
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012 167

E-Beam Lithography Stencil Planning and
Optimization with Overlapped Characters

Kun Yuan, Bei Yu, and David Z. Pan, Senior Member, IEEE

Abstract—Electronic beam lithography (EBL) is one of the
promising emerging technologies in the sub-22 nm regime. In
EBL, the desired circuit patterns are directly shot into the wafer,
which overcomes the diffraction limit of light in the current
optical lithography system. However, the low throughput becomes
its key technical hurdle. In the conventional EBL system, each
rectangle in the layout will be projected by one electronic shot
through a variable shape beam (VSB). This could be extremely
slow. As an improved EBL technology, character projection (CP)
shoots complex shapes, so-called characters, in one time, by
putting them into a predesigned stencil. However, only a limited
number of characters can be employed, due to the area con-
straint. Those patterns, not contained by any character, are still
required to be written by VSB. A key problem is how to select an
optimal set of characters and pack them on the CP stencil to mini-
mize total processing time. In this paper, we investigate a problem
of electronic beam lithography stencil design with overlapped
characters. Different from previous works, besides selecting
appropriate characters, their placements on the stencil are also
optimized in our framework. Specifically, we propose a Hamilton-
path-based iterative algorithm to handle 1-D stencil design prob-
lem, and an effective simulated annealing framework for the gen-
eralized 2-D case with an efficient look-ahead sequence pair eval-
uation technique. The experimental results show that, compared
to conventional stencil design methodology without overlapped
characters, we are able to reduce total projection time by 51%.

Index Terms—Electronic beam lithography (EBL), overlapped
characters, stencil design.

I. Introduction

AS AGGRESSIVE scaling continues, the conventional 193
nm optical photolithography technology is facing the

great challenge of printing sub-32 nm. For the near future,
double/multiple patterning lithography has been developed
as a temporary solution for 32 nm, 22 nm, even 16 nm,
technology [1]–[6], but the manufacturing cost will be pro-
portionally higher. This makes multiple patterning a relatively
temporary solution for further scaling. In the long term, the
semiconductor industries and researchers have been actively

Manuscript received June 13, 2011; revised August 12, 2011 and October
10, 2011; accepted November 7, 2011. Date of current version January 20,
2012. The preliminary conference version has been published at the Interna-
tional Symposium on Physical Design in 2011. This paper was recommended
by Associate Editor J. Hu.

K. Yuan is with Cadence Design Systems, San Jose, CA 95134 USA
(e-mail: kyuan@cerc.utexas.edu).

B. Yu and D. Z. Pan are with the Department of Electrical and Com-
puter Engineering, University of Texas, Austin, TX 78731 USA (e-mail:
bei@cerc.utexas.edu; dpan@cerc.utexas.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2011.2179041

pushing on alternative emerging nanolithography to print finer
feature size below 16 nm, such as electronic beam lithography
(EBL), extreme ultraviolet (EUV), and nanoimprint.

EBL [7]–[9] is a maskless technology which shoots desired
patterns directly into a silicon wafer, with a charged particle
beam. The primary advantage is that it is one of the ways
to beat the diffraction limit of light of current well-adopted
optical lithography [10], which leads to 4× better resolution
and lower cost compared to conventional optical lithography.
However, EBL has one key limitation, low throughput.

The conventional type of the EBL system is variable shaped
beam (VSB). In VSB, the layout is usually decomposed into
a set of rectangles, and each one would be shot into resist by
dose of electron sequentially. As Fig. 1(a) shows, the pattern
of “EHE” is divided into 11 rectangles and needs total 11
shots. The whole processing time of this technique increases
with number of beam shots. This makes its throughput very
low for the modern complicated design, which is commonly
composed of a significant number of small rectangles.

The character projection (CP) technology [7]–[9] has been
invented for improving the throughput of VSB methods. The
key idea is to print some complex shapes in one electronic
beam shot, rather than writing multiple small rectangles. This
reduces manufacturing time significantly. In detail, as the pro-
jection system of CP in Fig. 1(b) illustrates, a library of layout
configurations, called Characters, or Templates, are prepared
on a stencil first. During manufacturing, if any character exists
in the targeted design, it will be chosen in the system and pro-
jected into the wafer. To print the example of Fig. 1(a), suppose
two characters “E” and “H” are predesigned for the stencil. By
adjusting and aligning the shaping aperture and stencial, we
can print the patterns of “E,” “H,” “E” in a sequential manner,
as Fig. 1(c)–(e) shows. In total, it only takes three shots.

Due to less beam shots for the same layout, the CP system
is much faster than VSB. However, the number of characters
is limited due to the area constraint of the stencil. As in the
example of Fig. 1(f), there are only maximum �W/w��H/h�
characters. For modern design, it is not practical to fully make
use of CP, due to numerous distinct circuit patterns. Those
patterns which do not match any character are still required
to be written by VSB. Standard cell and some regular routing
pattern, which have high area utilization of stencil because of
their frequent appearances in the design, are good candidates
for implementing characters. On the other side, the custom
layout from memory IP, and most irregular wires/vias would
most likely be processed by VSB.

0278-0070/$26.00 c© 2011 IEEE

168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 1. Electron beam lithography. (a) VSB. (b) CP. (c) First shot of CP.
(d) Second shot of CP. (e) Third shot of CP. (f) Typical Stencil for CP.

Several methodologies have been proposed to design and se-
lect group of circuit patterns as characters for minimizing total
projection time of both CP and VSB. In [11], frequently-used
standard cells are greedily chosen as characters, processed by
CP technology. Sugihara et al. [12]–[15] employed integer
linear programming to optimize the throughput, given a set of
character candidates. Recently, EDA Vendor D2S, Inc. [7]–[9]
proposed improving stencil design from a new point of view,
but with no detailed algorithm presented. They showed that,
in practice, when individual character/template is designed,
blanking area is usually reserved around its boundaries. By
sharing blanks between adjacent templates, more characters
can be placed on the stencil than the regular design of Fig. 1(f),
better improving the throughput.

The work of [7]–[9] implies that, due to possible overlap-
ping, besides selecting appropriate characters as [11]–[15],
their relative locations on the stencil should also be taken
into account for minimizing the total projection time of
EBL. In this paper, we will investigate this new problem of
electronic beam lithography stencil design with overlapped
characters. 1-D/2-D problem is researched separately, depend-
ing on whether the available overlapping space of charac-
ters is nonuniform in either horizontal or both directions.
Moreover, we only consider the application of one stencil for
this paper. The main contributions of our work are stated as
follows.

1) We co-optimize the selection process of characters and
their physical placements on stencil for effective EBL
throughput improvement.

2) We propose a three-phase iterative refinement process
to conduct 1-D stencil design optimization. A Hamilton-

Fig. 2. Overlapped characters for improving the stencil densities. (a) Layout
of characters. (b) Conventional stencil. (c) Overlapped characters.

path based approach has been developed to solve single-
row reordering efficiently and effectively.

3) We develop a sequence pair (SP) based simulated an-
nealing framework to optimize general 2-D stencil de-
sign. We also propose an efficient look-ahead sequence
pair evaluation algorithm to reduce runtime.

II. Preliminaries and Problem Formulation

A. Overlapped Character

EBL is a maskless technique, which shoots desired patterns
directly into a silicon wafer, and can potentially combat device
parameter variations [16] and design congestion [17], [18].
Various investigations [12]–[15] have been conducted on the
optimization of character selection for EPL technology, where
no intersection is allowed between templates on the stencil,
as shown by Fig. 1(f). Recently, the work of [7]–[9] has
shown that the design of stencil can be further improved by
overlapping adjacent characters, which allows more templates
to be put and increases the throughput.

