
Power Grid Reduction by Sparse Convex Optimization
Wei Ye

ECE Department, UT Austin

weiye@utexas.edu

Meng Li

ECE Department, UT Austin

meng_li@utexas.edu

Kai Zhong

ICES, UT Austin

zhongkai@ices.utexas.edu

Bei Yu

CSE Department, CUHK

byu@cse.cuhk.edu.hk

David Z. Pan

ECE Department, UT Austin

dpan@ece.utexas.edu

ABSTRACT
With the dramatic increase in the complexity of modern integrated

circuits (ICs), direct analysis and verification of IC power distri-

bution networks (PDNs) have become extremely computationally

expensive. Various power grid reduction methods are proposed to

reduce the grid size for fast verification and simulation but usu-

ally suffer from poor scalability. In this paper, we present a convex

optimization-based framework for power grid reduction. Edge spar-

sification is formulated as a weighted convex optimization problem

with sparsity-inducing penalties, which provides an accurate con-

trol over the final error. A greedy coordinate descent (GCD) method

with optimality guarantee is proposed alongwith a novel coordinate

selection strategy to improve the efficiency and accuracy of edge

sparsification. Experimental results demonstrate that the proposed

approach achieves better performance compared with traditional

gradient descent methods, and 98% accuracy and good sparsity for

industrial benchmarks.

KEYWORDS
Power grid reduction; sparse convex optimization; greedy coordi-

nate descent

1 INTRODUCTION
Power distribution network (PDN) provides power and ground

voltage supply to on-chip components. Robust PDNs are essential to

ensure reliable operations and high performance of chips. However,

with the dramatic increase in the complexity of modern integrated

circuits (ICs), direct analysis and verification of PDNs have become

extremely computationally expensive. Therefore, fast and accurate

modeling and verification techniques are necessary to assist power

grid design.

The goal of power grid reduction is to reduce an original large

power grid to a significantly smaller one for fast power grid anal-

ysis while preserving its electrical behavior and accuracy. How-

ever, power grid reduction faces the dilemma in which a reduced

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISPD ’18, March 25–28, 2018, Monterey, CA,

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5626-8/18/03. . . $15.00

https://doi.org/10.1145/3177540.3178247

grid with a small number of nodes and edges is usually not accu-

rate enough, and an accurate reduced grid may still be too large

for power grid verification. Therefore, the primary difficulty with

power grid reduction is how to explicitly control the trade-off be-

tween sparsity and accuracy. Moreover, the large size of modern

power grids harms the efficiency of power grid reduction methods.

In recent years, power grid reduction has been widely studied [1–

4]. The moment matching method PRIMA [1] projects the explicit

moment space to Krylov subspace. This method is numerically

stable but is not applicable to power grids with a large number

of ports. TICER [2] based on Gaussian elimination removes the

nodes with low degrees efficiently but introduces too many edges

for mesh-like power grids. The multigrid method [3] reduces the

original power grid to a coarser grid, solves the reduced grid directly,

and then maps the solution back to the original grid. Although it

can fast produce significantly small grids, it is not applicable to

general irregular grids and the error is difficult to control.

To help achieve fast design closure and incremental analysis

for PDNs, it is useful to preserve the physical information about

the port nodes that are connected to C4 bumps or load devices in

the power grid. Schur complement is a widely used technique for

linear systems to keep these port nodes and eliminate the non-port

nodes that only have internal connections without compromise on

accuracy. However, as the number of non-port nodes is becoming

much larger than that of port nodes, eliminating them by Schur

complement tends to generate smaller but much denser reduced

grids which are still intractable for power grid analysis [5]. To

this end, edge sparsification is introduced to further sparsify the

reduced models. Zhao et al. [5] propose a resistance-based port

merging scheme to eliminate nodes and leverage a sampling-based

spectral graph sparsification [6] to decrease the edge density of re-

duced grid blocks. However, the method eliminates most of the port

nodes, which renders the reduced models less practical for further

analysis. Besides, how to explicitly obtain a good trade-off between

sparsity and accuracy is not well explored. Recently, Yassine et

al. [7] propose an iterative power grid reduction framework, which

eliminates an entire metal layer at one time and then remove edges

topologically. However, the proposed heuristic approach to sparsify

the reduced model lacks error guarantee. Wang et al. [8] formulate

edge sparsification as a convex optimization problem which ex-

plores the current range information on the port nodes to achieve

better sparsity and solve it by the stochastic gradient descent (SGD)

algorithm. This approach has poor runtime and therefore cannot

be directly applied to large graphs. Another major drawback is that

the SGD algorithm usually spends most effort optimizing the edges

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

60

https://doi.org/10.1145/3177540.3178247

Figure 1: The proposed power grid reduction flow.

directly connected to the voltage sources under the mathemati-

cal formulation in [8] and ignores the errors at other port nodes,

resulting in a significant overall error.

