
Congestion-aware Global Routing using Deep Convolutional
Generative Adversarial Networks

Zhonghua Zhou∗, Ziran Zhu†, Jianli Chen†, Yuzhe Ma‡, Bei Yu‡, Tsung-Yi Ho§, Guy Lemieux∗, Andre Ivanov∗
∗Department of Electrical and Computer Engineering, The University of British Columbia
†Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong

§Department of Computer Science, National Tsing-Hua Uniersity

Abstract—The routing stage is one of the most time-consuming steps
in System on Chip (SoC) physical design. For large designs, it can take
days of effort to find a complete routing solution, and the result directly
affects the circuit performance. In this paper, we present a routing
strategy that decomposes global routing into three stages, with different
objectives associated with each stage. This is in contrast to conventional
approaches, which usually use a single global optimization objective for
driving the entire process. Furthermore, we propose to use generative
adversarial networks (GAN) to predict the congestion heatmap. This
deep learning method has been used to successfully improve image
recognition results. We adapt its use to global routing by converting
data between the router and the image-based model. This model needs
only placement and netlist information as input to make the forecast.
Our GAN-based congestion estimator produces congestion heatmaps
that show good fidelity with actual heatmaps produced by state-of-the-
art global routers. Using this heatmap along with our modified routing
flow, we achieve comparable global routing quality in terms of the
total overflow and wirelength, but the runtime speedup on hard-to-
route designs is significant.

I. INTRODUCTION

As integrated circuit fabrication technologies evolve, design rules
provided by manufacturers continue to increase in number and com-
plexity in order to secure viable fabrications. These requirements
are becoming increasingly difficult to meet, which in turn, makes
physical design typically among the most time-consuming stages in
electrical design automation (EDA) flows. To solve such challenges,
predictive modeling during design flow and fast routing algorithms
have garnered much attention from both academia and industry.

Global-routing-based congestion estimation is the most widely
adopted predictive modeling algorithm in routers. In [1]–[5], simpli-
fied global routers are applied to quickly generate a rough conges-
tion map, while probabilistic congestion estimation algorithms [6],
[7] constitute alternative, faster approaches. These somewhat con-
ventional approaches suffer from scalability limitations as advanced
technology nodes bring new sets of design rules that are not
considered by these latter algorithms. In recent years, machine
learning techniques have been widely applied for finding accurate
and fast routability estimations. In [8]–[11], simple supervised-
learning algorithms are applied to make Design Rule Checking
(DRC) violation prediction models. Xie et al. [12] proposed a con-
gestion estimation algorithm using Fully Convolutional Networks
(FCNs). However, the prediction outputs of these works cannot be
encapsulated back into the global routing algorithms, as the DRC
binary output (violation or not) do not correlate strongly with actual
congestion levels. As a result, global routing algorithms gain no or
only little benefit from these classification-like estimations.

Many contests [13]–[15] focused on global routing have been
held in recent years, and various routing algorithms [5], [16],

[17] have been proposed. Most of the routing algorithms follow
a single or double stage approach. These iterative algorithms use
similar strategies and aim to reduce congestion and wirelength
simultaneously. As the number of iterations grows, such methods
tend to inevitably end up in local optima [18] and thereby fail to
yield globally acceptable/optimal solutions.

In this paper, our focus is on providing solutions to three
problems: 1) We propose a new multi-objective global routing
algorithm aimed at reducing the likelihood of converging on local
optima during the iterative rip-up & reroute process; 2) We develop
a scalable and accurate congestion estimation methodology which
learns from physical properties of actual routed designs, thus
learning from router decisions associated with these routed designs;
and 3) We design a “bridge” algorithm to adapt the image-based
data used by deep-learning generators with the placement-oriented
and netlist-oriented data used by a global router. To the best of our
knowledge, this is the first work that uses a Generative Adversarial
Network (GAN) network for routability-driven global routing. To
integrate GANs into the global routing process, we propose an
image encoding solution, discussed in Section III, which interprets
routing data as image patterns.

Our main contributions are summarized as follows:
• We present a multi-objective global routing algorithm improve-

ment to NTHU-Route 2.0 [17], which decomposes the main
routing stage into sub-phases with independent cost functions
and objectives.

• We develop a content-encoder DCGAN (c-DCGAN) to predict
accurate congestion before actual routing such that placements
can be identified as routable or not at an early stage.

