by the boundaries between G-cells in the same plane and
Ev is the set of edges induced by vias. Each edge in Ew

has a capacity that represents the number of detailed routing
tracks allowed to pass through that edge. Therefore, assuming
an initial 3-D global routing solution, the incremental layer
assignment problem can be stated as follows: given a set S of
net segment and a set L of routing layers, reassign the seg-
ment layers in order to optimize some objective (for instance,
minimize the number of vias [16] or the number of timing vio-
lations). This paper focuses on incremental layer assignment
for reducing timing violations.

B. Timing Modeling

Most related layer assignment works are net-delay-driven
and focus on the delay of the slowest nets. Nevertheless, these
nets might not always represent hurdles for satisfying timing
constraints, thereby not translating into improvements in criti-
cal paths. To evaluate the circuit performance and assess how
far from the target frequency the circuit is, proper modeling
of timing and adequate tracking of violations are required.



LIVRAMENTO et al.: INCREMENTAL LAYER ASSIGNMENT DRIVEN BY AN EXTERNAL SIGNOFF TIMING ENGINE 1129

TABLE I
MAIN NOTATION

A sequential circuit can be represented by a set C of stan-
dard cells, a set T E of timing endpoints, and a set T S of
timing startpoints. The set T E includes both circuit output
pads and register input pins, while the set T S includes both
circuit input pads and register output pins. There is also a set
N of nets representing the interconnections between these ele-
ments. Circuit arrival times are measured at input/output pins
of each cell cj ∈ C and at each j ∈ (T E ∪ T S). The arrival
time, denoted as aj, corresponds to the latest time when a
signal transition reaches a given timing point. The required
time, denoted as rj, corresponds to the latest time when the
signal transition must reach each j ∈ T E to ensure the target
clock frequency [20]. To evaluate how far a design is from
timing closure, slacks are tracked at circuit timing endpoints
as: slkj = rj − aj,∀j ∈ T E . Timing optimization techniques,
like timing-driven placement [21] and gate sizing [22], typi-
cally employ the TNS metric to capture all timing endpoints
with timing violations as follows:

∑
j∈T E min(0, slkj).

C. Target Problem

Based on the previous discussions on routing grid and tim-
ing modeling, the proposed timing-driven layer assignment
problem can be defined as follows. Given an initial 3-D rout-
ing solution, a set of net segments, and a routing grid with
edge capacities for each layer, reassign the layers of a subset
of segments so as to minimize the circuit TNS while satisfying
edge capacity constraints.

IV. PROPOSED MATHEMATICAL FORMULATION

This section discusses the proposed mathematical formula-
tion for the target problem introduced in the previous section.
Section IV-A presents the proposed binary integer program-
ming formulation for incremental layer assignment. Next,
Section IV-B shows how we cast that problem into an LR
formulation which is decoupled from timing analysis. Finally,
Section IV-C details how to obtain an LM for each net
segment.

For convenience, Table I presents the main notation adopted
in the proposed problem formulation.

A. Proposed Binary Integer Programming Formulation

In order to formulate incremental layer assignment as a
minimization problem, let us first define negative slack as

slk′j = min(0, slkj) to ensure that only nonpositive slack val-
ues are accounted for in the objective function. Therefore the
adopted objective function, defined in (1), aims to minimize
the TNS. The inequality constraints (2) and (3) are introduced
to model the negative slack variable slk′j used in the objective
function

Minimize :−
∑

j∈T E
slk′j (1)

Subject to : slk′j ≤ 0, ∀j ∈ T E (2)

: slk′j ≤ rj − aj, ∀j ∈ T E . (3)

To obtain the arrival times at timing endpoints, a proper
timing modeling is required for cells and interconnects. Let us
first introduce the adopted modeling before presenting arrival
time definitions. The cell delay and slew for each input/output
pin-pair is represented through a nonlinear delay model, which
is taken from a standard cell library. Therefore, the delay of
a given cell cj ∈ C from an input pin i to its output pin is a
function of the cell’s input slew (σi) and downstream capac-
itance (Cdown

j ), being computed as dc
i,j = δ(σi, Cdown

j ), where
δ(σi, Cdown

j ) is a function whose value is obtained by a query
into the cell lookup table. The cell output slew is computed
similarly.

Interconnections are modeled as RC trees, wherein each
net segment is defined as a π -model. The delay of a given
net segment sj ∈ S assigned to a layer lq ∈ L is denoted
as ds

j (q). Similar to net segments, each via is modeled as
an RC π -model. In this way, the via delay between two
net segments si, sj ∈ S at layers lp, lq ∈ L is computed as
dv

i,j(p, q) = ∑q−1
k=p dv(k), where p < q and dv(k) corresponds

to the via delay between two consecutive layers lk and lk+1.
Before introducing the arrival time modeling, let us define
in (4) a binary decision variable for each net segment. The
constraint (5) ensures that each segment is assigned to one
and only one layer

αj,q =
{

1, if sj ∈ S is assigned to lq ∈ L
0, otherwise (4)
∑

lq∈L
αj,q = 1, ∀sj ∈ S. (5)

Let Ic
i denote the set of indices to each input pin of cj ∈ C.