In this paper, we propose an efficient edge sparsification ap-

proach along with a holistic power grid reduction framework. By

formulating the edge sparsification problem as a weighted sparse

convex optimization problem, a greedy coordinate descent (GCD)

algorithm with optimality guarantee is proposed to generate sparse

and accurate solutions. To enable scalable power grid reduction, we

propose an iterative reduction framework as illustrated in Figure 1,

which reduces one layer at a time and eliminates all the internal

layers incrementally from top to bottom. This reduction framework

explicitly keeps all the port nodes in the topmost and bottommost

layers. During the process of node elimination and edge sparsi-

fication for a middle layer, the nodes connected to the vias right

below this layer are considered as pseudo external nodes, and their

electrical properties are preserved with high accuracy. In this way,

the reduced graph can be easily connected back to the next layer

to process without loss of information, and the entire framework

achieves a relatively small error for the final power grid model.

Our main contributions are summarized as follows:

• We propose a weighted convex optimization formulation

with sparsity-inducing penalties for edge sparsification, which

enables us to explicitly find a good trade-off between spar-

sity and accuracy. With the port nodes assigned different

weights, this formulation provides an accurate control over

the final error.

• We propose a novel GCD algorithm with optimality guaran-

tee and runtime efficiency for edge sparsification. Besides,

an efficient coordinate selection strategy is proposed for

good convergence of GCD. A heap-based optimal coordinate

search approach is proposed to improve the time complexity

of iteration from O(n2) to O(n logn).
• Experimental results demonstrate that the proposed approach

achieves significantly better accuracy and runtime compared

with previous work [8] and the traditional coordinate de-

scent method. The proposed reduction framework achieves

98% accuracy for industrial benchmarks and preserves their

sparsity.

The rest of this paper is organized as follows. Section 2 reviews

the background on power grid reduction. Section 3 and Section 4 il-

lustrate the overall reduction flow and the node elimination method.

Section 5 provides a detailed explanation of the proposed edge spar-

sification approach. Section 7 demonstrates the effectiveness of our

approaches with comprehensive results, followed by conclusion in

Section 8.

Port node
Non-port node

Current source

Voltage source

Figure 2: The multiple-layer power grid structure.

2 PRELIMINARIES
2.1 Notations
Wefirst introduce some notations used in the paper. For any positive

integers n,m, we use [n] to denote the set {1, 2, · · · ,n}, and [n,m]
to denote the set {n,n + 1, · · · ,m}. Let A⊤ denote the transpose of

a given matrix A, Ai denote the i-th column vector of matrix A and

Ai, j denote the entry in the i-th row and j-th column of matrix A.
Let vk,i denote the i-th element in vector vk . Let u ◦ v denote the

Hadamard product between two vectors u and v, i.e., y = u ◦ v if

yi = uivi ,∀i .

2.2 Power Grid Model and Reduction
A resistive power grid can be modeled as a weighted undirected

graph G(V ,E,w), where edges represent the resistors connecting
nodes. Weight w(i, j) denotes the physical conductance between
node i and node j, andw(i, j) = 0 if the two nodes are not directly

connected through a metal segment. For any graph G, its connec-
tivity can be encoded as a Laplacian matrix L, with element (i, j)
given by:

Li, j =

∑
k,k,i w(i,k), if i = j

−w(i, j), if i , j and e(i, j) ∈ E

0, otherwise.

Let v be the vector of node voltages and i be the vector of currents
entering the power grid through all the nodes. The Laplacian matrix

L can be used to characterize the linear behavior between the input

current vector i and the voltage vector v by

i = Lv. (1)

Figure 2 illustrates the power grid structure that uses multiple

layers of metal interconnects. Some nodes in the topmost layer are

connected to C4 bumps for external voltage supplies, and the nodes

in the bottommost layer are connected to load transistors which

are modeled as ideal current sources. Here a port node is defined

as a grid node that is electrically connected to a voltage or current

source. All other nodes in the power grid are non-port nodes. Power

grid analysis verifies the voltages arriving at load transistors and

therefore requires calculating the voltages at all the port nodes by

solving the linear system in Equation (1). The Laplacian matrices of

power grids are typically large and computationally prohibitive to

be solved directly. Therefore, in this work, we consider the power

grid reduction problem defined as follows:

Problem 1 (Power Grid Reduction). Given an initial large power

grid, we reduce it to a small and sparse power grid that contains

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

61

Go to next layer

All the layers
processed?

Node and edge set generation

Store reduced nodes and edges

Node elimination by Schur
complement

Edge sparsification by GCD

Large graph partition

Input power grid

Output power grid

For each subgraph:

Y N

Figure 3: Algorithm flow of power grid reduction.

all the port nodes in the original power grid and preserves the

accuracy in terms of the voltage drop error.

3 OVERALL FLOW
In this section, we introduce the overall flow for power grid reduc-

tion. The port nodes are required to be kept, while the non-port

nodes in the middle layers will be eliminated for reduction of the

grid size to the greatest extent. However, as the size of the power

grid and the number of metal layers increase, the number of nodes

in the middle layers increases dramatically [7]. The runtime and

memory costs of removing all these non-port nodes at one time

are not affordable anymore. In order to enable scalable power grid

reduction, we propose an iterative layer-based node elimination

and edge sparsification framework as shown in Figure 3.

The main idea is to perform node elimination and edge sparsi-

fication for one layer at a time, and remove all the middle layers

incrementally from top to bottom. In each run, a new graph is

created by combining the nodes and edges in the layer to be elimi-

nated this time with the reduced graph obtained from the last run.