As pointed out by [7]–[9], when an individual character
is designed, blanking space is usually reserved around its
enclosed rectangular circuit pattern, shown by Fig. 2(a). The
reason is that, when the electron beam is scattered from the
shaping aperture of Fig. 1(b), it could span larger area on
the stencil than the layout to be printed. In order to avoid
projecting any unwanted image, the white space should be
preserved. These blanking areas offer great opportunity for
character sharing.

Suppose the required white space around layouts A and
B are BlankA and BlankB, respectively, in Fig. 2(a). If the
characters are conventionally aligned by edge as Fig. 2(b),
it results in a waste of area. The space between layout A
and B is actually BlankA + BlankB, which is more than
required for both patterns. By contrast, we would greatly
reduce the total area of character A and B by sharing
an amount of min(BlankA, BlankB) space. In this case,
max(BlankA, BlankB) white width is still reserved between
layout A and B, which is sufficient for ensuring correct
printing image.

YUAN et al.: E-BEAM LITHOGRAPHY STENCIL PLANNING AND OPTIMIZATION WITH OVERLAPPED CHARACTERS 169

Fig. 3. Main difficulty of stencil design with overlapped characters.

B. Stencil Design Challenge

The main challenge of stencil design with overlapped char-
acters comes from the fact that, for each character, the amount
of required blanking space is not uniform, strongly depending
on its enclosed layout patterns [9]. Because different shapes
have different scatting and proximity effects under the pro-
jection of E-beam, to preserve the shape and fidelity of the
written image, their minimum required shielding spacings vary
and are not identical. The underlying reason is similar to that
in the conventional optical lithography system; the spacing
rules between metals are usually different, determined by
geometrical dimension of associated design objects.

In consequence, for different placements of characters, the
area reduction from template overlapping may vary a lot.
Therefore, unlike the traditional design of Fig. 1(f), the number
of maximum allowable characters in the stencil is not fixed. To
achieve a high quality solution, the detailed physical placement
information of all the characters must be taken into account.
This makes the problem of stencil design with overlapped
characters not only different from but also more difficult than
the conventional nonoverlapping one addressed in [12]–[15].

As the example of Fig. 3(a) illustrates, suppose there are
three character candidates A–C, and we would like to pack
them into a simple stencil of Fig. 3(b) for minimum projection
time. As easily seen, their blanking spaces are quite different.
In conventional design where overlapping is not considered, at
most two of them can fit. On the other side, when the blanking
space is shared by adjacent characters, the result is correlated
with the detailed physical implementation of stencil, and could
be different from traditional design. If these three candidates
are tried out by the order of A–B–C like Fig. 3(c), only A
and B can be put in. Pattern C is out of bound and has to be
processed by the VSB technique. This does not lead to higher
throughput than the conventional nonoverlapped methodology.
In contrast, if rearranged as C–B–A as Fig. 3(d), all of these
three patterns can be used as CP characters. Obviously, it is a
better stencil optimization.

C. Problem Formulation

Similar to previous work [12]–[15], we assume a set
of character candidates have already been given. To model
overlapping information, as Fig. 4(a) illustrates, assume the
blanking spaces of each candidate ci, from left, right, top
and bottom boundaries, are li, ri, ti, and bi, respectively. The
orientation of these candidates is not allowed to be flipped,
since it actually becomes a different template, as explained

Fig. 4. Dimensional variable of character candidates.

in [13]. When two candidates ci and cj are put adjacent to
each other horizontally, their maximum allowed overlap is set
as oH

ij , which is min(ri, lj) as shown by Fig. 4(b). Similarly,
Fig. 4(c) defines the maximum vertical overlapping margin oV

ij .
oH

ij and oV
ij vary for different i and j.

Moreover, since the manufacturing time of EBL is domi-
nantly determined by electronic beam shooting, in our work
we make use of total number of shots as the measurement of
projection time. Suppose each candidate ci is referred rc

i times
in the chip. For each of its appearance, the candidate ci will be
projected by either CP or VSB method, with a number of shots
nCP

i and nVSB
i . The total processing time (number of shots) of

the entire circuit is computed by the following equation:

∑

ci∈CCP

rc
i n

CP
i +

∑

ci∈(CC\CCP)

rc
i n

VSB
i . (1)

CC is the set of all the character candidates. CCP is the union
of selected candidates processed by the CP method, which is
a subset of CC.

In our work, as discussed in the introduction, we only
design and optimize one single stencil for a given chip. Our
optimization problem can be stated as follows.

Problem formulation: given a design and its set of character
candidate CC, select a subset CCP out of CC as characters, and
place them on the stencil S. The objective is to minimize the
total projection time (number of shots) of this design expressed
by (1), while the placement of CCP is bounded by the outline
of S. The width and height of stencil is W and H , respectively,
and all the candidate has unique width w and height h. The
maximum overlapping margin between adjacent characters is
given by oH

ij and oV
ij .

D. Stencil Design Guidance

Multiple factors are required to be taken into account to
select appropriate candidates onto stencil, which includes the
times of references of each candidate in the design, the shot
number of each candidate by VSB and CP respectively, the
amount of blank margin and the size of each candidate, and
the neighborhood relationships of characters.

Note that the overall projection time, Objective (1), can be
rewritten as

∑

ci∈CC

rc
i n

VSB
i −

∑

ci∈CCP

rc
i (nVSB

i − nCP
i) (2)

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 5. Illustration of effective area. The figure is only drawn for the case
that the blanking spaces of candidates are uniform.

Fig. 6. 1-D stencil design.

subject to
∑

ci∈CCP

areai < Area(stencil) (3)

where the first part is independent of stencil design. To
reduce the processing time,

∑
ci∈CCP rc

i (nVSB
i − nCP

i) should
be maximized under the area constraint. In other words, we
need to maximize the shot number reduction per unit area
of stencil, by putting characters onto the stencil. For the
five factors we mentioned above, the shot number of each
candidate by VSB and CP contributes to the shot number
reduction. The amount of blank margin, the size of each
candidate and their neighborhood relationship contribute to the
optimization of area sharing from character placement. Guided
by this observation, the criteria of our character selection is
listed in the following paragraph.

For a candidate ci, suppose it has a area of areao
i shared

with other surrounding candidates, we only count half of areao
i

as its real usage of stencil and compute the effective area
area

eff
i of ci as areai − areao

i /2. As Fig. 5 shows, the red
dash encloses areai, and the light green region is area

eff
i .

Therefore, to achieve maximum throughput improvement, we
simply select the candidate with highest shot number reduction
to effective area ratio, (rc

i (nVSB
i −nCP

i))/area
eff
i , until no more

character candidates can be fit in.
When the blanks are uniform for all the candidates, the

above methodology is easily adoptable. In such a case, the
sharing space of adjacent characters is identical for any two
candidates, so areao

i is independent of character placement
and can be precomputed. While overlapping margin varies, this
problem becomes difficult, because areao

i is not a deterministic
but effected by the detailed placement of characters. In this
paper, we will focus this challenging problem with different
combinations of overlapping blanking space.

We will first investigate into the special case of 1-D stencil
design in Section III, where the amount of blanking spaces
differs only in the horizontal direction. Vertical margins are
identical for all the candidates. In our proposed optimization,
we first put characters in the descending order of shot number

Fig. 7. Overview of 1-D stencil design with overlapped characters.

reduction, i.e., (rc
i (nVSB

i − nCP
i)), then perform optimization to

maximize blanking sharing and area reduction.
∑

Ci∈CCP areao
i .

Next, in Section IV, the algorithm for a generalized 2-D
problem will be developed. In this case, both vertical and hori-
zontal blanking space are nonuniform for candidates. Our algo-
rithm for the 2-D problem is a simulated annealing approach.
In each iteration, we assign equal weight for an annealer to
make two types of moves: the move that pushes in characters
having higher shot number reduction (rc

i (nVSB
i −nCP

i)), and the
move which better increases the sharable space areao

i .