• We propose a data to image bi-directional translator which
can be applied to any router allowing the direct use of our
c-DCGAN regardless of the EDA tools and design formats.

The rest of this paper is organized as follows. Section II discusses
the basic concepts. Section III explains the proposed frameworks of
c-DCGAN and our multi-objective algorithm. Section IV presents
experimental results, followed by conclusions in Section V.

II. PRELIMINARIES

In this section, we discuss the concepts of Generative Adversarial
Networks (GAN) and some elements of global routing for SoCs.

A. GAN

GANs [19] have shown good results in many fields that require
data creation and predictions, but have not been studied for gen-
eral applications in SoC physical design, particularly for routing
congestion estimation. Our work here constitutes an exploration
of the potential for GANs to alleviate the SoC global routing
process. A GAN, as demonstrated in Fig. 1, trains two networks978-1-7281-5758-0/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:35:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 1 General structure of GAN.

Fig. 2 From design to tiles to routing grid.

simultaneously: A generator model Gen and a discriminator
model D. These two models compete with each other in such a
way that Gen tries to generate samples which are as close to the
real ones as possible, in order to fool D. Meanwhile, D classifies
if a sample is from the real training dataset rather than a fake one
produced by Gen, where the fake input is generated from random
value called “noise”. At its convergence, the generator is expected
to produce outputs with a feature distribution of high similarity to
the real dataset. Ultimately, the generator will be used to produce
congestion estimates for our router.

B. Routing Grid

A routing grid is the logical graph representation of the physical
SoC. In SoC routing methodologies, the grid graph G is partitioned
into multiple uniform sub-regions, commonly referred to as vertices,
as illustrated in Fig. 2. The tiles are crossed by one vertical and one
horizontal gridline, along which routing channels can be created.
Each vertex in G corresponds to a grid tile, and each edge in G
between vertices represents the shared boundary of two tiles. The
graph G used for global routing needs to capture the capacities of
the routing regions. The capacity of an edge e ∈ G between two
vertices u and v is defined as the maximum number of available
routing channels between the routing regions of u and v. The usage
of an edge e defines the number of nets that have crossed this
edge. If the total usage of an edge e is larger than its capacity,
then the tile containing that edge is considered to be congested,
and the amount of overhead is referred to as overflow, of(e) =
usage(e)− capacity(e).

III. METHODOLOGY

A. Data-Image Translator (DIT)

Among multiple existing machine learning techniques discussed
in Section I, the work [12] uses circuit layout images generated
by commercial tools as inputs to the learning model, which later
outputs images as well. However, this approach leaves one unre-
solved problem, i.e., the relationship of routability information to
the image characteristics. Therefore, here we developed a data to
image translator (DIT) to relate circuit images to routing parameters.

Fig. 3 A 2× 2 routing grid.

Fig. 4 Data-Image translation.

Although different routing tools, either commercial or academic,
take in various kind of design formats, such as “bookshelf” or
“LEF/DEF”, they essentially use the same graph structure discussed
in Section II-B to store data. Therefore, we developed a translator
which translates a logical routing grid to an image while preserving
the design layout structure. As shown in Fig. 3, a 2 × 2 tile grid
consists of three kinds of information: 4 tiles, 9 edge intersections,
and 12 edges. We first ignore the tile width and height properties,
which shrinks each tile into one single pixel. Following the same
philosophy, edge length is ignored and each one of them corre-
sponds to one pixel as well. The intersection contains no useful
data, but is left in the image as gray “filler pixels” to preserve
the spatial layout of the other information. With this mapping, the
information surrounding each tile is drawn as a group of 2 × 2
pixels in Fig. 4 (drawn as one gray, two green, and one blue pixel).
The actual data encoding used is described in Section III-B.

B. Data Encoding and Labeling

The proposed c-DCGAN provides guidance for the global router.
Therefore, the final global routing solution is selected as the training
target. For input features, our network only needs a minimum
amount of netlist information: (1) pin density, (2) routing channel
capacities, and (3) net density. The “pin density” is obtained after
all pins’ locations are identified. The routing channel capacities
reflect edge capacities but are affected by the placement of macros.
Net density is computed using Rectangular Uniform wire DensitY
(RUDY) [20]. Visualizations of input features and output target are
shown in Fig. 5.