Therefore, the arrival time of cell cj can be modeled as in (6).
Observe that dv

i,j captures the delay of vias connecting the cell
input pin i to its corresponding net segment. The delay of via
dv

i,j depends on the layer assigned to the segment connected
to the input pin i of cj and the layer of the input pin itself.
Therefore, dv

i,j serves as a shorthand notation for (7). For sim-
plicity, this equation assumes that the cell pin is routed in the
first layer

ai + dv
i,j + dc

i,j ≤ aj, ∀i ∈ Ic
j , and ∀cj ∈ C (6)

dv
i,j =

∑

lp∈L
αi,p ·

p−1∑

k=1

dv(k). (7)

Typically, timing optimization techniques model the net
arrival times only at source and sink pins. Unfortunately,
such kind of net modeling is less flexible and therefore
more appropriate for steps before global routing, when net
segment information is not yet available [7], [22], [23].
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Fig. 5. Circuit example with cell and net segment arrival time modeling for
horizontal three layers. Each cell and segment is labeled with an index i and
an arrival time ai. Observe that the arrival time at segment s2 is used in the
inequalities that model the arrival times at segments s3 and s4.

Differently, we propose to split the net arrival times into a finer
segment granularity, as the constraint shown in (8), where Is

j
denotes the set containing the index to either a segment or a
pin connected to the input of sj ∈ S . Observe that dv

i,j cap-
tures the delay of vias connecting two consecutive segments
si and sj and depends on their assigned layers. Therefore, dv

i,j
serves as a shorthand notation for (9). The delay of segment
ds

j depends on the layer assigned to segment sj and thus serves
as a shorthand notation for (10). Fig. 5 gives a small example
of cell and segment arrival time modeling

ai + dv
i,j + ds

j ≤ aj, ∀i ∈ Is
j , and ∀sj ∈ S (8)

dv
i,j =

∑

lp∈L

∑

lq∈L
αi,p · αj,q ·

max(p,q)−1∑

k=min(p,q)

dv(k) (9)

ds
j =

∑

lq∈L
ds

j (q) · αj,q. (10)

Finally, the constraint (11) ensures that the edge routing
capacity between two adjacent G-cells in the same layer is
not exceeded, where Rk

i denotes the set of indices to each net
segment routed through the edge ei on layer lq

∑

j∈Rq
i

αj,q ≤ ce
i,q, ∀ei ∈ Ew, and ∀lq ∈ L. (11)

B. Proposed Lagrangian Relaxation Formulation

As highlighted in [22], incorporating timing analysis
modeling directly into the optimization engine is not adequate
due to the complexity of timing models adopted by modern
timing engines. Therefore, we propose an LR reformulation
for the problem introduced in the previous section. It decou-
ples the optimization engine from the timing analysis tool. LR
is a well-known technique that approximates the optimal solu-
tion of a given problem by removing the hard constraints and
incorporating them into the cost function, as penalty terms,
weighted by coefficients known as LMs. The proposed LR
formulation has two key differences with respect to well-
known formulations adopted by gate sizing techniques found
in [7] and [22]–[24].

1) We explicitly model the arrival times at each net seg-
ment, resulting in a finer granularity as compared to the
conventional modeling.

2) We show how to take advantage of flow conservation
conditions to obtain LMs for each net segment individ-
ually, thereby providing a better guidance toward layer
reassignment.

Therefore, we propose to relax the constraints that model the
circuit timing information, i.e., (2), (3), (6), and (8), and reflect
them into the objective function. The inequalities modeling
negative slacks at timing endpoints are accompanied by non-
negative LMs denoted as λ′j and λj. The remaining inequalities
are multiplied by non-negative LMs denoted as λc

i,j and λs
j for

cell timing arcs and net segments, respectively. This leads to
the following relaxed objective function:

Lλ : −
∑

j∈T E
slk′j +

∑

j∈T E
λ′jslk′j +

∑

j∈T E
λj

(
slk′j − rj + aj

)

+
∑

cj∈C

⎛

⎜
⎝
∑

i∈Ic
j

λc
i,j

(
ai + dv

i,j + dc
i,j − aj

)
⎞

⎟
⎠

+
∑

sj∈S

⎛

⎜
⎝
∑

i∈Is
j

λs
j

(
ai + dv

i,j + ds
j − aj

)
⎞

⎟
⎠. (12)

For the subcircuit example illustrated in Fig. 5, the
Lagrangian function obtained in (12) would be stated as
follows:

Lλ: −slk′6 − slk′7 + λ′6slk′6 + λ′7slk′7
+ λ6

(
slk′6 − r6 + a6

)+ λ7
(
slk′7 − r7 + a7

)

+ λc
0,1

(
a0 + dc

0,1 − a1
)+ λs

2

(
a1 + dv

1,2 + ds
2 − a2

)

+ λs
3

(
a2 + ds

3 − a3
)+ λs

4

(
a2 + dv

2,4 + ds
4 − a4

)

+ λs
5

(
a4 + ds

5 − a5
)+ λc

6

(
a3 + dv

3,6 − a6
)

+ λc
7

(
a5 + dv

5,7 − a7
)
. (13)

Since computing arrival times and slacks inside the opti-
mization engine is runtime extensive and not appropriate, we
can rely on some flow conditions to eliminate the negative
slack terms slk′j if, λ′j+λj = 1,∀j ∈ T E . Besides, the required
times can also be removed from the objective function because
they are constant during optimization [22]. We can also elim-
inate cell and segment arrival times by assuming the flow
conservation derived from Karush–Kuhn–Tucker conditions.
Flow conservation implies that the sum of input LMs must
be equal to the sum of output LMs. Therefore, cell arrival
times are canceled out if

∑
i∈Ic

j
λc

i,j =
∑

j∈Ic
k
λc

j,k. Let Os
j

denote the set containing the indices to segments or pins con-
nected to output of sj ∈ S . Thus, segment arrival times are
also canceled out if λs

j =
∑

k∈Os
j
λk. These flow conservation

conditions can be obtained by setting to zero the partial deriva-
tives of Lλ with respect to each arrival time constraint [25].
Equations (14)–(16) show how to obtain some of the flow
conditions for the Lagrangian function in (13)

∂Lλ

∂a1
= λs

2 − λc
0,1 = 0 =⇒ λc

0,1 = λs
2 (14)

∂Lλ

∂a2
= λs

3 + λs
4 − λs

2 = 0 =⇒ λs
2 = λs

3 + λs
4 (15)

...
∂Lλ

∂a7
= λ7 − λc

7 = 0 =⇒ λc
7 = λ7. (16)
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Fig. 6. Obtaining net segment LMs from sink pin LMs. LMs are labeled as
λ6 and λ7 to better illustrate the flow conditions.