III. 1-D Stencil Design

Normally, each template implements one standard cell. That
is to say, the enclosed circuit patterns of all the characters
have the same height, and their layouts near top and bottom
boundary edges are mostly regular power rails. As a result,
illustrated by Fig. 6(a), the required blanking spaces on the
top t and bottom b are nearly identical for these candidates.

Therefore, in such a case, characters are usually placed on
the stencil in a row-based manner, shown by Fig. 6(b). All
rows have a unique height h. The overlapped blanking margin
ho between adjacent rows is also the same, which is min(ti, bi).
In consequence, as Fig. 6(c) shows, the overlapping-aware
stencil design becomes a 1-D problem. The number of char-
acter rows can be pre determined as �(H −ho)/(h−ho)�). The
candidates would be packed into these rows with maximum
width W .

Motivated by this fact, in this section, we will discuss a
1-D stencil design problem, with the assumption that all the
candidates have the same vertical blanking space ti and bi.
The overview of our algorithm for this special 1-D problem
is given in Fig. 7.

In the very beginning, all the rows are empty. Next, char-
acter candidates will be pushed onto the stencil in 1-D bin
packing, until no more can further fit in. Then steps 2 and 3
serve for the same suppose, tuning the position and selection
of characters to create more space while not degrading the
throughput. This allows adding more candidates into stencil
in the next iteration. After step 3, 1-D bin packing will be re-
performed incrementally based on the optimization result of
the previous iteration. In other words, the existing characters
on the stencil of step 3 will be fixed when we revoke the
first phase of bin packing. However, in each iteration, steps 2
and 3 will be executed for all the existing characters, with no
exceptions or fixed objects.

YUAN et al.: E-BEAM LITHOGRAPHY STENCIL PLANNING AND OPTIMIZATION WITH OVERLAPPED CHARACTERS 171

Fig. 8. This figure illustrates the procedure of best-fit bin packing with
overlapping awareness.

A. Greedy 1-D Bin Packing

To construct a reasonable good starting point, we adopt a
descending best-fit bin packing algorithm to push the character
candidates into stencil, until there is no enough capacity.

Recall that the overall projection time (number of shots) of
Objective (1) can also be represented as

∑

ci∈CC

rc
i n

VSB
i −

∑

ci∈CCP

rc
i (nVSB

i − nCP
i)

where the first part is independent of stencil design. To reduce
the processing time,

∑
ci∈CCP rc

i (nVSB
i − nCP

i) should be made
as large as possible, during greedy bin-packing.

Therefore, as preprocessing, we first assign each candidate
ci a profit value pi, rc

i (nVSB
i −nCP

i). The bigger pi is, the larger
amount of projection efforts can be saved by printing ci using
CP than VSB method. For getting a good greedy optimization
result, the ci with larger profit should be given higher priority
to be placed on the stencil. Guided by this heuristic, in the
second step, the character candidates, which have not been
on the stencil yet, will be sorted decreasingly based on their
profits and packed in a sequential manner.

Next, these sorted candidates will be pushed into stencil
by a best-fit packing strategy. When ci is to be packed,
the row, which has the most amount of capacities left after
accommodating ci, will be picked. This is to consider the
possible shared space between adjacent objects, when we are
computing the remaining room in each row. As Fig. 8(a)
illustrates, suppose only two rows are available and candidate
C is to be packed next. It appears that row R1 has more
capacity left. However, as Fig. 8(b) illustrates, when we try
out C in both rows, it is R2 which has larger remaining room.
As a result, candidate C is packed into R2, shown by Fig. 8(c).

B. Single Row Reordering

After greedy bin packing, there is no room left to accom-
modate more candidates. However, as motivated by Fig. 3, we
can adjust the relative locations of already-placed characters in
each row to shrink its occupied width and increase remaining
capacity. This allows pushing in more candidates, which
further reduces the overall projection time. Therefore, in this
phase, our goal is to minimize the total width of its characters
in each row for maximizing remaining capacity.

Suppose row r contains a set of cr
0 cr

n characters from left
to right, its total occupied width can be computed as

∑n
i=0 w−∑n−1

i=0 oH
i,i+1. It is not difficult to see that

∑n
i=0 w is a constant

as long as the number of characters is not changed. Therefore,
to minimize the total occupied width, the overall overlapped
blanking margin

∑n−1
i=0 oH

i,i+1 should be maximized.

Fig. 9. This figure shows how to optimize the occupied width of each row
as a min-cost Hamiltonian path problem.

Fig. 10. This figure explains the motivation of multirow swapping.

To compute optimal character permutation for maximum
amount of shared blanking width, we formulate a minimum
cost Hamiltonian path problem. First, a graph G is constructed
as follows. Each cr

i is represented by a vertex vr
i . For each

pair of vr
i and vr

j , we add two directed edges eij and eji.
The associated costs are oH

big − oH
ij and oH

big − oH
ji , respec-

tively. oH
ij /oH

ij is the shared space when ci is put left/right
adjacent to cj , and oH

big is a constant value, bigger than any
of oH

ij . To maximize
∑n−1

i=0 oH
i,i+1, it suffices to find a path

visiting each node of G exactly once such that the total edge
weights (

∑
e∈Path(oH

big − oH
ij)) along this path are minimized.

As Fig. 9(a) illustrates, a graph for three character placement
(A, B, C) is given. Suppose the minimum cost Hamiltonian
path is found as Fig. 9(b), Fig. 9(c) shows its corresponding
character placement.

Since the problem of minimum cost Hamiltonian path is NP-
hard, it may be expensive to solve the whole row in one time.
Our heuristic is to partition the row into multiple overlapped
smaller segments, and solve each segment by the Hamiltonian
path based method.

C. Multiple Row Swapping

After single row reordering, the character permutation
within each row has been extensively optimized. However,
it is still possible to increase their remaining capacities, by
swapping characters from different rows. As Fig. 10 illustrates,
by swapping r2

1 and r2
2, both characters find “better” neighbors

with more overlapped blanking space. For rows R1 and R2,
their remaining rooms are both increased.

The algorithm is briefly explained as follows. We test every
pair of characters from different rows. Only when the remain-
ing capacities of both rows are increased after swapping, it is
considered as a reasonable swap. This ensures that the mod-
ified placement is definitely better than the original one. The
reason is that, after swapping, if one row gains more room but
another has less, it is possible that the following optimization
is hurt by the row with shrunk capacity. After the reasonable
swap pairs are found, they are sorted increasingly by capacity
gains, and performed one pair by one pair. One thing to empha-
sis here is that the algorithm could be quite slow if we really

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Fig. 11. Overview of 2-D stencil design with overlapped characters.

iterate through all the possible swapping, when the the total
number of characters is large. To encounter this issue, we only
randomly select a predefined number of swapping candidates.

IV. 2-D Stencil Design

In this section, we investigate the general case of EBL
stencil design with overlapped characters. The blanking spaces
of templates are nonuniform along both horizontal and vertical
directions. Due to NP-completeness of this problem, we adopt
a simulated-annealing based heuristic approach

The basic flow is shown in Fig. 11. Parquet [21] is adopted
as our simulated annealing framework. Given an initial solu-
tion and starting temperature T0, each iteration we continu-
ously make small permutation on sequence pair, and evaluate
the resulting stencil design, as the blue steps indicated. The
new SP/solution will definitely be adopted if reducing current
best throughput (shot number Sbest) of Objective (1). While
it is actually a worse character placement, this nonimproving
result is accepted with a probability, computed from a function
of current temperature T and Sbest. The function f(Sbest, T)
decreases as Sbest and T decrease. At the end of each iter-
ation, the temperature will be updated with decreasing trend.
The algorithm terminates when the upper bound of iteration
number or lower bound of temperature is reached. The detailed
discussion for sequence pair evaluation and permutation can
be found in Sections IV-B to IV-D, respectively.

A. Sequence Pair Representation

To represent a character placement solution, we make use
of SP proposed in [19].