Each image pixel in Fig. 4 has circuit information encoded into
its RGB channels as follows. First, the red channel is to hold the
ground truth of actual congestion values. This red channel is forced
to zero for input images, while the estimated congestion appears
here in the output data. In the 2× 2 block of pixels, the green and
blue channels are used to encode information about pin density,
netlist density, and routing channel capacities as follows:
image[2x][2y].g = image[2x][2y].b = 0

image[2x][2y + 1].g = V capacity[x][y] + V netdensity[x][y]

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:35:05 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

Fig. 5 Raw data for (a) Pin density; (b) Net density; (c) Routing
channel capacity; and (d) Congestion heatmap.

image[2x][2y + 1].b = V capacity[x][y]

image[2x+ 1][2y].g = Hcapacity[x][y] +Hnetdensity[x][y]

image[2x+ 1][2y].b = Hcapacity[x][y]

image[2x+ 1][2y + 1].g = Hnetdensity[x][y] + V netdensity[x][y]

image[2x+ 1][2y + 1].b = pindensity[x][y]

This colorization encoding is designed so no feature can directly
interfere with the target congestion in the red channel. This also
allows us to quickly distinguish and extract the congestion map
from the final output image and export it back into the router.

C. Content-Aware Deep Convolutional GAN

Using the translator and encoding presented in Section III-A and
Section III-B, we can generate design images that are independent
of design tools and file formats. These images contain enough
information for a network to perform congestion analysis. The
prediction outputs of the network are also images that can be
translated back and provided as input to the global routing process.
In our case, D is only used during the model training process, and
the final product used for congestion estimation is G.

D. Generator Design

The generator Gen learns the feature distribution of a dataset,
which can be described using a mapping function:

Gen(z) : pz → pg (1)

where pz is the feature distribution of an input data set z, which
can be assumed to be a superposition of noise and latent data. pg
is the feature distribution of a real dataset. The generator’s task
is to maximize the log-likelihood that the discriminator flags fake
samples as real, as is shown in Equation (2).

maxEZ [log(D(Gen(z)))] (2)

In our application, the generator receives, as input, 2D design
placement & routing layout images. The output congestion predic-
tion will be made by the Gen on top of the inputs.

Inspired by [21], [22], we developed a generator comprised of a
stack of convolutional neural net layers, known as encoder, and a
stack of transpose layers, known as decoder, as shown in Fig. 6.
The encoder transforms the input into a latent space; the meaning
of this space is created by the generative model, i.e. it does not
correspond to anything of our own design. The decoder will then

Fig. 6 Proposed generator model.

Fig. 7 Proposed discriminator model.

interprets and reconstructs an output from the latent space. In our
specific application, the encoder extracts key features from input
designs, and these features are used by the decoder perform the
congestion estimation.

E. Discriminator Design

The discriminator D is constituted by CNNs with multiple
convolution layers and one fully connected layer. The value function
for D is shown in Equation (3):

max
D

V (D,Gen) = Ex[logD(x)]+Ez[log(1−D(Gen(z)))] (3)

where x is the real dataset, and z is the superposition of noise and
latent input for Gen. The objective of D is to maximize the value
of V (D,Gen), which is to maximize logD(x) and D(Gen(z)).

In this work, D classifies whether the congestion heatmap is the
real output from the router or a fake one generated from Gen. The
discriminator’s structure is illustrated in Fig. 7. Batch normalization
[23] and dropout [24] techniques are applied to each layer, for a
faster convergence and prevent the model from over-fitting.

F. Model pre-process & Training

In our application and the details of pre-processing are listed in
Algorithm 1.

In our case, circuits we wish to analyze contain up to approx-
imately 400×400 tiles. For training and estimation purposes, we
segment each design into multiple non-overlapping partitions of
32×32 tiles. Each partition is used to produce a 64×64 pixel image
subsequently used as input for training. The tile size directly affects
the prediction model size, memory requirements and, ultimately,
prediction quality. Ideally the larger the input size, the better the
model performance. However, in practice, open-source benchmarks
are very limited in quantity. which restricted the growth of input
size. Because if the size of input is enlarged, the number of inputs
will be reduced, affecting the training convergence of the model.
From our experiments, tile sizes of 32×32 yielded the best results
for the trade-off. We plan to investigate these trade-offs further. The
generator estimates a single output image for each input image.
When estimating congestion for an entire circuit, we stitch together
multiple output images back into the original circuit grid size.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:35:05 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Model Training Pre-processing