These simplifications lead to the following objective func-
tion to be minimized:

Lλ :
∑

cj∈C

⎛

⎜
⎝
∑

i∈Ic
j

λc
i,j

(
dv

i,j + dc
i,j

)
⎞

⎟
⎠+

∑

sj∈S

⎛

⎜
⎝
∑

i∈Is
j

λs
j

(
dv

i,j + ds
j

)
⎞

⎟
⎠.

(17)

From the simplified Lagrangian function in (17), we can
conclude that, by minimizing the weighted summation of
cell/segment delays and LMs, the TNS metric defined in the
original objective function (1) is also minimized. Such equa-
tion can be minimized using data extracted from the cell
library and .lef library [11], without having to compute arrival
times and slacks.

The associated Lagrangian relaxed subproblem (LRS) aims
to minimize the simplified Lagrangian function Lλ by assign-
ing a layer for each net segment, assuming a set of fixed LMs,
as defined in (18). Observe that, although we relax the timing
modeling constraints, the LRS is still subject to the remaining
constraints, as shown in (19). From the convex optimization
theory it is known that, for any fixed set of LMs, the optimal
value of LRS yields a lower bound to the optimal value of the
original problem. Since that lower bound depends on the set of
LMs, the Lagrange dual problem (LDP) aims to maximize the
lower bound from LRS by updating the LMs accordingly [25],
as defined in (20), where Qλ represents the optimal value
from LRS. Therefore, the LRS and LDP problems are solved
iteratively

LRS : min
αj,q, ∀sj∈S

Lλ (18)

: s.t. (4), (5), and (11) (19)

LDP : max
λ≥0

Qλ. (20)

C. Obtaining Lagrange Multipliers for Net Segments

During LDP resolution, we rely on slack values computed
by the timing analysis engine to update the LMs (as will be
detailed in Section V-C). Although industrial timing analyzers
report slack values for cell pins and for timing endpoints [22],
timing information for inner net segments is not available to
protect their intellectual property algorithms and avoid reverse
engineering [26]. However, we show how to take advantage of
the flow conservation conditions (detailed in the previous sec-
tion) to obtain an LM for each net segment, even without slack
information. Since interconnections are modeled as RC trees,
each segment multiplier can be obtained by back-propagating
the LMS from the net sinks to the net source, as illustrated in
Fig. 6. For example, the multiplier for segment s2 equals to

Fig. 7. Min-cost network flow example. The min-cost solution assigns s3 to
l3 and s4 to l5.

the sum λ6+ λ7, as formalized in the flow conditions derived
in (15). Also observe that the segment s2 receives a larger LM
(compared to s4, for instance) due to its impact on both timing
paths. Therefore, the optimization engine can take advantage
of those larger multipliers to wisely select their layers and
reduce timing violations.

V. PROPOSED TECHNIQUE

This section presents the proposed iterative technique to
solve the problem formulation from the previous section.
First, Section V-A discusses how to map the proposed
instance of LRS problem into a min-cost network flow
model and Section V-B details the adopted cost linearization.
Finally, Section V-C overviews the proposed framework and
Section V-D details the network flow graph generation.

A. Min-Cost Network Flow Model

Solving the LRS problem as a general integer program-
ming problem may result in prohibitive runtime, especially
for large instances. To avoid this overhead, we show that
LRS can be interpreted as a transportation problem and then
efficiently solved using network flow algorithms. The trans-
portation problem is a classical problem in the network flow
theory to which efficient algorithms with theoretical guaran-
tees are available in [27]. In the case of the LRS problem
defined in (18) and (19), a single source and a single terminal
vertex represent a factory and a warehouse, respectively, while
segments and layers can be interpreted as roads with costs and
capacities. The impact of assigning a segment to a layer can
be interpreted as the transportation cost. Finally, the number of
candidate segments for reassignment corresponds to the total
flow to be transported from the source to the terminal vertex.
Fig. 7 gives a min-cost network flow example for layer assign-
ment, where each edge has a lower bound flow, an upper bound
flow, and a cost. This example depicts the min-cost flow model
for the segments s3 and s4 from Fig. 6. Notice that, since s4 is
more critical than s3, it will be assigned to layer 5 to reduce
its delay.

Considering the LRS problem from Section IV-B, the binary
variable (4) is captured through the uni-modularity property
inherent from this class of problems [27]. The constraint (5)
can be accounted for by restricting to 1 both lower and upper
bounds on the flow through the edges connecting the source
vertex to the segment vertices. Upper bounds on the edges
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connecting layers to the terminal vertex capture the capacity
constraint (11). Unfortunately, the cost function (17) presents
a few nonlinearities that prevent from modeling the cost as
a linear function and use efficient state-of-the-art algorithms
like network simplex, cost-scaling, and cycle-canceling [28].
Therefore, the next section presents several adopted strategies
for cost linearization.