Given a set of character candidates CC, its SP consists in
two permutations X&Y of these templates (c0, c1...cn), which
specifies their geometrical relationships as follows:

(X :< .., ci..cj.. >, Y :< ...ci...cj... >) : ci is left to cj (4)

(X :< .., cj..ci.. >, Y :< ...ci...cj... >) : ci is below cj. (5)

Fig. 12. This figure explains packing evaluation of [19] based on sequence
pair. (b) H graph. (c) V graph.

Based on these constraints, we can map any SP into a solution
of character placement as the following procedure.

Procedure 1.
Step 1: compute a packing solution of CC, following the

extensive methods of [19] and [20]. The details and speedups
will be described in Sections IV-B and IV-C.

Step 2: assuming the left-bottom coordinates of packed
candidate and stencil are the same, the candidates, which are
located completely within the outline of stencil, are considered
as selected characters.

Step 1 is the critical one in the above transformation. Due to
specific properties of our problem, its implementation actually
differs from the conventional approaches of [19] and [20],
explained as follows.

B. Fast Look-Ahead Sequence Pair Evaluation

The key step of packing solution evaluation from SP is
to determine the physical coordinates of each block. This
problem has been well investigated, when overlapping is not
considered between adjacent blocks. The original algorithm is
proposed in [19], and improved by [20] with a new solution
pruning technique. The work of [19] is easily extensible
for our overlapping-enabled character placement problem,
described in Section IV-B1, but it is well known that this
type of method is very computationally-expensive. On the
other side, in Section IV-B2 we show that the key speedup
idea in [20] is not applicable directly or extensible trivially,
although it is much faster. We then present an efficient
look-ahead algorithm based on framework of [20] to solve
this specific sequence pair computation problem.

1) Extension for Longest Path Based Algorithm: The
method of [19] is based on a longest path algorithm, and
starts from constraint graph construction. Given a SP, a H/V
graph is built first to capture the horizontal/vertical relationship
between different blocks. Assume there are totally CC candi-
dates. The H/V graph has |CC|+2 vertexes, one vi for each
candidate ci plus a source s and sink t. If cj is (left adjacent
to)/(below) ck, a directed edge ejk is added from vj to vk.
The weight of ejk is the minimum possible horizontal/vertical
distance between the centers of cj and ck. Beside these, there is
a zero-weight edge from source to every vi, and a zero-weight
edge from every vi to sink. For the example of Fig. 12(a),
Fig. 12(b) and (c) shows the resulting H and V constraint
graphs, respectively.

YUAN et al.: E-BEAM LITHOGRAPHY STENCIL PLANNING AND OPTIMIZATION WITH OVERLAPPED CHARACTERS 173

TABLE I

Notation for the Algorithm in [20]

b Any character candidate, b, is one of 1, ..., n

X[i] Character candidate in ith position of the X sequence

Y [i] Character candidate in the ith position of the Y sequence

match[b].x The position of b in the X sequence

match[b].y The position of b in the Y sequence
pos[b] The left x coordinate of b in the stencil

width[b] The width of character candidate b

o[m, n] The overlapping when candidate m is left to n

L[b] The auxiliary array to record the current x

coordinate of candidate b

Algorithm 1 Calculate x Coordinates of Candidates Given a Se-
quence Pair

1: for i = 1 to n do
2: match[X[i]].x = i; match[Y[i]].y = i; L[i] = 0;
3: end for
4: for i = 1 to n do
5: b = X[i];p = match[b].y; pos[b] = L[p];t = pos[b] +

width[b];
6: for j = p to n do
7: if t > L[j] then
8: L[j]= t;
9: else

10: break;
11: end if
12: end for
13: end for

After that, the x/y coordinates of these candidates can be
obtained by finding its weighted longest path algorithm from
source. As easy to see, this methodology is also applicable
for our problem, where overlapped space is allowed between
adjacent vertexes. The only difference is that, when the
weights of edge are assigned, the amount of shared blanking
space must be considered, as highlighted by the red cycles in
Fig. 12(b) and (c).

This type of longest path based algorithm is quite slow, as
shown by [20]. In our work, we implement this extension as
the baseline to show the effectiveness of our look-head pruning
technique, which is proposed in Section IV-B2.

2) Extension for Longest Common Subsequence Based
Algorithm: The work of [20] does not explicitly build the
constraint graphs, but depends on the longest common sub-
sequence computation. They evaluated the placement of char-
acter candidates much faster than [19]. In this subsection, we
first show that the pruning algorithm in [20] is not applicable
directly due to the breakdown of its assumption. Then we
proposed a look-ahead technique to revive the core idea of [20]
for fast sequence pair computation.

a) Review of original pruning algorithm: To better
present our proposed pruning technique, first, we review the
key steps of [20] in Algorithm 1, and its pitfall for overlapping-
induced character floorplanning. The notations are listed in
Table I. Their algorithm is based on longest common sub-
sequence. Here, we only consider the situation where the x

coordinate is computed.

Algorithm 2 Initial look-ahead algorithm for sequence pair evalua-
tion

1: for i = 1 to n do
2: match[X[i]].x = i; match[Y[i]].y = i; L[i] = 0; MinT[i] = 0
3: end for
4: for i = 1 to n do
5: b = X[i];p = match[b].y; pos[b] = L[p];
6: t = pos[b] + width[b]; MinT[n] = L[n]+o[b][Y[n];
7: for j = n-1 to p, j = j - 1 do
8: MinT[j] = min(MinT[j+1], L[j]+o[b][Y[j]]);
9: end for

10: for j = p to n do
11: if t < MinT[j] then
12: break;
13: end if
14: if t > L[j]+o[b][Y[j]] then
15: L[j]= t-o[b][Y[j]];
16: end if
17: end for
18: end for

Lines 6–11 implement the essential pruning idea of [20].
In Line 8, L[j] will be updated if and only if the new
required x coordinate t for candidate Y[j] is larger than
current L[j]. Without considering the item of o[b][Y [j]] in
the nonoverlapping case, original algorithm can do effective
pruning, lying on the foundation of the following ascending
property of L[j]: if i is larger than j, then L[i] is guaranteed no
less than L[j]. Once t is smaller than certain L[j] in Lines 7,
we can directly break out of the loop Lines 6–11. Any element
in array L after index j is definitely bigger than t, and there is
no need to do further evaluation using Lines 6–11.

Unfortunately, while overlapping is considered, the original
algorithm cannot be simply modified by updating Lines 7 and
8 using (6) and (7), respectively

t − o[b][Y [j]] > L[j] (6)

L[j] = t − o[b][Y [j]]. (7)

The reason is that the array of L does not have such an
ascending property any more. This is due to the variations
of o[b][Y[j]]. When we update array L by (7), L[m] may be
larger than L[n] even m is smaller then n, because o[b][Y[m]]
may be smaller than o[b][Y[n]].

b) Initial look-ahead pruning algorithm: Motivated by
the above analysis, we first present our initial look-ahead
sequence pair evaluation algorithm. The main direction is
to find a good threshold, e.g., MinT , which maintains an
ascending property and hence can replace the usage of L[i] for
correct pruning. This is actually not difficult. As we may find
out, MinT [j] = min(L[j] + o[b][Y [q]]), j < q < n, satisfies
the requirement. The original algorithm can be then revised as
Algorithm 2. Note that Line 11 is equivalent to checking the
inequality specified by (6).

Lines 7–12 are the key steps here. If the condition of Line
11 is satisfied when j = p1, the Line 15 will not have chance
to be executed for following iterations (j >= p1). We save
computational operation here.