Require: Placed netlist.
1: pin den, net den, macro, congestion = Init array();
2: while net ← nets.read() do
3: net den[net.position] = RUDY(net);
4: while pin ← net.getNextPin() do
5: pin den[pin.position] += 1;
6: end while
7: end while
8: patternRoute();
9: while edge ← grid.read() do

10: congestion = edge.current cap;
11: macro = edge.max cap;
12: end while
13: dataImageTranslator({pin den, net den,macro}) ;
14: Features: X = {pin den, net den,macro};
15: Target: Y = {congestion};
16: Resize: X,Y ∈ RW×H×1 to Xn, Yn ∈ R64×64×1;
17: Combine: Xn, Yn ∈ R64×64×1 to Xn, Yn ∈ R64×64×3;

Fig. 8 Proposed multi-objective routing.

Based on the c-DCGAN framework, the final objective function
of the entire network becomes:

min
G

max
D

V (D,G) = Ex[logD(x)]+Ez[log(1−D(G(z)))] (4)

As just described, the purpose of the discriminator training is
to maximize the probability of correctly labeling samples, while
that of generator training is to minimize the log-likelihood of
1−D(G(z)). Eventually, a generator becomes capable of generating
output that the discriminator cannot distinguish from actual/real
data; i.e, D(G(z)) → 1. Such a generator is considered to have
“converged” and is saved for prediction use.

G. Multi-objective Global Routing

The flowchart of our proposed algorithm is shown in Fig. 8. After
the design netlist is read by the router, the first estimated conges-
tion heatmap using our c-DCGAN (discussed in Section III-C) is
obtained. After every M routing iterations in the pattern routing,
c-DCGAN can be repeatedly called to generated a new congestion
heatmap prediction, using the current incremental routing informa-
tion. The congestion estimation directly affects the quality of the
initial routing. In turn, this impacts our multi-objective rip-up &
reroute optimization.

Our work decomposes the rip-up & reroute into three stages. Each
with different cost functions, routing orders and routing algorithms

with the aim of avoiding unnecessary searches and accelerating the
overall routing process.

1) 1st Stage: The first stage of rip-up & reroute can be consid-
ered as a pre-processing stage. In this stage, the routing process is
restricted to within the bounding box of the net. As a result, we
can reduce the overflow without increasing wirelength. We define
the cost function for calculating the price of crossing an edge as:

cost1 = 1 +
ρ

1 + e−ε∗γ
+ cvia (5)

where ρ and ε are user defined parameters that determine the slope
of the cost with respect to the congestion. They are empirically set
as 0.8 and 2 in this work. Meanwhile, γ is the overflow value and
cvia is the cost of a via, which is 1 if routing direction changed, 0
otherwise. When the overflow reduction is less than 2% in current
iteration, the algorithm changes to the second stage.

2) 2nd Stage: A new cost function is applied in this 2nd stage:

cost2 = 1− e−βe
−γi

+ chistory × cpenalty + cvia (6)

where values of β and γ are user defined, i is the current rip-
up & reroute iteration count, and chistory has an initial value of
1 and is increased by 1 if that edge has overflow. The penalty
cpenalty is a user-defined scaling parameter. If the overflow falls
under a threshold of 20 overflows, or has no improvement after 60
iterations, the third stage will be entered.

3) 3rd Stage: In the 3rd stage, congested areas become the focus
of attention and are referred to “forbidden regions” [25]. The router
is discouraged from using “forbidden regions” as these areas are
already too congested and considering longer detours is likely to
yield better final routing convergence. The cost function is:

cost3 = 1− e−βe
−γi

+ cvia + cf (7)

where cf is related to the “forbidden regions” and is defined as:

cf =

{
Cf × (cdemand/ccapacity), in “forbidden areas”;
chistory × cpenalty otherwise.

(8)

Here Cf is a constant, which reflects the level of deterrence for
the router to attempt routing a net through forbidden areas. The
new cpenalty is defined as follows:

cpenalty =

1/(ccapacity − cdemand), ccapacity > cdemand;

ξ + cdemand/ccapacity, ccapacity < cdemand;

ξ, ccapacity = cdemand.
(9)

where ξ is a user defined parameter.
4) Post-Processing: After three stages of routing, some edges

become less congested, but the chistory term increases and may
become a predominant term in the cost function. As a result, these
edges are blocked from being valid routing candidates again. In
order to solve this issue, we remove the chistory term from the
cost function such that the router can re-evaluate the grid and most
edges are released for reuse after multiple optimization iterations.