B. Cost Linearization

The delay of a segment sj on a layer lq is computed (using
Elmore’s delay) as ds

j (q) = Rs
j (q) · (Cs

j (q)/2+ Cdown
j ), where

Rs
j (q) and Cs

j (q) represent the segment resistance and capac-
itance on layer lq, while Cdown

j refers to sj’s downstream
capacitance. The via delay between two consecutive layers
lq and lq+1 is computed, similarly to the segment delay,
as dv(q) = Rv(q) · (Cv(q)/2 + Cdown

j )), where Rv(q) and
Cv(q) refer to the via resistance and capacitance, respectively,
while Cdown

j captures its downstream capacitance. Notably, the
impact of reassigning the layer of a given segment sj to lq does
not restrict to the segment itself. In fact, besides sj itself, we
should also take into account the net driver cell, the upstream
segments of sj, and the downstream net sink cells. Therefore,
the impact of reassigning the layer of a segment can be divided
in four parts.

1) Current sj’s delay and the corresponding via delay from
previous segment si to sj itself. Computing the via
delay between si and sj requires a binary multiplica-
tion [see (9)], which introduces a nonlinearity in the
cost function. Therefore, we employ the following lin-
earization strategy: αi,p · αj,q ≈ α′i,p · αj,q, where α′i,p
corresponds to the layer assigned to segment si in the
previous iteration. This approximation is reasonable as
the proposed technique takes advantage of the iterative
nature of an LR-based optimization. Especially in later
iterations, when the problem starts to converge, fewer
reassignments are expected to occur and therefore the
approximation discrepancy also tends to be reduced.
Therefore, the cost of a segment sj considering its delay
and the via delay from its previous segment on layer
lp is computed as in (21), where lq corresponds to sj’s
layer

λs
j ·
⎛

⎝ds
j (q)+

q−1∑

k=p

dv(k)

⎞

⎠, where i ∈ Is
j . (21)

2) The downstream capacitance of the net driver cell is
affected by the segment capacitance variation, which
reacts on cell’s delay. Assume that the reassignment of
sj from layer lq to lq+1 causes a capacitance variation
�Cj = Cs

j (q+1)−Cs
j (q). Therefore, we can use a first-

order approximation to estimate the impact on driver’s
delay, as shown in (22), where the partial derivative
term reflects the cell delay linearization with respect to
its downstream capacitance and dc′

h,i corresponds to the
cell’s delay in the previous iteration

λc
h,i ·

(

dc′
h,i +�Cj ·

∂dc
h,i

∂Cdown
i

)

, ∀h ∈ Ic
i . (22)

3) The downstream capacitances of upstream segments are
also affected by the segment capacitance variation �Cj.

Fig. 8. Overview of the proposed framework.

Let ϒj be the set of indices to sj’s upstream segments.
Therefore, (23) accounts for the impact on the delay
of each upstream segment, where lp corresponds to si’s
layer

λs
i · Rs

i (p) ·
(

Cdown
i +�Cj

)
, ∀i ∈ ϒj. (23)

4) The reassignment of segment sj also causes a net slew
variation, which in turn impacts on the delay of the sink
cells belonging to the downstream path of sj. Assuming
that the reassignment of segment sj from layer lq to lq+1
causes a slew variation �σj = σ s

j (q + 1) − σ s
j (q), we

can also use a first-order approximation to compute the
delay of each sink, as in (24). In this equation, the par-
tial derivative term reflects the cell delay linearization
with respect to its input slew and Ds

j denotes the set of
indices to downstream sink pins. To compute the slew
of each segment on the path from sj to the net sinks, we
adopt the PERI model and Bakoglu’s metric (step slew
computation) [29], as detailed in the following equation:

λc
j,k ·

(

dc′
j,k +�σj ·

∂dc
j,k

∂σj

)

, ∀k ∈ Ds
j (24)

σ s
j (q) =

√

σ 2
i +

(
Rs

j (q) · Cdown
j · ln 9

)2
. (25)

Equations (21)–(25) are then used to compute the reas-
signment cost of each segment. The next section details
the proposed min-cost flow framework.

C. Proposed Framework

Fig. 8 gives an overview of the proposed incremental layer
assignment framework. It receives as inputs a 3-D global rout-
ing solution. The incremental layer assignment problem is
solved in three major steps.

1) Update Timing step first writes a parasitics file in
the standard parasitic exchange format (SPEF) con-
taining the distributed RC network information for the
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circuit. Then the Call Timer invokes the external timing
engine through a tcl-socket interface (similar to the one
described in [6]), which returns a report containing the
slacks for each timing point.

2) Solve LDP consists of two substeps. The first one
updates LMs so as to increase or decrease their val-
ues proportionally to the severity of timing violations
measured from the reported slacks. The second substep
distributes LMs so as to comply with flow conserva-
tion conditions. Given the vector �λ of LMs and the
vector �slk of slacks computed during the timing anal-
ysis, Algorithm 1 describes how LMs are updated and
distributed. The first substep (encapsulated in function
UPDATE_LMs) relies on the subgradient method [22]
to update LMs for each circuit pin, including cell pins
and timing endpoints. The LMs are updated proportion-
ally to the ratio of pin slack to the worst negative slack
(WNS) by visiting each timing endpoint (lines 4–6) and
every cell timing arc (lines 7–11). Our multiplier updat-
ing approach is straightforward and similar to the one
adopted in [30]. The major difference is that we employ
the WNS as a normalization factor, instead of the tar-
get clock period. The second substep (encapsulated in
function DISTRIBUTE_LMs) proportionally distributes
the sum of the output LMs of every cell to each of
its inputs. The distribution is accomplished by visiting
cells in reverse topological order (lines 13–18), where
Oc

j denotes the set of indices to cells or TEs that are con-
nected to the output of cj. Finally, LMs are obtained for
each net segment (lines 19–23), as already exemplified
in Fig. 6.