If the combined graph is relatively large, we partition it into several

small subgraphs. We explicitly keep the boundary nodes (the nodes

connected to the vias below the layer) as well as the port nodes,

and apply Schur complement to eliminate the rest of nodes (Sec-

tion 4). Subsequently, we perform GCD to sparsify the smaller but

much denser model (Section 5.2). Note that because the electrical

behaviors of these boundary nodes are preserved as external nodes

during Schur complement and GCD, the reduced graph can be eas-

ily combined with the lower layer through these boundary nodes

for next run. Therefore, the layer-by-layer approach can achieve a

small error for the reduced grid model.

4 NODE ELIMINATION
In this section, we introduce the elimination process of non-port

grid nodes using the Schur complement method [9]. It should be

noted that different from previous work [5], our elimination process

explicitly keeps all the port nodes to be analyzed for power grid

verification. Although the number of the remaining nodes is larger,

the reduction result contains all the necessary physical information,

which also benefits the design closure flow.

For each run of Schur complement, according to whether a

node is going to be kept or removed, two different subsets of

nodes are distinguished: external nodes Vext and internal nodes

Vint. Specifically, for the layer-by-layer reduction framework in

Figure 3, the external nodes are the port nodes on the topmost

and bottommost layers and the boundary nodes between layers.

Assume |Vext | = n and |Vint | = p. Let iext (iint) denote the vector for
the current injected into external (internal) nodes, and vext (vint)
denote the column vector for voltage at external (internal) nodes.

Then, we know that iint(a) = 0 for a ∈ Vint, because no exter-

nal current is injected into the internal node. Let v = (vext, vint),
and i = (iext, iint) = (iext, 0 · · · 0). For a resistive network with its

Laplacian given by L̃, we can rewrite L̃v = i as follows:[
L̃11 L̃12
L̃⊤
12

L̃22

] [
vext
vint

]
=

[
iext
0

]
, (2)

where L̃11 ∈ Rn×n represents the connections between the external

nodes, L̃12 ∈ Rn×p represents the connections between the inter-

nal nodes and the external nodes, and L̃22 ∈ Rp×p represents the

connections between the internal nodes.

We can derive vint = −L̃−1
22
L̃⊤
12
vext from Equation (2), then for

the external nodes,

(̃L11 − L̃12L̃−122 L̃
⊤
12
)vext = iext.

Therefore, the Schur complement of L̃22 in L̃ is given by

L = L̃11 − L̃12L̃−122 L̃
⊤
12
.

Although L has a smaller dimension compared with L̃, it is much

denser. Hence, it is necessary to perform edge sparsification to

further reduce the number of connections in the reduced model.

5 EDGE SPARSIFICATION
In this section, we give the details of the proposed edge sparsifica-

tion techniques.

5.1 Mathematical Formulation
Graph sparsification refers to the approximation of a given graph

with fewer nodes or edges. For a Laplacian matrix, the number

of nonzero diagonal elements (i.e., ℓ0-norm of diagonal elements)

equals the number of nodes in the graph, and the number of nonzero

elements off the diagonal (i.e., ℓ0-norm of off-diagonal elements)

indicates the number of edges. Therefore, the sparsity of the Lapla-

cian matrix can act as a measure of the graph sparsity, and the

goal of edge sparsification can be regarded as sparsifying the corre-

sponding Laplacian matrix to reduce the nonzero elements off the

diagonal.

Since ℓ0-norm is non-convex and cannot be used directly as

the sparsity penalty for edge sparsification, [8] relaxes ℓ0-norm

to ℓ1-norm, the closest convex norm to it, and proposes a convex

optimization-based edge sparsification formulation with ℓ1-norm

regularization. However, the formulation in [8] may not produce

solutions that preserve the current behaviors of real-life circuits.

The objective in [8] implies that all the port nodes are assigned the

same weight. Typically, the currents flowing into the port nodes

connected to voltage sources are much larger than the currents

flowing out of other port nodes connected to current sources. Thus,

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

62

the first term in the objective given by [8], the total error over all the

port nodes, will be dominated by the errors associated with the port

nodes connected to voltage sources. Gradient descent algorithms

including SGD tend to spend considerable effort reducing these

errors by repeatedly updating the edges connected to the voltage

sources, and therefore cannot guarantee the accuracy of the currents

flowing to current sources, which are undoubtedly more important

for accurate power grid verification.

To overcome the drawback mentioned above, we propose a

weighted sparse convex optimization formulation for edge spar-

sification. Given a Laplacian matrix L ∈ Rn×n , a set of vectors

v1, v2, . . . , vm ∈ Rn , a weight vector w ∈ Rn and a parameter

λ > 0, we output a Laplacian matrix X with fewer edges by solving

the following constrained problem:

min

X∈Rn×n
1

2m

m∑
k=1

∥((X − L)vk) ◦w∥
2

2
+ λ

n∑
i=1

Xi,i (3)

s.t. Xi, j ≤ 0, ∀i , j (3a)

Xi, j = X j,i , ∀i , j (3b)

Xi,i = −
∑

j ∈[n]\i

Xi, j , ∀i . (3c)

Since Laplacian matrices are symmetric (Constraint (3b)) and

have zero sum over rows or columns (Constraint (3c)), we can use

the elements below (or above) the diagonal to represent the whole

Laplacian matrix and drop these two constraints. The number of

variables is also reduced from n2 to n(n − 1)/2. We define function

f : Rn(n−1)/2 → R such that

f (y) =
1

2m

m∑
k=1

∥((X − L)vk) ◦w∥
2

2
+ λ

n∑
i=1

Xi,i , (4)

where Xi, j = X j,i = yi, j , Xi,i = −
∑
j,i

yi, j , and yi, j ≤ 0, ∀i ∈ [2,n],
j ∈ [i − 1].