It works correctly, and seems helping reducing runtime with
the pruning of Lines 11–12. However, if we take a closer look,

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

Algorithm 3 Efficient look-ahead algorithm to speed up sequence
pair evaluation

1: for i = 1 to n do
2: match[X[i]].x = i; match[Y[i]].y = i; L[i] = 0; MinT[i]

= 0
3: end for
4: for i = 1 to n do
5: b = X[i];p = match[b].y;pos[b] = L[p];t = pos[b] +

width[b];
6: index = n;
7: for j = p to n do
8: if t < MinT[j] then
9: index = j;

10: break;
11: end if
12: if t > L[j]+o[b][Y[j]] then
13: L[j]= t-o[b][Y[j]];
14: end if
15: end for
16: for k = index-1 to p, k=k-1 do
17: MinT[k] = min(MinT[k+1], L[k]);
18: end for
19: end for

the step of calculating MinT [j] = min(L[q]−o[b][Y [q]]), j <

q < n is expensive. As in Lines 7–9 of Algorithm 2, because
o[b][Y[q]] varies with the values of b, MinT[j] have to be fully
updated in every iteration of loop Lines 4–17, which requires
going through every element from p to n in Lines 7 and 8.
This native look-ahead algorithm does not really benefit us in
terms of runtime. Our next step is to think out a faster way to
compute MinT[j].

c) Efficient look-ahead pruning algorithm: To resolve
the issue of expensive updating in Algorithm 2, we come up
with a little relaxed metric MinT [j] = min(L[j]), j < q < n

with a much faster computation strategy.
The implementation is described as Algorithm 3. By taking

advantage of this new MinT [k], we only need to perform
partial updating shown in Lines 16–18. The correctness of this
updating is easy to see. Any MinT [k] can only be changed
if some L[q], k < q < n, has been updated by Line 13,
and the value of index-1 is the largest entry in L which has
been modified during each iteration. Therefore, any MinT[k],
k > index, would keep the same and there is no need to update
them in Lines 16–18.

Theoretically, in the worst case, Algorithm 3 is as slow as
Algorithm 2 because complete updating may still be needed
every iteration in Lines 16–18, when the index is equal to n.
However, in practice, Algorithm 3 would perform better. The
significant speedup comes from the fact that in most of time,
the index is much smaller than n. Although the relaxation
of MinT[q], from min(L[j] + o[b][Y [q]]), j < q < n to
min(L[j]), j < q < n, makes the pruning step Lines 8–10
less frequent, the benefits from efficient MinT [q] updating
compensate this degradation.

Fig. 13. This figure illustrates throughput-driven swapping.

C. Partial Packing Evaluation

After evaluating packing solution, in step 2 of Procedure
1, the candidates outside the outline of stencil will not be
taken as characters. This implies that the detailed locations
of these candidates are not important, and do not have to be
computed in step 1. Great speedup can be achieved by making
use of this property. In detail, in the implementation of SP-
based minimum area packing, we stop placement evaluation
as soon as the contour of already-packed character candidates
is completely outside the outline of stencil by at least a
margin of omax, given that omax is the maximum value of oH

ij

and oV
ij .

D. Sequence Pair Permutation

In this subsection, we present two effective SP perturbation
methods for better local search toward shorter projection time:
throughput-driven swapping and slack-based insertion.

1) Throughput-Driven Swapping: The first type of pertur-
bation we perform is throughput-driven swapping. The basic
idea is to try reducing overall projection time by swapping the
positions of two candidates in the X&Y SP. This is equivalent
to exchanging their relative locations in the packing solution.

Fig. 13 illustrates a motivational example, which has five
blocks A–E to be packed. The required number of shots, to
project any of these candidates once, are assumed as 1 and
10 for CP (nCP

i)and VSB (nVSB
i) methods, respectively. The

digit in the parentheses denotes how many times ri of each
component will be used and printed in the design.

Fig. 13(a) gives a SP representation and its corresponding
stencil design, based on the Procedure 1 in Section IV-A.
Following the definition of Objective 1, the total processing
time (number of shots) is 3 + 2 + 1 + 2 + 10 × 2 = 28, since
A–D are selected as characters while E is not. If swapping
the locations of C and E in SP as Fig. 13(b), we would end
up with a better stencil design with less amount processing
time. It only takes a number of 19 shots, which is computed
as 3 + 2 + 10 + 2 + 2 = 19 in this case.

YUAN et al.: E-BEAM LITHOGRAPHY STENCIL PLANNING AND OPTIMIZATION WITH OVERLAPPED CHARACTERS 175

In the detailed implementation, we enforce two heuristic
swapping constraints to enable efficient and effective shot
number reduction.

First, given a SP, out of the pair of elements to be changed,
we require that one candidate cs should have been selected
as characters by its corresponding stencil packing, while the
other one, co, is not. For the example of Fig. 13(a), we only
allow the exchange of the positions between E and any of A-
D. The swapping among any two of A-D is not enabled. The
reason is that if the two candidates to be swapped are both in
or out of stencil already, most likely the new SP generates a
stencil solution with the same set of selected characters and
just different geometrical ordering. As an example, if we swap
candidates B and D which are both already in the stencil, like
from Fig. 13(a) to (c), the resulting packing result also selects
A–D as characters, still requiring 28 shots in total.

Second, after randomly picking in-stencil candidate cs and
out-of-stencil one co for swapping, we will compute the
difference of their profits po − ps, to decide whether this
swapping would be tried on. The profit po/ps is defined as
same as ri(nVSB

i − nCP
i) in Section III-A, which reflects the

reduction of the shoot number by printing this candidate with
CP rather than VSB. If we swap the locations of cs and co,
it is highly likely that cs will be pushed out of stencil but
the co would be selected as a character in turn. Assuming all
the other candidates stay either in or outside the stencil, as
the state before the swapping, the total shot reduction by this
exchange can be approximated as po − ps. Therefore, if the
difference po −ps is smaller than zero, it is in high possibility
that the swapping under consideration will not lead to a better
packing result. For the example of Fig. 13(a), suppose cs and
co are A and E, respectively, and it turns out po − ps is −9.
In this case, the corresponding stencil design indeed becomes
worse, taking 35 shots as Fig. 13(d) shows.

2) Slack-Based Insertion: Given a SP and its correspond-
ing character solution, our purpose of slack-based insertion
is to add-in a new candidate, which is currently not serving
as a character, into the stencil. To ensure robust throughput
improvement, we would like to find a good strategy to insert
such an extra candidate so that all the previously already-
placed characters are still kept on the stencil in most trials.
This equals to increase the number of usable templates. In
this subsection, we make use of the concept of slack, applied
in [21] and [22], to search such a good insertion location.

Given a character cs on the stencil, its x/y slack is defined
as the allowed movement range of x/y coordinates of cs,
under the constraint that none of all the other already-placed
characters would be pushed outside the stencil after such a
move. Fig. 14(a) and (b) illustrates a simple example, with
four characters A–D. Their leftmost and rightmost packing
solutions are shown by Fig. 14(a) and (b), respectively. Based
on these two extreme cases, the x slack of C, for example,
can be computed as Xright

c − Xleft
c .

Once slacks are known, we randomly pick a base character
cb, which has large slacks in both x and y directions, and
insert a new candidate cnew before it. The reason is that the
location of such base can be moved in relatively big amount to
make space for additional characters. In terms of SP operation,

Fig. 14. Simple example of slack-based insertion.

this can be done by simply changing the position of cnew right
before cb in X and Y permutations. As illustrated by Fig. 14(c),
suppose the cb and cnew are candidate C and E, respectively.
The resulting new SP is obtained by inserting E right in front
of the position of C, as shown by Fig. 14(d).

V. Experimental Results

We implement our algorithm in C++ and test on an Intel
Core 3.0 GHz Linux machine with 32 G RAM. LKH [23]
is chosen as the solver for min-cost Hamilton path, where
the maximum problem size is set as 50. In other words,
if the number of characters in a row exceeds 50, we will
chop it into smaller segments, each less than 50, and perform
LKH individually. Moreover, Parquet [21] is adopted as our
simulated annealing framework.