IV. EXPERIMENTAL RESULTS

A. Congestion estimation quality

The baseline router on which we implemented our algorithms
is NTHU-Route 2.0 [17]. We compare the results of our work
with other available academic routers, NTHU-Route 2.0, NTUgr2
[25], and NCTU-gr 2.0 [16]. We implemented the c-DCGAN for
congestion heatmap estimation using Keras with TensorFlow
backend. We trained using 4619 placement instances, each using a

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:35:05 UTC from IEEE Xplore. Restrictions apply.

(a) a3 predicted (b) a3 real (c) a5 predicted (d) a5 real (e) b3 predicted (f) b3 real

Fig. 9 Predicted congestion heatmaps versus actual congestion heatmaps.

TABLE I Congestion Estimation Quality Metrics

mean ‖normalized- Std. deviation of
Design PCC error‖ normalized-error

bigblue1 (b1) 0.9544 0.0327 0.0672
newblue1 (n1) 0.9333 0.0250 0.0600
newblue6 (n6) 0.9288 0.0047 0.0463
adaptec1 (a1) 0.9270 0.0447 0.0751
newblue2 (n2) 0.9266 0.0124 0.0468
bigblue4 (b4) 0.9157 0.0142 0.0566
adaptec5 (a5) 0.9129 0.0014 0.0468
newblue4 (n4) 0.9040 0.0318 0.0609
bigblue2 (b2) 0.9038 0.0028 0.0456
adaptec3 (a3) 0.9026 0.0202 0.0519
newblue5 (n5) 0.8996 0.0201 0.0496
bigblue3 (b3) 0.8843 0.0110 0.0428
adaptec4 (a4) 0.8644 0.0108 0.0377
adaptec2 (a2) 0.8453 0.0268 0.0620
newblue3 (n3) 0.1808 0.0227 0.0632

64×64 image grid with 3 image channels. The model is trained on a
single Nvidia 1080 Ti GPU. The router algorithm is implemented in
C++ and tested on our server with Intel 2.2GHz CPUs. We trained
the model for 300 epochs, which took approximately 8 hours. The
dataset was randomly split into two groups, 80% for training and
20% for evaluation. After the training, the model is saved onto the
disk, and loaded into the router to make predictions.

Visual correlation is shown in Fig. 9. For a more quantitative
comparison, we introduce the use of the Pearson Correlation Co-
efficient (PCC) which ranges from -1 (absence of correlation) to
1.0 (perfect correlation). This value is computed by comparing the
congestion of each edge (estimated vs actual).

The accuracy of congestion prediction is shown in TABLE I.
The second column shows the PPC. The third column of the table
shows the mean absolute normalized-error in congestion is at most
4.47%, while the fourth column shows the standard deviation in the
normalized-error. Note that “n3” has an unusually low PCC score
because “n3” is a synthetic design purposely created to challenge
routers. The high PPC score in all other circuits shows that our
algorithm strongly predicts congestion for all legal designs in the
benchmark suite.

B. Routing quality

To show the c-DCGAN is useful, we first used the original
estimator used in NTHU-Route 2.0 in our modified router across
the entire benchmark suite. Then, we used the c-DCGAN estimator
and show normalized total results in Fig. 10. There is a small
improvement in both total wirelength and total TOF, but a large
improvement in total routing runtime. The start point of the runtime
counting is the beginning of the first stage of rip-up & reroute, and
the endpoint is the end of the post-processing. The 18.8% total

Fig. 10 Global routing improvement using c-DCGAN estimator.

runtime improvement is from a reduced effort by the global router,
not from a faster estimate computation.

Routing performance of all designs is shown in TABLE II. TOF
is the total overflow number, WL is the wirelength of the final
routing solution, and T is the runtime for the complete global
routing process (in seconds). Note that NTHU-Route 2.0 did not
finish routing “n3” within a 24-hour time-frame.

Compared with NTHU-Route 2.0, our version successfully routes
three more circuits (a2, n5, and b3) while also reducing TOF for
the remaining unroutable circuits. In addition, the hardest-to-route
circuit n3) completes at least 8 times faster at the lowest TOF
among all routers. Overall, our approach produces excellent TOF
results, beating NTUgr2 in 3 of 5 unroutable circuits and beating
NCTU-gr in 4 of 5 unroutable circuits. The Total TOF is reduced
by 21% comparing with NCTU-gr 2.0, while our TOF is 0.22%
higher than NTUGR2. The total wirelength is reduced by 7%, and
1% compared to NTUgr2 and NCTU-gr 2.0, respectively.