Gradient methods can converge to the global solution of a con-

vex function. The formulation proposed by [8] is convex. We next

demonstrate the above function is also convex.

Lemma 1. The function f defined in Equation (4) is strongly convex

and coordinate-wise Lipschitz smooth.

This lemma can be proved by calculating the Hessian matrix of

f . The proof details are omitted here for lack of space.

The gradient of f at yi, j is

∂ f

∂yi, j
= −

1

m
(w2

i (X − L)
⊤
i −w

2

j (X − L)
⊤
j)

m∑
k=1

(vk,i −vk, j)vk − 2λ.

For simplicity of notation, we define a gradient matrix G ∈ Rn×n

as in Equation (5).

5.2 GCD-based Algorithm
In this part, we introduce the GCD-based algorithm to solve the

optimization problem in Formulation (4). The GCD optimization

process starts from the initial solution X1 = 0 and generates a se-

quence of matrices {Xt }T+1t=1 in T iterations [10]. At each iteration,

the GCD method selects the coordinate along which maximum

progress can be made, and updates the coordinate by minimizing

G =

0

∂ f

∂y2,1
· · ·

∂ f

∂yn−1,1

∂ f

∂yn,1
∂ f

∂y2,1
0 · · ·

∂ f

∂yn−1,2

∂ f

∂yn,2
...

...
. . .

...
...

∂ f

∂yn−1,1

∂ f

∂yn−1,2
· · · 0

∂ f

∂yn,n−1
∂ f

∂yn,1

∂ f

∂yn,2
· · ·

∂ f

∂yn,n−1
0

. (5)

i⋆

j⋆

i⋆ j⋆

(a)

i⋆

j⋆

i⋆ j⋆

(b)

Figure 4: If select coordinate (i⋆, j⋆) to update, we need to
update (a) four elements in the Laplacian matrix X, and (b)
two rows and columns in the gradient matrix G.

a single-variable subproblem. More specifically, for the edge spar-

sification problem, the initial solution is constructed as a graph

that only consists of the nodes from the input graph as illustrated

in Figure 5. Then the GCD method chooses the most important

edge e(i, j) at a time and adds the new edge in the graph (i.e., in-

creasesw(i, j) from 0) or updates the weight on the existing edge

(i.e., increases or decreasesw(i, j)).
We first demonstrate how to determine the optimal coordinate to

update, denoted (i∗, j∗). At each iteration GCD is supposed to select

the coordinate direction with largest directional derivative; this is

the same as choosing the largest (in absolute value) component of

the gradient matrix G:

(i∗, j∗) = argmax

(i, j)∈[n]×[n]
|Gi, j |. (6)

Next, we decide how far to move along the coordinate (i∗, j∗) for
updating Xt

to Xt+1
. Since the objective function in Equation (4)

is quadratic, we can apply exact coordinate optimization for better

performance, i.e., updating the coordinate to the exact minimum

point of the quadratic function as follows:

Claim 1. Given the coordinate to update, (i, j), the next iterate for
yti, j can be written as

yt+1i, j = argmin

yi, j ∈R≤0
f (yi, j) = min(0,yti, j − αi, j), (7)

where αi, j is defined as

∂ f

∂yi, j

����
yi, j=yti, j

·

(
1

m
(w2

i +w
2

j)

m∑
k=1

(vk,i −vk, j)
2

)−1
.

As illustrated in Figure 4(a), once we decide to update yi∗, j∗ by
∆yi∗, j∗ , we will update four coordinates in X, i.e., (i⋆, i⋆), (i⋆, j⋆),

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

63

(j⋆, i⋆) and (j⋆, j⋆). Therefore, for each iteration t ∈ [T], | supp(∆Xt)| =

4. Besides, we update the entires in G in the following sense:

∆Gr,c =

∆yi∗, j∗w
2

i∗h(c, i
∗, i∗, j∗), if r = i∗, c ∈ [n]

∆yi∗, j∗w
2

j∗h(j
∗, r , i∗, j∗), if r ∈ [n], c = j∗

∆yi∗, j∗w
2

j∗h(j
∗, c, i∗, j∗), if r = j∗, c ∈ [n]

∆yi∗, j∗w
2

i∗h(r , i
∗, i∗, j∗), if r ∈ [n], c = i∗

−∆yi∗, j∗ (w
2

i∗ +w
2

j∗)h(i
∗, j∗, i∗, j∗), if r = i∗, c = j∗

0, otherwise.