3) After defining the LMs for each net segment, the
Solve LRS step aims to solve the problem stated
in (18) and (19). First, it selects critical and noncrit-
ical net segments and their respective target layers to
generate the network flow graph, as it will be detailed
in Section V-D. Then the Solve min-cost network flow
step invokes the network flow solver. Among several
algorithms available in [27], we employed a cancel-and-
tighten implementation of cycle-canceling algorithm,
which is very efficient and stable in practice and
has a strongly polynomial runtime complexity [28].
Finally, Reassign segment layers accomplishes the opti-
mal assignment found by the min-cost flow solver.

The three explained steps are repeated until predefined con-
vergence criteria is reached.

D. Network Flow Graph Generation

For a given global routing, alternative network graphs could
be built, depending on which segments are considered tim-
ing critical or not. That is why the proposed network flow
graph generation relies on two input parameters, num_TE and
α, which provide the criteria to select critical and noncritical
segments. The first parameter specifies the number of tim-
ing endpoints (output pads and inputs of sequential elements)
with negative slacks to be used for candidate net selection; the
second parameter specifies a threshold factor to help defining
whether a net segment should be considered critical or not. The
generation of a network graph is performed in three phases.

1) Selection of critical segments.
2) Insertion of the vertices and edges associated with

critical segments (represented by set 
c).

Algorithm 1: Solve LDP (�λ, �slk)
1 UPDATE_LMs(�λ, �slk);
2 DISTRIBUTE_LMs(�λ, �slk);
3 Function UPDATE_LMs(�λ, �slk)
4 foreach j ∈ T E do

5 λj ← λj × (1+ slkj
WNS );

6 end
7 foreach cj ∈ C do
8 foreach i ∈ Ic

j do

9 λc
i,j ← λc

i,j × (1+ slki
WNS );

10 end
11 end
12 Function DISTRIBUTE_LMs(�λ, �slk)
13 foreach cj ∈ C do
14 μj ←

∑

i∈Ic
j

λc
i,j;

15 foreach i ∈ Ic
j do

16 λc
i,j ←

λc
i,j
μj
× ∑

k∈Oc
j

λc
j,k ;

17 end
18 end
19 foreach n ∈N do
20 foreach sj ∈ n in reverse topological order do
21 λs

j ←
∑

k∈Os
j

λs
k ;

22 end
23 end

3) Insertion of vertices and edges associated with noncrit-
ical segments (represented by set 
nc).

Algorithm 2 describes the building of the network flow
graph N(V, E) induced by the parameters num_TE and α. The
algorithm first creates source and terminal vertices, properly
initializes the sets in which critical and noncritical segments
will be included, and selects the num_TE timing endpoints
with worst slack (lines 1–3), before launching the three-phase
procedure. Phase 1 (lines 4–14) selects critical segments by
traversing the circuit in reverse topological order, starting
at each selected timing endpoint until a timing startpoint is
reached. For each visited net, the maximum among the LMs
of all its segments (λs

max) is determined. The algorithm selects
as critical segments (line 10) all segments of a given net whose
LMs are higher than or equal to the product of the threshold
factor by the maximum LM.

Phase 2 (lines 15–28) inserts in the graph the vertices (vj)
representing the critical segments selected by phase 1, the ver-
tices (vq) representing candidate layers, and the edges connect-
ing them (vj, vq). After a vertex vj is inserted for each critical
segment (line 16), candidate layers are selected for it such that
all layers below the current one are pruned (line 18). Since the
delays of critical segments are expected to be reduced and the
benefits from promoting them to upper layers are higher than
assigning them to lower layers (because resistance decreases
quadratically), the pruning of lower layers reduces the number
of edges in the graph without compromising timing improve-
ments. Then the algorithm inserts as many vertices vq as the
number of candidate layers (line 20) and as many edges (vj, vq)

(line 21). Next, the algorithm identifies (at line 23) the set of
segments overlapping with the current segment sj at a given
layer lq. The algorithm selects as noncritical segments all ver-
tices in that set whose LMs are less than the product of the
threshold factor by the LM of the current segment.

Phase 3 (lines 29–39) inserts in the graph the vertices (vj)
representing the noncritical segments selected during phase 2,
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Algorithm 2: Generate Network Flow Graph (num_TE, α)
1 Insert the source vertex vsrc and terminal vertex vter in V;
2 
c ← ∅; 
nc ← ∅;
3 B← num_TE timing endpoints with worst slacks;
4 foreach β ∈ B do
5 pin← β

6 while pin �= timing_startpoint do
7 net← net connected to pin;
8 λs

max ← highest LM for all segments in the set net;
9 foreach segment sj in the set net do

10 if λs
j ≥ (α × λs

max) then insert segment sj in 
c;
11 end
12 pin← input pin of net driver cell with worst slack;
13 end
14 end
15 foreach critical segment sj ∈ 
c do
16 Insert vertex vj in V;
17 Insert edge (vj, vsrc) in E with cost=0 and required flow=1;
18 foreach layer q = sj’s current layer to |L| do
19 κ ← cost of sj when assigned to lq based on (21) to (24);
20 Insert vertex vq in V;
21 Insert edge (vj, vq) in E with cost κ;
22 Insert edge (vq, vter) in E with cost=0 and capacity=ce

j,q;
23 O← segments overlapping with sj at lq;
24 foreach segment si in the set O do
25 if λs

i < (α × λs
j ) then insert segment si in 
nc ;

26 end
27 end
28 end
29 foreach non-critical segment sj ∈ 
nc do
30 Insert vertex vj in V;
31 Insert edge (vj, vsrc) in E with cost=0 and required flow=1;
32 foreach layer q = 1 to sj’s current layer do
33 κ ← cost of sj when assigned to lq based on (21) to (24);
34 if assigning sj to lq does not introduce slew violation then
35 Insert edge (vj, vq) in E with cost=κ;
36 Insert edge (vq, vter) in E cost=0 and capacity=ce

j,q;
37 end
38 end
39 end
40 set supply of vsrc = |
c| + |
nc|;
41 set demand of vter = −(|
c| + |
nc|);
42 return N(V, E);

the vertices (vq) representing candidate layers, and the edges
connecting them (vj, vq). After a vertex vj is inserted for each
noncritical segment (line 30), candidate layers are selected
for it such that all layers above the current one are pruned
(line 32). Since noncritical segments might release their lay-
ers for critical segments, the pruning of upper layers precludes
them to use these scarce resources without compromising
timing improvements. Besides, candidate layers that would
introduce slew violation are also pruned (line 34). Finally, sup-
ply and demand attributes are assigned to source and terminal
vertices, respectively (lines 40 and 41).