To test the efficiency of proposed methods, we randomly
generate eight benchmarks. The size of stencil is set as
100 μm × 100 μm, and a total number of 1000 character can-
didates with unique size are generated. The sharable blanking
area within each candidate is randomly decided, uniformly
distributed between 0% and 50% character width. For the
special case of 1-D problem, the blanking space along the
vertical direction is set as a constant value. Moreover, for each
candidate ci, we randomly assign a triple of value (ri, nVSB

i ,
nCP

i) as its referred time in chip, and respective number of shots
by VSB and CP. nVSB

i is made five to ten times larger than nCP
i .

The detailed statistical data for individual testcase is shown
in Table II. The first column denotes the name of benchmarks,
where “1D-x” and “2D-x” are applied for one and 2-D
problem, respectively. “csize” is the size of each character
candidate, formatted by “μm×μm.” The units of all the other
columns are “1e4μm2.” “Total area” shows the total area of all
the character candidates, and “total blanks” is the summation
of their sharable blanking space. “Optimal area” is computed
as “total area” minus “total blanks,” typically larger than the
area of given stencil. This matches the fact that even under
best possible case of stencil design, where all the blanking
areas are indeed shared by adjacent characters, the entire set
of the candidates can not be fully pushed into the stencil.

For comparative reasons, we implement two different stencil
design approaches. The first one, No-Overlap, is based on the

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

TABLE II

Statistics on Testcases

ckts csize Total Area Total Blanks Optimal Area
1D-1 3.8 × 3.8 1.444 0.416 1.028
1D-2 4.0 × 4.0 1.6 0.479 1.121
1D-3 4.2 × 4.2 1.764 0.514 1.25
1D-4 4.4 × 4.4 1.936 0.569 1.367
2D-1 3.8 × 3.8 1.444 0.414 1.03
2D-2 4.0 × 4.0 1.6 0.529 1.071
2D-3 4.2 × 4.2 1.764 0.662 1.102
2D-4 4.4 × 4.4 1.936 0.774 1.162

work of [15], where no overlapped characters are allowed. A
little difference is that, in its implementation, only one stencil
with unique character size is considered. For our problem,
their algorithm is somewhat degenerated into a method of
selecting the most profitable candidates, which profit is judged
by ri(nCP

i −nVSB
i). In the second comparative approach, Greedy,

possible sharing is taken into account, but a greedy method-
ology is applied to choose character candidates. In the 1-D
problem, only the first phase of heuristic descending best-
fit (DBF) packing in Section III-A is performed. For 2-D
problem, 2-D DBF packing is conducted.

A. 1-D Stencil Design

Table III lists the comparison of stencil design in the 1-
D case. “#shot” shows the total processing time (number
of shots) of the circuit by using corresponding stencil de-
sign methodologies, which is computed by the equation of
Objective 1. “#char” is the number of characters that fits
into stencils, and “#CPU” tells the runtime of these stencil
optimization methods in terms of seconds.

As we can see, compared to No-overlap, we are able to put
on average 42% more characters on the stencil, and reduce the
total projection time (number of shots) by 51%. With respect
to Greedy algorithm, our approach still achieves on average
14% more projection time reduction, by allowing 7% more
characters placed. The CPU time of our approach is relatively
large but its absolute value is only around 20s. These results
show the effectiveness and efficiency of our proposed three-
phase iterative refinement algorithm.

For this special one-dimension problem, Greedy looks also
quite useful. The reason is that the vertical blanking spaces of
these candidates are uniform in this case, and have been fully
shared during the stencil design.

Next, we investigate the benefits achieved by sharing hor-
izontal and vertical spacing, respectively. Note that we can
enable or disable vertical space margin by setting appropriate
number of available rows. In Fig. 15, light blue column “No-
overlap” illustrates the number of characters put on the stencil
when no space overlapping is allowed. Dark blue column
“H-overlap” lists the results, when horizontal blank sharing
is enabled but vertical is forbidden. Green column “H+V
overlap” shows the character number when both inside-row
and inter-row sharing are enabled which is our default setting.
The only difference between “H-overlap” and “H+V overlap”
is that, in “H+V overlap,” the overlapping between rows plays
roles.

Fig. 15. Investigation of the throughput improvement from horizontal and
vertical overlapping, respectively.

Fig. 16. Trend of area reduction ratio with respect to the number of iterations
(for 1D-1).

As the result shows, the improvement of throughput is
mainly from sharing horizontal spacing within each row.
This alone increases the number of used characters by 32%.
The vertical margin optimization contributes another 10%
character number increase. This demonstrates our three-step
iterative refinement method, designed for horizontal overlap-
ping optimization, is effective and contributes major portion
of throughput improvement.

To illustrate how our algorithm performs over iterations, we
also plot the trend of area reduction for testcase 1-D in Fig. 16.
The y-axis shows the amount of reduced area after we perform
Hamilton-based compaction and multirow swapping in each
iteration, with normal to the stencil area. It can be concluded
that the first iteration plays the key role in our optimizations.

Further, we break down and study the statistics of different
steps of proposed algorithm. In Fig. 17, [1]–[3] correspond to
the stages of 1-D bin-packing, single row reordering, multirow,
and inter-stencil tuning, respectively. Here, we only focus on
one testcase 1D-1. Fig. 17(a) illustrates the CPU time distri-
bution of these steps. On the other hand, Fig. 17(b) reflects
their individual contributions for throughput improvement. In
our three-step iterative refinement flow, only the first step 1-D
bin-packing directly increases the number of characters. Steps
2 and 3 are all used for compacting currently-existing char-
acters on the stencil, which creates more spacing for pushing
more candidates in bin-packing the next iteration. Therefore,
we only list the reduced packing area by steps 2 and 3 in
Fig. 17(b). Seen from Fig. 17, the major CPU bottleneck
comes from single row reordering and inter-stencil tuning.
Step 2 of with-in row optimization contributes most for pack-
ing area reduction, which is the key step for further occupation
of additional characters.

To evaluate how far Greedy and our proposed solution
are close to the optimal one, we also implemented an ILP

YUAN et al.: E-BEAM LITHOGRAPHY STENCIL PLANNING AND OPTIMIZATION WITH OVERLAPPED CHARACTERS 177

Fig. 17. Distribution of CPU time and area saving of distinct steps in our
proposed 1-D flow (for testcase 1D-1 only). (a) Breakdown of CPU time.
(b) Breakdown of area saving.

TABLE III

Result Comparison for 1-D Problem

NO-OVERLAP GREEDY Our Approach
ckts #shot #char CPU(s) #shot #char CPU #shot #char CPU

1D-1 28 654 676 1.2 13 528 901 2.2 10 083 951 22.3
1D-2 41 727 625 1.1 17 929 836 2.1 14 921 880 21.8
1D-3 38 460 529 0.9 25 155 727 1.9 22 503 768 20.6
1D-4 41 260 484 0.8 29 462 665 1.8 26 756 702 20.1
Total 150 101 2314 4 86 074 3129 8 74 263 3301 84.8
ratio 2.0 1 0.05 1.16 1.35 0.10 1 1.42 1

TABLE IV

Result Comparison with Respect to ILP-Derived Optimal

Solution

ckts #char #shot CPU (s)
NO-OVERLAP 16 1096 0.00

GREEDY 20 846 0.02
Our Approach 22 704 0.1

ILP 24 515 >3600

formulation, and considered its solution as “optimal.” Since
the complexity of ILP is forbiddingly high, we pick up one
small design. The sizes of candidates and stencil are set as
4 μm × 4 μm and 16 μm × 16 μm, respectively. The number
of candidates is 30. The results are shown in Table IV.