(8)

where

h(i1, j1, i2, j2) = −
1

m

m∑
k=1

(vk,i1 −vk, j1)(vk,i2 −vk, j2). (9)

Accordingly, the update in X only affects two rows (columns) in the

gradient matrix G (Figure 4(b)). Therefore, the number of elements

to update in G is O(n).
However, the GCD algorithm described above suffers from a high

computational cost per iteration and sometimes even convergence

failures. To achieve edge sparsification with better convergence

and runtime, we propose an improved GCD algorithm. Our three

key contributions are listed as follows.

Firstly, efficient coordinate selection. It is worth noting that

Formulation (4) is constrained by y ≤ 0, which could make the

selection rule in Equation (6) fail in some cases. For any coordi-

nate (i, j), when other coordinates are fixed, f (yi, j) is essentially
a single-variable quadratic function. Sometimes the maximum ab-

solute component of G given by Equation (6) has yi⋆, j⋆ = 0 and

Gi⋆, j⋆ < 0. For the quadratic function f (yi⋆, j⋆) subject toyi⋆, j⋆ ≤
0, yi⋆, j⋆ = 0 is already the optimal solution whenGi⋆, j⋆ ≤ 0. Con-

sequently, yi⋆, j⋆ is updated to 0, and X and G are not changed.

This selection strategy continues picking this coordinate in the

following iterations because the gradient matrix is not changed,

and therefore get stuck here. To this end, we propose an efficient

coordinate selection strategy to avoid failure of GCD convergence

as follows:

(i∗, j∗) = argmax

(i, j)∈[n]×[n]
|Gi, j | s.t. Gi, j > 0 or yi, j , 0. (10)

Secondly,heap-based optimal coordinate search. In the straight-
forward implementation, at each iteration GCD needs to traverse

O(n2) elements to find the coordinate with the largest directional

derivative, and it is as expensive as a full gradient evaluation. We

observe that the structure of the gradient in Equation (4) enables an

efficient implementation of the coordinate selection rule in Equa-

tion (10). More specifically, because each node has at most n neigh-

bors, we can track the gradient of all the variables and use a max-

heap data structure to fast search the optimal coordinate. Each node

in the max-heap stores the coordinate index (i, j), the variable value
yi, j , and the absolute value of the gradient component Gi, j . In this

way, we can directly get the largest element in the gradient matrix

from the heap in O(1) time. Besides, we need to update at most

O(n) nodes in the heap at the end of each iteration. In this way, the

time complexity of each iteration in GCD is reduced from O(n2) to
O(n logn) as proven in Section 6.1.

Thirdly, lookup table-based gradient update. It is clear that
the calculation for updating any element in the gradient matrix G
according to Equation (9) has a linear dependence on the sample size

m, and it is not affordable as the size of voltage samples increases.

To speed up the calculation of gradient update, we define function

r : N2 → R such that

r (i, j) = −
1

m

m∑
k=1

vk,ivk, j , ∀i ∈ [2,n], j ∈ [i − 1].

Thus, we have

h(i1, j1, i2, j2) = r (i1, i2) − r (i1, j2) − r (j1, i2) + r (j1, j2). (11)

It inspires that we can store the set of values for r in a lookup

table (LUT), and simply add or subtract them to get the value of the

element to update inG by Equation (11). In this way, the calculation

cost of gradient update for each element decreases from O(m) to
O(1).

Algorithm 1 summarizes the proposed GCD method. The algo-

rithm takes as input the sparsity control parameter λ, the Laplacian
matrix L of the input graph, the maximum number of iterations T ,
and a batch of sampled voltage vectors V = {vk }mk=1 [8].

6 ALGORITHM ANALYSIS
6.1 Convergence and Runtime Analysis
The goal of this section is to prove our main theoretical results,

Theorem 1 and Theorem 2.

Theorem 1. GCD (Algorithm 1) converges to the global optimum.

Theorem 1 demonstrates the correctness of our algorithm, and

the proof is similar to [11] considering that function f is strongly

convex (Lemma 1).

Before we prove Theorem 2, we first show a useful claim.

Claim 2. For each iteration t ∈ [T], for each nonzero element of ∆Gt
,

it requires O(logn) time to update the position of the corresponding

entry in the max-heap.

Proof. We use a max-heap to store G. Once we update one

certain node in this max-heap with O(n2) elements, we also need

to update the locations of some other nodes to make the heap still

Algorithm 1 GCD-based Edge Sparsification Algorithm

1: procedure GCD(λ, L,V,T)
2: X1 ← 0, initialize G1

according to L and V;

3: heap.init(X1,G1);

4: for t = 1→ T do
5: i∗, j∗ ← heap.findMax();
6: Compute ∆yi∗, j∗ ; ▷ Equation (7)

7: Compute ∆Gt
; ▷ Equation (8)

8: Compute ∆Xt
by ∆yi∗, j∗ ;

9: Xt+1 ← Xt + ∆Xt
;

10: heap.update(∆Xt ,∆Gt);

11: end for
12: return XT+1;
13: end procedure

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

64

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration T

GCD:

CCD:

Input graph

Add an edge
Update an edge

Figure 5: Illustration of the proposed GCD algorithm for edge sparsification.

valid. Because of the property of heap, we can finish the updates in

O(logn) time. □

Theorem 2. GCD (Algorithm 1) takes O(Tn logn) time and O(n2)
storage space. In particular, each iteration of GCD takes O(n logn)
time.