We integrated our approach into NTHU-Route because it is open
source. We can’t verify whether our congestion estimation will also
benefit NTUgr2 or NCTR-gr because they are not open source.

More importantly, our total runtime is 11.97× and 3.44× faster
than NTUgr2 and NCTU-gr 2.0, respectively. Excluding n3, our
total runtime is 1.8× faster than NTHU-Route 2.0. Most of the
runtime speedup comes from the efficiency of the multi-stage
routing algorithm. As shown earlier, about 19% of this speedup
comes from the improved congestion estimation model.

V. CONCLUSIONS

We proposed a new routing algorithm along with a c-DCGAN
framework which significantly improves run-time while maintaining
competitive results in routing quality. The multi-objective global
routing algorithm is able to successfully route all of the same
designs as the top prior global routers. In addition, we are able to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:35:05 UTC from IEEE Xplore. Restrictions apply.

TABLE II Comparison with State-of-the-art Global Routers

NTUgr2 [25] NCTU-gr [16] NTHU-Route 2.0 [17] Ours
TOF WL T(s) TOF WL T(s) TOF WL T(s) T Ratio TOF WL T(s) T Ratio

a1 0 5.60 177.2 0 5.44 102.53 0 5.36 207.11 1.00 0 5.38 207.37 1.00
a3 0 13.41 157.7 0 13.11 154 0 13.15 225.84 0.86 0 13.10 263.89 1.00
a4 0 12.29 59.2 0 12.19 63.6 0 12.17 56.11 0.73 0 12.23 77.29 1.00
a5 0 16.03 520.4 0 15.95 381.71 0 15.53 549.98 0.90 0 15.64 611.39 1.00
b1 0 5.85 428.4 0 5.97 204.32 0 5.57 406.78 1.44 0 5.60 283.41 1.00
n2 0 7.66 27.6 0 7.59 35.73 0 7.59 30.82 1.01 0 7.59 30.65 1.00
n6 0 18.55 487.3 0 18.27 238.72 0 17.69 968.39 2.20 0 17.67 439.83 1.00
a2 0 5.36 39.8 0 5.27 36.02 2 5.23 93.4 1.82 0 5.24 51.23 1.00
n5 0 23.90 1,220 0 23.46 281.47 18 23.14 721.52 1.81 0 23.21 399.4 1.00
b3 0 13.47 206.0 0 13.17 99.4 32 13.07 307.45 2.43 0 13.10 126.38 1.00
b2 2 9.42 6,617 4 9.10 171.35 84 9.00 400.29 2.12 8 9.01 189.17 1.00
n1 38 4.87 14,339 108 4.70 120.39 144 4.60 483.1 3.45 18 4.63 140.05 1.00
n4 148 13.55 16,327 172 13.00 158.86 242 12.88 1,033 2.30 172 12.90 449.65 1.00
b4 212 23.96 4,479 512 23.17 277.64 266 22.78 2,146 2.31 160 22.74 930.7 1.00
n3 31,136 17.96 36,326 37,182 10.80 21,053 — — >24 hrs — 31,050 10.70 2,604 —

Total 31,536 191.90 81,411 37,978 181.19 23,379 788 167.78 >86,400 31,606 178.74 6,804
Ratio 1.01 1.07 11.97 1.21 1.02 3.44 — — — 1.82 1.00 1.00 1.00

maintain total overflow (TOF) and wirelength (WL) results while
making run-time by up to 12× faster. The deep-learning congestion
estimation framework generates accurate congestion heatmaps from
design layout information, i.e, pins, nets and macros. The quality
of this estimation helps the router achieve some of its run-time
performance gains. Overall, we believe this is the first time neural
networks have been integrated into the algorithmic flow of global
routers. As future work, we would like to continue to improve our
estimation quality, routing quality, as well as investigate the precise
way in which our router is able to achieve improved run-time while
maintaining quality – we believe it has a better ability to escape
local optima using the improved congestion information.

REFERENCES

[1] M.-K. Hsu, S. Chou, T.-H. Lin, and Y.-W. Chang, “Routability-driven
analytical placement for mixed-size circuit designs,” in IEEE/ACM
International Conference on Computer-Aided Design, Nov 2011, pp.
80–84.