In terms of shot number, our approach is 56% and 14%
better than Nonoverlap and Greedy respectively, which shows
the effectiveness of proposed flow. When compared to ILP, it
is 27% worse. This indicates possible improvement space of
our methodology, which we are going to work on in future.
On the other side, as we can see, ILP is very slow even for
such a small testcase, taking more than 1 h. All the other three
methods finish in seconds. It is easily seen that ILP definitely
cannot handle our real case of 1e3 candidates.

For Greedy algorithm, it is 41% worse than ILP but only
14% inferior than our approach, judged by shot number.
This again supports our previous conclusion that the greedy
algorithm in 1-D is not that bad as expected.

B. 2-D Stencil Design

In our 2-D stencil design, we reused the same parameters
in Parquet for our simulated annealing framework, includ-
ing initial and stopping temperature, temperature degrading
factors, and so on. There are three types of different SP
perturbation methods, throughput driven swapping and slack
based insertion (proposed in Section IV-D), plus random
permutation. Random permutation is adopted here just for
avoiding getting stuck into local space. In our implementation,

TABLE V

Result Comparison for 2-D Problem

NO-OVERLAP GREEDY Our Approach
ckts #shot #char CPU #shot #char CPU #shot #char CPU CPU(eval)
2D-1 23 319 676 1.3 26 832 625 2.3 16 877 803 242 171
2D-2 29 368 576 1 25 977 642 2.6 20 141 750 235 170
2D-3 32 399 526 0.9 30 411 558 2.5 23 850 688 221 155
2D-4 35 410 474 0.8 31 930 531 2.7 25 278 660 214 161
Total 120 496 2252 4 115 150 2356 10.1 86 146 2901 912 657
ratio 1.40 1 0.004 1.33 1.05 0.011 1 1.30 1 0.72

we rely on a pseudo number generator to determine which type
of perturbation to apply in each iteration.

Table V lists the comparison of stencil design in the general
2-D case. Column CPU(eval) shows the runtime for SP-
evaluation phase. The meaning of labels is the same as
Table III. Compared to No-overlap and Greedy methods, in
average, our proposed SP-based algorithm places 28% and
24% more characters on stencil, which reduces the projec-
tion time (number of shots) by 31% and 25%, respectively.
The Greedy algorithm does not work that well in this 2-D
problem, because the blanking area varies in both horizontal
and vertical directions and the native first-bin-best-fit packing
very easily gets stuck in local optima. Moreover, from Column
CPU(eval), we observe that the major portion time of our
algorithm is spent on SP-evaluation (around 73%), even with
the applicant of our proposed look-ahead pruning algorithm.

Due to 2-D optimization, the runtime of our approach is
much longer than 1-D problem comparatively. It takes a few
hundred seconds, but is still satisfactory. The design of stencil
is only a one-time process before projecting large volume of
chips by EBL. Several minutes preprocessing time is relatively
very tiny in the whole manufacturing procedure.

Next, we will show the effectiveness of our proposed look-
ahead sequence pair evaluation technique in Fig. 18. “Without
look ahead” applies the extension of longest path based evalua-
tion method in Section IV-B1, while “With look ahead” adopts
our proposed look-ahead pruning technique based on longest
subcommon sequence computation. For these two versions,
we achieve the same solution quality, the throughput. In terms
of runtime, our approach can achieve about 48% reduction.
When judged by the step of SP evaluation only, the CPU time
decreases by 66%. That also demonstrates our statement in
Section IV-B2) that although the theoretical timing complexity
of Algorithm 3 is as much as naive Algorithm. 2, it performs
much better in practice.

Similar to the 1-D problem, we also study the individual
contributions of different SP perturbation methods applied
in our simulated annealing flow. As shown in Fig. 19, the
proposed throughput driven and slack base methods perform
effectively, which contribute around 80% of total projection
time reduction. Their runtimes are comparable, not showing
outstanding outlier.

As the last experiment, we apply the proposed 2-D simu-
lated annealing based framework to solve 1-D testcases. The
result is listed in Table. VI. We added two new columns CP

and VSB to show their shot numbers respectively. As we can
show, 2-D algorithm generates 24% more shot number and

178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

TABLE VI

Result Comparison When Applying 2-D Methods to 1-D Problem

Our Approach of 1-D 1-D Greedy Our Approach of 2-D
ckts #shot #CP #VSB #char CPU(s) #shot #CP #VSB #char CPU(s) #shot #CP #VSB #char CPU

1D-1 10 083 6105 3978 951 22.3 13 528 5800 7728 901 2.2 16 345 5449 10 896 794 257
1D-2 14 921 6569 8352 880 21.8 17 929 6262 11 667 836 2.1 20 986 4796 16 190 692 245
1D-3 22 503 5334 17 169 768 20.6 25 155 5043 20 112 727 1.9 25 906 4504 21 402 648 240
1D-4 26 756 4864 21 892 702 20.1 29 462 4611 24 851 665 1.8 29 157 4372 24 785 589 228
Total 74 263 22 872 51 391 3301 84.8 86 074 21 716 64 358 3129 8 92 394 19 121 73 273 2723 970
ratio 1 1 1 1 1 1.16 0.96 1.25 0.95 0.09 1.24 0.83 1.43 0.83 11.43

Fig. 18. Total CPU time with and without look-ahead sequence pair evalu-
ation.

Fig. 19. Distribution of CPU time and projection time reduction of different
types of SP permutations in our proposed simulated annealing framework (for
testcase 2D-1 only). (a) CPU time. (b) Projection time reduction.

runs much slower than our proposed 1-D three-step iterative
method. Its solution quality is also 7% worse than greedy 1-D
DBF packing algorithm. The reasons are two-fold. First, the
2-D algorithm is not aware of the fact that the vertical blank
space of 1-D cases is uniform and can be utilized optimally.
Moreover, 2-D algorithm is rather heuristic, and not able to
handle horizontal overlapping as effectively as Hamilton cycle
based compacting proposed in 1-D three phase refinement
flow, or DBF packing algorithm in 1-D greedy approach.

VI. Conclusion

In the future, to further improve the algorithm runtime, we
will try to substitute the annealing-based 2-D stencil design
by some nonstochastic packing algorithm, e.g., the work
in [24]. We also plan to work on multiple-stencil optimization
with massive parallel electronic beam projection as well as
electronic beam lithography friendly standard cell design,
placement and routing algorithm. In addition, we are inter-
ested in expanding our investigation on research opportunity
between physical design (e.g., [25], [26]) and other emerging
lithography, such as triple patterning, nanoimprint, and EUV.

Acknowledgment

The authors would like to thank Dr. G.-J. Nam at IBM
Austin Research, Austin, TX, for helpful discussions on this
problem.

References

[1] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition
for double patterning lithography,” in Proc. Int. Conf. Comput.-Aided
Des., Nov. 2008, pp. 465–472.

[2] K. Yuan, J.-S. Yang, and D. Z. Pan, “Double patterning layout decom-
position for simultaneous conflict and stitch minimization,” in Proc. Int.
Symp. Phys. Des., Mar. 2009, pp. 107–114.

[3] K. Yuan, K. Lu, and D. Z. Pan, “Double patterning lithography friendly
detailed routing with redundant via consideration,” in Proc. Des. Autom.
Conf., Jun. 2009, pp. 63–64.

[4] K. Yuan and D. Z. Pan, “WISDOM: Wire spreading enhanced decom-
position of masks in double patterning lithography,” in Proc. Int. Conf.
Comput.-Aided Des., Nov. 2010, pp. 32–38.

[5] J.-S. Yang, K. Lu, M. Cho, K. Yuan, and D. Z. Pan, “A new graph-
theoretic, multi-objective layout decomposition framework for double
patterning lithography,” in Proc. Asia South Pac. Des. Autom. Conf.,
Jan. 2010, pp. 637–644.

[6] B. Yu, K. Yuan, and D. Z. Pan, “Layout decomposition for triple
patterning lithography,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., Nov. 2011.