Proof. It has been shown that at each iteration GCD takes O(1)

time to update an element in X while | supp(∆X)| = 4, and GCD

takes O(1) time to evaluate an element in G and O(logn) time to

update it in the heap while | supp(∆G)| = O(n). Therefore, each
iteration of GCD takes O(n logn) time. The overall running time

is O(Tn logn) if GCD runs T iterations. The storage cost of GCD

comes from two parts. The first part is that we use O(n2) space
to store X in the array and O(n2) space to store G in the heap for

speedup. The second part is that after obtaining the training dataset,

instead of storing each data individually, we calculate and store all

possible values for r . Once r is known, it only requires O(1) time

to compute h. □

6.2 Comparison with Other Algorithms
Various gradient descent methods can be applied to the convex

optimization problem in Formulation (4). The stochastic gradient

descent (SGD) algorithm chosen by [8] needs to update the entire

Laplacian matrix X and its gradient at each iteration. Therefore, the

computational cost for one SGD iteration is O(n2), where n is the

number of nodes in the graph, and the cost increases dramatically

with the size of the input graph. Moreover, the SGD method has a

slow convergence rate O(1/ϵ2). However, we observe that updating
one edge in the graph only causes O(1) updates of elements in

the Laplacian X and O(n) time to evaluate new gradients. This

fact benefits the family of coordinate descent (CD) methods that

minimize a single coordinate at a time.

There are several kinds of CD algorithms: cyclic gradient descent

(CCD) [10] that goes through all coordinates repeatedly, random-

ized coordinate descent (RCD) [11] that randomly picks a coordinate

each time, and GCD that selects the coordinate along which maxi-

mum progress can be made. It can be proved that these CDmethods

can achieveO(log(1/ϵ)) convergence rate on the edge sparsification
problem due to its strong convexity and coordinate-wise Lipschitz

smoothness [12]. Nonetheless, their actual performance varies. Fig-

ure 5 illustrates the key difference between CCD and GCD. It is

observed that the CCD (or RCD) method touches every coordinate

and introduces too many edges. These edges usually have very

small weights, and therefore the ℓ1-norm regularization cost in f

is small. On the contrary, GCD selects the most significant coor-

dinates to update and only adds a small number of edges to the

output graph. In this way, GCD has the appealing advantage to

produce a sparser graph than the other two methods and better pre-

serves the ℓ0-norm sparsity. In addition, GCD has a provably faster

convergence rate for this problem with smoothness and strongly

convexity [12, 13]. For the above reasons, the GCD method is cho-

sen to solve Formulation (4). Furthermore, we improve the runtime

complexity of GCD at each iteration from O(n2) to O(n logn) with
the usage of max-heap and propose the efficient coordinate selec-

tion strategy (Equation (10)) as well as the fast LUT-based gradient

update method (Equation (11)).

7 EXPERIMENTAL RESULTS
The proposed power grid reduction framework is implemented in

C++ with Intel MKL library [14], and all experiments are performed

on an 8-core 3.4GHz Linux machine with 32GB memory. METIS

[15] is used for graph partition.

7.1 Edge Sparsification Comparison
The edge sparsification algorithm is tested on the dense synthetic

benchmarks rand1–rand4. The node and edge count of each

circuit are shown in columns “#Nodes” and “#Edges” in Table 1

and we normalize the maximum voltage drop in the circuit as

listed in column “V
drop

” to 100 mV by scaling the values of input

current sources. For each benchmark, there is only one external

voltage source and the node directly connected to it is labeled as the

first node. To validate the effectiveness of the edge sparsification

algorithm, we regard all the nodes as port nodes and do not perform

node elimination on them.

In the first experiment, we examine the importance of the weight

vector w in Formulation (4) on edge sparsification. We consider

three weighting schemes: (1)w1 = wi = 1,∀i ∈ [2,n]; (2)w1 = 1/n,
wi = 1,∀i ∈ [2,n]; (3) w1 = 0, wi = 1,∀i ∈ [2,n]. In Scheme 1, all

the port nodes are assigned the same unit weight and the formu-

lation in this scenario is actually the same as the formulation in

[8]. The GCD algorithm runs in the above schemes individually

on the synthetic benchmarks for the same number of iterations

and cross-validation is applied to choose the best λ. The results are
listed in Table 1, where “Ierror” gives the maximum relative current

error over all the port nodes when given the voltage vector v, and
“Verror” gives the maximum error of voltage drop at all the nodes

when given the current vector i. As observed from Table 1, the

runtime in the three schemes is nearly the same, and Scheme 2 and

Scheme 3 have similarly accurate results, both of which are better

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

65

Table 1: Comparison of different weighting schemes on the synthetic benchmarks.

CKT

Bench. Stats.