[2] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, and E. F. Y. Young, “Ripple:
An effective routability-driven placer by iterative cell movement,” in
IEEE/ACM International Conference on Computer-Aided Design, Nov
2011, pp. 74–79.

[3] M.-C. Kim, J. Hu, D.-J. Lee, and I. L. Markov, “A SimPLR method for
routability-driven placement,” in IEEE/ACM International Conference
on Computer-Aided Design, 2011, pp. 67–73.

[4] W. Liu, Y. Li, and C. Koh, “A fast maze-free routing congestion
estimator with hybrid unilateral monotonic routing,” in IEEE/ACM
International Conference on Computer-Aided Design, Nov 2012, pp.
713–719.

[5] Y. Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: Global router with effi-
cient via minimization,” in Asia and South Pacific Design Automation
Conference, 2009, pp. 576–581.

[6] J. Lou, S. Krishnamoorthy, and H. S. Sheng, “Estimating routing
congestion using probabilistic analysis,” in International Symposium
on Physical Design, 2001, pp. 112–117.

[7] J. Westra, C. Bartels, and P. Groeneveld, “Probabilistic congestion
prediction,” in International Symposium on Physical Design, 2004,
pp. 204–209.

[8] W.-T. J. Chan, P.-H. Ho, A. B. Kahng, and P. Saxena, “Routability
optimization for industrial designs at sub-14nm process nodes using
machine learning,” in International Symposium on Physical Design,
2017, pp. 15–21.

[9] A. F. Tabrizi, N. K. Darav, S. Xu, L. Rakai, I. Bustany, A. Kennings,
and L. Behjat, “A machine learning framework to identify detailed
routing short violations from a placed netlist,” in Design Automation
Conference, 2018, pp. 48:1–48:6.

[10] L. Chen, C. Huang, Y. Chang, and H. Chen, “A learning-based
methodology for routability prediction in placement,” in International
Symposium on VLSI Design, Automation and Test, Apr 2018, pp. 1–4.

[11] Z. Zhou, S. Chahal, T. Ho, and A. Ivanov, “Supervised-learning con-
gestion predictor for routability-driven global routing,” in International
Symposium on VLSI Design, Automation and Test. IEEE, 2019, pp.
1–4.

[12] Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen,
and Nvidia, “Routenet: Routability prediction for mixed-size designs
using convolutional neural network,” in International Conference on
Computer-Aided Design, 2018, pp. 80:1–80:8.

[13] (2008) Ispd 2008 global routing contest. [Online]. Available:
http://www.ispd.cc/contests/08/ispd08rc.html

[14] V. Yutsis, I. S. Bustany, D. Chinnery, J. R. Shinnerl, and W.-H. Liu,
“ISPD 2014 benchmarks with sub-45nm technology rules for detailed-
routing-driven placement,” in International Symposium on Physical
Design, 2014, pp. 161–168.

[15] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in International Symposium on Physical
Design, 2015, pp. 157–164.

[16] W. Liu, W. Kao, Y. Li, and K. Chao, “Nctu-gr 2.0: Multithreaded
collision-aware global routing with bounded-length maze routing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 32, no. 5, pp. 709–722, May 2013.

[17] Y. Chang, Y. Lee, and T. Wang, “Nthu-route 2.0: A fast and stable
global router,” in IEEE/ACM International Conference on Computer-
Aided Design, Nov 2008, pp. 338–343.

[18] M. M. Ozdal and M. D. F. Wong, “Archer: A history-based global rout-
ing algorithm,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 4, pp. 528–540, April 2009.

[19] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Neural Information Processing Systems Vol. 2, 2014, pp. 2672–2680.

[20] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in Design, Au-
tomation Test in Europe, April 2007, pp. 1–6.

[21] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Y. Young, “Gan-opc: Mask
optimization with lithography-guided generative adversarial nets,” in
Design Automation Conference, 2018, pp. 131:1–131:6.

[22] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convo-
lutional auto-encoders for hierarchical feature extraction,” in Artificial
Neural Networks - Volume Part I, 2011, pp. 52–59.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning Vol. 37, 2015, pp. 448–456.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan.
2014.

[25] H. Chen, C. Hsu, and Y. Chang, “High-performance global routing
with fast overflow reduction,” in Asia and South Pacific Design
Automation Conference, Jan 2009, pp. 582–587.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 17,2020 at 07:35:05 UTC from IEEE Xplore. Restrictions apply.