Albeit no guarantee can be provided to completely rule out
the risk for layer oscillation of timing-critical segments from
one iteration to another, the proposed technique relies on the
following feature to avoid oscillation: the selection of noncrit-
ical candidate segments (Algorithm 2, line 25) is based on the
scaled LMs. In other words, a segment is selected as a non-
critical candidate in a given iteration if its LM is less than the
scaled multiplier of the critical segment. Therefore, if a critical
segment becomes noncritical from one iteration to another, it
is likely that its new LM value is still sufficiently high so as
to prevent it from being selected as a noncritical candidate.

Note that the proposed approach, being an incremental opti-
mization, never lets a segment unassigned, because a segment
that is not reassigned is kept preassigned according to the
initial legal solution used as a starting point.

VI. EXPERIMENTAL RESULTS

This section presents the experimental evaluation of the
proposed technique. The algorithms were implemented in C++
and the min-cost network flow instances were solved using the
LEMON library [31].

Section VI-A details the experimental infrastructure.
Section VI-B compares the proposed technique with two state-
of-the-art timing-driven incremental layer assignment tech-
niques [4], [9] under an industrial timer, while Section VI-C
presents an experimental comparison under a simplified timer.
Then Section VI-D puts the results into a different perspective
to analyze the impact of the timing engine accuracy to guide
the optimization. Section VI-E shows how to exploit a hybrid
timer to achieve a good tradeoff between runtime and qual-
ity. Finally, Section VI-F provides an insightful experimental
analysis of the algorithmic decisions.

A. Infrastructure

Due to the lack of public domain experimental infras-
tructures on timing-driven layer assignment, we adapted the
ICCAD 2015 Incremental Timing-Driven Contest infrastruc-
ture [11]. The ICCAD 2015 Contest infrastructure contains 8
circuits with sizes from 768K to 1.93M cells and a nonlinear
delay model timing library. That infrastructure was developed
considering the Free PDK 45 nm technology library file and
unlike the popular ISPD 2008 global routing benchmarks, pro-
vides detailed information on cell timing (Liberty format) and
circuit timing constraints (synopsys design constraints (SDC)
format). This makes the ICCAD 2015 benchmarks appropriate
to comparatively evaluate techniques targeting the reduction of
timing violations.

We adopted 9×9 circuit row-height as the size of a G-cell,
which is exactly the same used to compute the placement den-
sity. We used the ten metal layers provided in the adopted Free
PDK 45 nm library. To compute the number of detailed routing
tracks available for each layer, we relied on the metal pitches
reported in that library, which also provides resistance and
capacitance information for metal layers and vias. After the
default grid capacities were set, we adjusted them to account
for macro blocks, which are routed in the first four metal
layers. The global router NCTU-GR [15] was invoked to gen-
erate the initial 2-D routing, while the layer assignment was
obtained with the tool NVM [16]. All circuits were routed
without any edge capacity overflows. It is worth mentioning
that any technique could be used to obtain the initial 3-D
routing solution such as [12] and [13].

For all experiments except those reported in Section VI-C,
the industrial signoff timer Synopsys PrimeTime, version
L-2016.06, was used as golden engine to evaluate the final
3-D routing solutions obtained by the techniques under com-
parison. To invoke the industrial timing engine, four industrial
format files were used.

1) Verilog containing the circuit description.
2) SDC detailing the timing constraints.
3) Liberty library describing the cell timing information.
4) SPEF file containing the distributed RC networks.

B. Comparison Under Industrial Timer

TILA [4] and CPLA [9] are the most recent net-delay-driven
approaches and they have the same goal as ours: to improve
timing closure. That is why they were selected for a joint com-
parative evaluation with the proposed technique. The distinct
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TABLE II
EXPERIMENTAL RESULTS EVALUATED UNDER AN INDUSTRIAL TIMING ENGINE. FOR THE RUNTIME OF THE PROPOSED TECHNIQUE, WE ALSO

REPORTED, BETWEEN PARENTHESIS, HOW MUCH OF THE RUNTIME IS TAKEN BY THE INDUSTRIAL TIMING ANALYZER

objective functions of the techniques under comparison should
be seen as different drivers toward the same ultimate goal. The
simpler objective functions employed by TILA and CPLA
(i.e., the sum of net segment delay and via delay) actually
drive optimization toward better timing. However, we claim
that they miss opportunities to reduce the number of viola-
tions. We rely on a golden signoff timing engine to provide
evidences for supporting our claim. Although the compared
techniques solve distinct instances of (essentially) the same
general optimization problem, the direct comparison between
them allows us to assess to which extent each instance leads
to inferior or superior solutions with respect to the ultimate
goal of reaching timing closure.

The binaries of TILA and CPLA were obtained with their
authors. The experiments were performed on a workstation
with a 3.2 GHz Intel i5 CPU with 32GB RAM. To run our
technique, we set the parameters num_TE = 20, α = 0.001
for Algorithm 2 and we adopt 8 as the number of iterations of
our technique’s main loop (Fig. 8). The initial values for all
the LMs were set to 1. We also set Synopsys PrimeTime as the
timing engine to be iteratively invoked within our technique.