Scheme 1: Scheme 2: Scheme 3:

w1 = wi = 1,∀i ∈ [2,n] w1 = 1/n,wi = 1,∀i ∈ [2,n] w1 = 0,wi = 1,∀i ∈ [2,n]
#Nodes #Edges

V
drop

#Edges

Ierror Verror Time

#Edges

Ierror Verror Time

#Edges

Ierror Verror Time

(mV) (%) (mV) (s) (%) (mV) (s) (%) (mV) (s)

rand1 100 4 × 103 100 581 1.68 0.05 0.08 1063 1.17 0.03 0.08 1068 1.10 0.02 0.06

rand2 500 1 × 105 100 955 2.02 1.60 0.82 2690 1.22 0.01 0.88 2743 1.42 0.01 0.74

rand3 1000 4 × 105 100 1216 1.74 1.77 2.84 3821 1.04 0.02 3.26 3920 1.07 0.01 2.75

rand4 5000 1 × 107 100 4999 6.17 6.57 34.04 9436 1.88 1.34 36.00 10003 1.63 1.30 32.60

avg. 1937.8 2.90 2.50 9.45 4252.5 1.33 0.35 10.05 4433.5 1.31 0.34 9.04

ratio 0.44 2.21 7.35 1.05 0.96 1.02 1.03 1.11 1.00 1.00 1.00 1.00

Table 2: Comparison of three gradient descent methods for edge sparsification.

CKT

Ref. [8] CCD Ours

#Edges

Ierror Verror Time

#Edges

Ierror Verror Time

#Edges

Ierror Verror Time

(%) (mV) (s) (%) (mV) (s) (%) (mV) (s)

rand1 99 5.05 5.09 0.12 3169 4.22 0.07 0.01 1068 1.10 0.02 0.06

rand2 499 5.07 5.33 2.93 71548 3.24 0.05 1.92 2743 1.42 0.01 0.74

rand3 999 5.27 5.23 29.82 151106 2.42 0.03 19.09 3920 1.07 0.01 2.75

rand4 4999 7.00 7.52 144.43 304675 4.03 2.18 230.52 10003 1.63 1.30 32.60

avg. 1649 5.60 5.79 44.32 132624.5 3.48 0.58 62.89 4433.5 1.31 0.34 9.04

ratio 0.37 4.28 17.18 4.91 29.91 2.66 1.72 6.96 1.00 1.00 1.00 1.00

than Scheme 1. It is worth mentioning that the reduced graphs

in Scheme 1 have much smaller edge counts than the other two

schemes, which is aligned with our expectation: this weighting

scheme emphasizes the node where the voltage source is attached

due to the large current flowing from the voltage source, and the

gradient descent method iteratively optimizes the edges having

connections to the voltage source. We select Scheme 3 with slightly

faster runtime in the following experiments.

We further study the trade-off between sparsity and accuracy

for different sparsity control parameter λ during the GCD process.

It is distinctly visible from Figure 6(a) that as the number of GCD

iterations goes up, the voltage error decreases and the number of

edges in the output graph increases as expected. We also run GCD

for the same number of iterations with different λ as shown in

Figure 6(b). It is shown that the smaller λ produces more accurate

but denser results than the bigger λ, and therefore we can control

the trade-off between the sparsity and accuracy of the reduced

model by tuning the sparsity control parameter λ. Note that when λ
is small enough (≤ 10

−4
in this case), it makes a negligible difference

in the final accuracy and sparsity.

We compare our GCD algorithm with the SGD algorithm with

its original formulation [8] and the CCD algorithm. Since the SGD

algorithm in [8] was implemented inMATLAB and the voltage error

was not reported, we implement it in C++ for a fair comparison.

The results are summarized in Table 2, where “#Edges” denotes the

edge count in the resultant graph, “Verror” is the maximum voltage

drop error, and “Time” is the runtime in seconds. Table 2 shows that

the SGD algorithm produces very sparse results but suffers from

long runtime. Besides, the voltage error is not ideal because it uses

only n − 1 edges to connect n nodes. We set the same λ for running

CCD and GCD, and let them exit when the cost function value on

the validation set is below the threshold or the maximum number

of iterations is reached. It is clear from the edge value distributions

in Figure 7, CCD produces much denser results than our GCD.

As we have explained in Section 6.2, this is because CCD cycles

through each coordinate and iteratively adds very small edges to

the output graph; conversely, GCD only adds the most important

edges. Besides, CCD has worse runtime than GCD because, even

though CCD has less time complexity per iteration than GCD, it

coverages much slower and wastes time on updating insignificant

edges.

7.2 Reduction Framework Validation
Table 3 shows the experimental results of the proposed framework

on the IBM power grid benchmarks [16]. “#L”, “#V” and “#I” give

the number of metal layers, voltage sources, and current sources in

the circuit, respectively. “#Port nodes” gives the number of nodes

that are directly connected to the external voltage/current sources,

while “#Non-port nodes” gives that of nodes that only have in-

ternal connections. “#Edges" denotes the number of resistors in

the power grid. “V
drop

” denotes the maximum voltage drop in the

power grid. It is important to remark that [5] deletes at least 50% of

port nodes, whereas we do not allow elimination of any port nodes

because all of the port nodes have important physical information

for measurement and verification [7]. Therefore, the numbers of

nodes and edges in [5] are not listed here. We also cannot perform

a comparison with [7] due to unavailability of their benchmarks

and binary.