[7] A. Fujimur, “Beyond light: The growing importance of E-beam,” in
Proc. Int. Conf. Comput.-Aided Des., Nov. 2009.

[8] A. Fujimur, “Design for E-beam: Getting the best wafers without the
exploding mask costs,” in Proc. Int. Symp. Quality Electron. Des., Mar.
2010.

[9] A. Fujimura, T. Mitsuhashi, K. Yoshida, S. Matsushita, L. L. Chau,
T. D. T. Nguyen, and D. MacMillen, “Stencil design and method for
improving character density for cell projection charged particle beam
lithography,” U.S. Patent 20090325085, Jan. 2010.

[10] H. C. Pfeiffer, “New prospects for electron beams as tools for semicon-
ductor lithography,” Proc. SPIE, vol. 7378, p. 737802, May 2009.

[11] T. Fujino, Y. Kajiya, and M. Yoshikawa, “Character-build standard-cell
layout technique for high-throughput character-projection EB lithogra-
phy,” Proc. SPIE, vol. 5853, p. 160, Jul. 2005.

[12] M. Sugihara, T. Takata, K. Nakamura, Y. Matsunaga, and K. Murakami,
“A CP mask development methodology for MCC systems,” Proc. SPIE,
vol. 6283, p. 62833J, May 2006.

[13] M. Sugihara, K. Nakamura, Y. Matsunaga, and K. Murakami, “CP mask
optimization for enhancing the throughput of MCC systems,” Proc.
SPIE, vol. 6349, p. 63494B, Oct. 2006.

[14] Y. Matsunaga, M. Sugihara, and K. Murakami, “Technology mapping
technique for enhancing throughput of multi-column-cell systems,” Proc.
SPIE, vol. 6517, p. 65170Z, Mar. 2007.

[15] M. Sugihara, “Optimal character-size exploration for increasing through-
put of MCC lithographic systems,” Proc. SPIE, vol. 7271, p. 72710L,
Feb. 2009.

[16] Y. Zhang and C. Chu, “RegularRoute: An efficient detailed router with
regular routing patterns,” in Proc. Int. Symp. Phys. Des., Mar. 2011, pp.
45–52.

[17] Y. Zhang and C. Chu, “Fastroute 3.0: A fast and high quality global
router based on virtual capacity,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2008, pp. 344–345.

[18] Y. Zhang and C. Chu, “CROP: Fast and effective congestion refinement
of placement,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., Nov.
2009, pp. 344–350.

YUAN et al.: E-BEAM LITHOGRAPHY STENCIL PLANNING AND OPTIMIZATION WITH OVERLAPPED CHARACTERS 179

[19] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-pair,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 15, no. 12, pp.
1518–1524, Dec. 1996.

[20] X. Tang, R. Tian, and M. Wong, “Fast evaluation of sequence pair in
block placement by longest common subsequence computation,” in Proc.
Des. Autom. Test Eur., Mar. 2000, pp. 106–111.

[21] S. H. Adya and I. L. Markov, “Fixed-outline floorplanning: Enabling
hierarchical design,” IEEE Trans. Very Large Scale Integr. Syst., vol.
11, no. 6, pp. 1120–1135, Dec. 2003.

[22] J. Z. Yan and C. Chu, “Optimal slack-driven block shaping algorithm
in fixed-outline floorplanning,” in Proc. Int. Symp. Phys. Design, Mar.
2012.

[23] [Online]. Available: http://www.akira.ruc.dk/∼keld/research/LKH
[24] J. Z. Yan and C. Chu, “DeFer: Deferred decision making enabled fixed-

outline floorplanning algorithm,” IEEE Trans. Comput.-Aided Des., vol.
29, no. 3, pp. 367–381, Mar. 2010.

[25] J. Z. Yan, N. Viswanathan, and C. Chu, “Handling complexities in
modern large-scale mixed-size placement,” in Proc. IEEE/ACM Des.
Autom. Conf., Jul. 2009, pp. 436–441.

[26] J. Z. Yan and C. Chu, “Handling complexities in modern large-scale
mixed-size placement,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 30, no. 7, pp. 1020–1033, Jul. 2011.

Kun Yuan received the B.S. degree in electronic
engineering information science from the University
of Science and Technology of China, Hefei, China,
in 2004, and the Ph.D. degree in electrical and
computer engineering from the University of Texas,
Austin, in 2010.

He was with TeraRoute, Austin, TX, in 2007 and
with NVIDIA, Santa Clara, CA, in 2009. He is
currently a Senior Member of Technical Staff with
Cadence Design Systems, San Jose, CA. His current
research interests include physical design automation

for manufacturability and numerical optimization.
Dr. Yuan received the ISPD Routing Contest Award in 2007, and three Best

Paper Awards (ASPDAC 2010, ISPD 2011, and the IBM Research 2010 Pat
Goldberg Memorial Best Paper Award in CS/EE/Math).

Bei Yu received the M.S. degree in computer science
from Tsinghua University, Beijing, China, in 2010.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
University of Texas, Austin.

His main research interests include physical de-
sign, design for manufacturability, and optimization
algorithms with applications in very large scale
integration computer-aided design.

David Z. Pan (S’97--M’00--SM’06) received the
B.S. degree from Peking University, Beijing, China,
and the M.S. and Ph.D. degrees from the University
of California, Los Angeles (UCLA).

From 2000 to 2003, he was a Research Staff
Member with the IBM T. J. Watson Research Center,
Yorktown Heights, NY. He is currently an Asso-
ciate Professor with the Department of Electrical
and Computer Engineering, University of Texas,
Austin. He has published over 160 papers in inter-
national conferences and journals, and holds eight

U.S. patents. His current research interests include nanometer physical design,
design for manufacturability and reliability, vertical integration design and
technology, and design/computer-aided design (CAD) for emerging technolo-
gies.

Dr. Pan has served as an Associate Editor for the IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,
the IEEE Transactions on Very Large Scale Integration Systems,
the IEEE Transactions on Circuits and Systems Part I and Part II,
the Journal of Computer Science and Technology, and the IEEE Circuits

and Systems Society Newsletter. He has served as the Chair of the
IEEE CANDE Committee and the ACM/SIGDA Physical Design Technical
Committee. He is in the Design Technology Working Group of the In-
ternational Technology Roadmap for Semiconductor. He has served in the
technical program committees of major VLSI/CAD conferences, including
ASPDAC (Subcommittee Chair), DAC (Subcommittee Chair), DATE, ICCAD
(Subcommittee Chair), ISPD (Program Chair), ISQED (Topic Chair), ISCAS
(CAD Track Chair), SLIP (Publication Chair), GLSVLSI, ACISC (Program
Co-Chair), ICICDT (Award Chair), and VLSI-DAT (EDA Track Chair). He
was the General Chair of ISPD 2008, the General Chair of ACISC 2009,
and the Steering Committee Chair of ISPD 2009. He received a number of
awards for his research contributions and professional services, including the
ACM/SIGDA Outstanding New Faculty Award in 2005, the NSF CAREER
Award in 2007, the SRC Inventor Recognition Award thrice in 2000 and
2008, the IBM Faculty Award four times in 2004–2006, 2010, the UCLA
Engineering Distinguished Young Alumnus Award in 2009, seven Best Paper
Awards (SRC Techcon 1998 and 2007, DATE 2009, ICICDT 2009, ASPDAC
2010, ISPD 2011, and the IBM Research 2010 Pat Goldberg Memorial Best
Paper Award in CS/EE/Math) and many other Best Paper Award nominations
from DAC/ICCAD/ASPDAC/ISPD, ISPD Routing Contest Awards in 2007,
the eASIC Placement Contest Grand Prize in 2009, the IBM Research Bravo
Award in 2003, the Dimitris Chorafas Foundation Research Award in 2000,
and the ACM Recognition of Service Award in 2007 and 2008. He was an
IEEE CAS Society Distinguished Lecturer from 2008 to 2009.