Table II displays the overall circuit characteristics and
results. For each circuit, four distinct solutions were evaluated
under each metric and labeled as follows. Initial corresponds to
the initial solutions generated with NCTU-GR and NVM tools.
TILA [4] and CPLA [9] correspond to the results from the
net-delay-driven techniques. Ours reports the results obtained
by the proposed technique. Columns 3–5 show the reports
from the signoff timer for the following timing metrics: WNS,
TNS, and number of timing endpoints with negative slack.
Column 6 reports the number of vias while column 7 shows
the number of vias overflow computed according to the metric
detailed in [16]. Column 8 displays the runtime in minutes.
The last column reports the percentage of critical and noncrit-
ical nets selected for each technique for reassignment. Finally,
the two bottom rows detail, for each metric, the average reduc-
tion obtained by our technique when compared to TILA and
CPLA.

The results concerning TNS and WNS metrics reveal that
the proposed technique leads to around 50% and 35% less
timing violations than the two related techniques. As a conse-
quence, a reduction of roughly 23% in the number of timing
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endpoints with violations is observed. Besides the timing vio-
lation reductions, the proposed technique requires 2.4% less
vias than TILA and roughly the same number of vias as CPLA.
In addition, the number of via overflows is 2.8% and 7.4%
smaller than TILA and CPLA, respectively. The small over-
head in the number of vias required by the proposed technique
is an important strength since vias degrade both manufac-
turing yield and circuit timing [17]. Therefore, the obtained
timing reduction with smaller via penalties puts in evidence
that, while focusing on the slowest nets, net-delay-driven tech-
niques might overlook several net segments that truly affect
the circuit critical paths. This has two main causes.

1) A timing endpoint with negative slack may not result
from a single very slow net, but from a chain of several
slow nets and cells.

2) Different setup constraints at different sequential ele-
ments have also an important impact on circuit slacks,
which is overlooked by a net-delay-driven strategy.

Analyzing the runtime column, one can observe that TILA
is roughly 8 times faster than both CPLA and the proposed
technique. The longer runtime taken by the CPLA technique
was due to the semidefine programming solver, which is much
slower than a state-of-the-art network flow solver (employed in
TILA) [9]. On the other hand, the longer runtime taken by the
proposed technique was due to the iterative invocation of the
signoff timing engine to obtain up-to-date timing reports. As
a consequence, the timing analysis takes around 81.7% of the
total runtime of the proposed technique. The average runtime
for updating the LMs corresponds to 3.9% of the total runtime
while the LRS takes 8.5% (including the min-cost flow solver
runtime). The remaining 5.9% of the runtime is consumed by
parsing and initialization routines. The longer runtime taken by
the proposed technique when compared to TILA can be seen as
a price to pay to get accurate timing reports to better guide the
net segment reassignments. Nevertheless, the runtime seems
reasonable since the proposed technique can optimize circuits
with up to 2M nets in less than 40 min.

The last column reports the percentage of critical and non-
critical nets selected as candidates for reassignment at each
iteration. The two related techniques rely on the same mecha-
nism to select the candidate nets, i.e., 0.5% of critical and 0.5%
of noncritical nets are candidates for reassignment. Although
these ratios can be adjusted, we employed 0.5% to match
the ratios reported in the experimental evaluation from [9].
Recall from Algorithm 2 that the percentage of critical and
noncritical nets in the proposed technique is a consequence
of parameter num_TE. For a fair comparison with related
techniques, we selected num_TE = 20 to roughly obtain a
similar percentage of critical and noncritical selected nets.
Nevertheless, Section VI-F analyzes, for different values of
num_TE, the tradeoff between TNS reduction and runtime
obtained by the proposed technique.

C. Comparison Under Simplified Timer

The improvements shown in the previous section are mainly
due to our accurate problem formulation and to the use of an
industrial timing engine to guide the optimization. To put in
evidence the effectiveness of the proposed problem formu-
lation and also isolate the impact of the timing engine, the
related techniques should be compared with the proposed tech-
nique when the latter is driven by a simplified timer (lumped

TABLE III
EXPERIMENTAL RESULTS UNDER A SIMPLIFIED TIMER

capacitance and Elmore’s delay). Table III reports such exper-
imental comparison with TNS and WNS values reported by a
simplified timer. From these results, it is possible to conclude
that, even when guided and evaluated by a simplified engine,
our technique outperforms the related techniques by 31% and
30% under TNS and WNS metrics, respectively. Furthermore,
it is worth noting that, when the proposed technique is guided
by the simplified timer, it obtains the shortest runtimes among
the techniques under comparison. These results clearly evi-
dence that the proposed problem formulation is robust enough
to use different timing engines.

D. Impact of Timing Engine Accuracy

In order to evaluate the importance of using of a signoff
engine to guide the optimization, we also ran our technique by
replacing the industrial timing engine by a simplified (lumped
capacitance and Elmore’s delay) built-in timing engine. The
graphics in Fig. 9 compare the TNS and WNS reductions from
Table II with the ones obtained by our technique when the opti-
mization is guided by the simplified timing engine, referred
to as Ours(simplified). Both graphics assume as baseline the
reductions obtained by our technique when the optimiza-
tion is guided by the signoff timing engine, referred to as
Ours(industrial). The huge pessimism introduced by the sim-
plified engine guided the technique to optimize paths that are
not truly critical, achieving roughly 60% of the TNS reduc-
tion obtained when the signoff engine is employed. For some
particular cases (e.g., superblue10 and superblue7), that gap
is smaller due to the reduced impact of second order effects
like resistive shielding. For the WNS metric, the pessimism
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(a) (b)

Fig. 9. Ratio between the timing violation reduction obtained by each tech-
nique with respect to our technique using the industrial signoff timer under
(a) TNS and (b) WNS metric. Ours (industrial) corresponds to the results
reported in Table II while ours (simplified) corresponds to the proposed
technique using a simplified timing engine.

(a) (b)

Fig. 10. Impact of using distinct timing engines: simplified, hybrid and
industrial (signoff). (a) TNS reduction for distinct timing engines normalized
to an industrial engine and (b) runtime.

led to a gap of 20% when different timing engines are used.
Besides the importance of using an accurate timing engine,
the charts in Fig. 9 also put in evidence the robustness of the
proposed technique, since it outperforms the related techniques
even when a simplified timing engine is used.

E. Impact of Hybrid Timer

Although the use of an industrial timer provides more accu-
rate guidance toward timing violation reduction, it leads to
a runtime overhead, as shown in Section VI-B. Therefore,
this section investigates the use of a hybrid timer as an
alternative to alleviate the runtime overhead from the use of
an industrial timer during the whole optimization flow. We
ran an experiment with the proposed technique where the
first four iterations invoked the simplified timing engine and
the last four iterations invoked the industrial timing engine.
Fig. 10(a) and (b) depicts the TNS reduction and runtime
obtained for three different timing engines: simplified, hybrid
and industrial (signoff). Observe that the hybrid engine can
obtain reductions very close to those obtained by the indus-
trial engine for six out of eight circuits. In addition, it takes
approximately half of the runtime of the industrial timing
engine. Therefore, it can be used as an effective alternative to
reduce the runtime. The worst TNS reduction from the hybrid
engine on circuit superblue18 when compared to the indus-
trial engine is due to the over-optimization of the critical path
during the first four iterations, leaving behind the near-critical
paths, which also affect TNS.

(a) (b)

Fig. 11. Algorithm convergence under WNS and TNS metrics through the
iterations for (a) superblue18 and (b) superblue10.

(a) (b)

(c) (d)

Fig. 12. Impact of the pruning strategy on timing violation reduction (TNS
and WNS) and number of vias for circuits superblue4 and superblue1 under
two different scenarios. Results (a) and (c) without pruning and (b) and (d)
with pruning.

F. Impact of Algorithmic Decisions

Fig. 11 shows the convergence of the proposed technique
under WNS (left y-axis) and TNS (right y-axis) throughout the
iterations (iteration ZERO corresponds to the initial solution)
for two different circuits. From these charts it is clear that the
proposed technique smoothly converges for both WNS and
TNS metrics with slight oscillations.

Fig. 12 evaluates the impact of the proposed strategy for
pruning lower layer candidates from critical net segments
(Algorithm 2, line 18) and upper layer candidates from non-
critical ones (Algorithm 2, line 32). The left side charts give
the algorithm behavior for two different circuits when the
pruning strategy is not employed whereas the right-hand side
charts depict the behavior when it is employed. Observe that
for both scenarios, the obtained TNS and WNS reductions
are almost the same but the required number of vias is much
lower when pruning is performed. The higher number of vias
required by the scenario without pruning is mainly due to non-
critical segments. Since they can be reassigned to lower and
upper layers to release edges for critical segments, upper layers
are generally preferred. However, the assignment of noncritical
segments on upper layers considerably increases the number of
vias since most of the circuit net segments are routed in lower
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Fig. 13. Tradeoff between timing violation reduction (TNS and WNS)
and runtime for different number of TEs. Circuit (a) superblue16 and
(b) superblue5.

layers due to their larger capacity. This leads us to conclude
that the adopted pruning strategy is effective.

Fig. 13 brings the tradeoff analysis between timing vio-
lation reduction (TNS and WNS metrics) and runtime when
the number of considered TEs (i.e., argument num_TE from
Algorithm 2) is increased. Observe that the proposed tech-
nique shows a consistent reduction of TNS when the number
of TEs increases, while the runtime increase is roughly linear.
The higher number of TEs increases the number of segments
for reassignment which, by its turn, affects the min-cost net-
work flow solving runtime. Also observe that for both charts,
the TNS curve becomes flat after a certain number of TEs. This
happens because, from that point on, the number of selected
critical nets is roughly the same, even though the number of
TEs increases. This is a consequence of path sharing among
different nets. For both charts, the WNS reduction curves are
roughly flat, regardless of the number of TEs, and only small
WNS oscillations (<1.5%) are observed due to the number of
near-critical paths.

VII. CONCLUSION

We have proposed an LR formulation that decouples timing-
driven incremental layer assignment from the timing engine.
The exploitation of flow conservation conditions was the key
to enabling the use of an external signoff timing engine.
The accurate slack values from the signoff engine provided
appropriate guidance toward timing closure, while the lin-
ear timing models (for delay and slew) employed for the
min-cost flow allowed for fast layer reassignment. That is
why the experimental results showed by the proposed tech-
nique can consistently trade a longer runtime for a smaller
number of timing violations. As compared to two state-of-
the-art methods, the proposed technique led to roughly 50%
less timing violation. Besides, the edge pruning strategy made
possible to shrink the problem size while reducing the num-
ber of used vias. We also concluded experimentally that the
pessimism introduced by a simplified timer guides the opti-
mization engine off critical paths, leaving behind roughly 40%
of optimization opportunity. As a future work, we plan to
improve the accuracy of the cost linearization through on-
the-fly calibration with the signoff timing engine. Another
possibility of future direction is to introduce a control mech-
anism to reduce antenna violations. During the network flow
graph construction, the segments with long antenna can be
constrained to be assigned only to upper layers in order to
release the accumulated charges and thus reduce antenna vio-
lations. This can be accommodated during the pruning step of
the proposed framework.
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