The total number of the partitioned blocks for each circuit to

facilitate reduction scalability is shown in column “#Blks”, and

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

66

0.2 0.4 0.6 0.8 1

·104

10−4

10−3

10−2

#Iterations

V
ol
ta
ge

E
rr
or

(m
V
)

0.2 0.4 0.6 0.8 1

·104

1,000

2,000

3,000

#
E
d
ge
s

Error
Edge

(a)

10−7 10−6 10−5 10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

λ

V
ol
ta
ge

E
rr
or

(m
V
)

10−7 10−6 10−5 10−4 10−3 10−2 10−1

1,000

2,000

3,000

#
E
d
ge
s

Error
Edge

(b)

Figure 6: (a) Voltage error and edge count in the reduced circuit of rand2 versus the
number of iterations; (b) Accuracy and sparsity comparisons for different λ.

0 5 10 15 20

100

101

102

103

104

105

Edge Weight

E
d
ge

C
o
u
n
t

CCD
GCD

Figure 7: CCD v.s. GCD on circuit
rand2.

Table 3: Experimental results on IBM power grid benchmarks.

CKT

Bench. Stats. Ref. [5] Ours

#L #V #I

#Port #Non-port

#Edges

V
drop

Verror Relative

#Blks

#Port #Non-port

#Edges

Verror Relative Time

nodes nodes (mV) (mV) error (%) nodes nodes (mV) error (%) (s)

ibmpg2 4 210 18963 19173 46265 106607 365.4 - - 9 19173 0 48367 4.41 1.21 37.84

ibmpg3 5 461 100527 100988 340088 724184 181.8 1.4 0.77 68 100988 0 243011 1.32 0.73 105.71

ibmpg4 6 650 132972 133622 345122 779946 3.6 0.19 5.28 76 133622 0 284187 0.17 4.81 131.65

ibmpg5 3 177 270400 270577 311072 871182 42.9 1.2 2.80 40 270577 0 717026 0.96 2.23 122.81

ibmpg6 3 249 380742 380991 481675 1283371 114.1 2.4 2.10 56 380991 0 935322 2.23 1.96 281.25

avg. 181070 304844 753058 181070 0 445583 135.85

we observe from experiments that graph partitioning is usually

necessary to process the lower layers because they contain a large

number of vias or current sources. It is clear from Table 3 that the

port nodes are kept in the reduced grids and all the non-port nodes

are removed successfully. Moreover, the average sparsity of the

reduced power grids is 0.01%. In terms of reduction accuracy, the

voltage error on average is 2.19%, which is smaller than that of

[5]. It is observed that as the number of remaining nodes increases,

the runtime reported by [5] goes up. Our reduction framework

intentionally keeps all the port nodes, and therefore the larger

runtime than [5] makes sense.

8 CONCLUSION
In this work, we present a scalable power grid reduction frame-

work. A weighted sparse convex optimization formulation for edge

sparsification is proposed to reduce the number of connections in

the power grid while preserving the electrical properties of the port

nodes. A novel GCD method with optimality guarantee and run-

time efficiency is proposed to leverage the sparsity of the reduced

grids and offer a trade-off between the final accuracy and sparsity.

The experimental results demonstrate that the proposed reduction

framework efficiently reduces industrial power grids and preserves

the accuracy and sparsity of these grids.

REFERENCES
[1] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: passive reduced-order

interconnect macromodeling algorithm,” in IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), 1997, pp. 58–65.

[2] B. N. Sheehan, “TICER: Realizable reduction of extracted RC circuits,” in

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 1999, pp.

200–203.

[3] H. Su, E. Acar, and S. R. Nassif, “Power grid reduction based on algebraic multigrid

principles,” in ACM/IEEE Design Automation Conference (DAC), 2003, pp. 109–112.

[4] P. Li andW. Shi, “Model order reduction of linear networks with massive ports via

frequency-dependent port packing,” in ACM/IEEE Design Automation Conference

(DAC). ACM, 2006, pp. 267–272.

[5] X. Zhao, Z. Feng, and C. Zhuo, “An efficient spectral graph sparsification approach

to scalable reduction of large flip-chip power grids,” in IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2014, pp. 218–223.

[6] D. A. Spielman and N. Srivastava, “Graph sparsification by effective resistances,”

SIAM Journal on Computing (SICOMP), vol. 40, no. 6, pp. 1913–1926, 2011.

[7] A.-A. Yassine and F. N. Najm, “A fast layer elimination approach for power

grid reduction,” in IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), 2016, p. 101.

[8] Y.Wang, M. Li, X. Yi, Z. Song, M. Orshansky, and C. Caramanis, “Novel power grid

reduction method based on l1 regularization,” in ACM/IEEE Design Automation

Conference (DAC), 2015, pp. 1–6.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university press,

2004.

[10] S. J. Wright, “Coordinate descent algorithms,” Mathematical Programming, vol.

151, no. 1, pp. 3–34, 2015.

[11] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization

problems,” SIAM Journal on Optimization (SIOPT), vol. 22, no. 2, pp. 341–362,

2012.

[12] J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, and H. Koepke, “Coordinate

descent converges faster with the gauss-southwell rule than random selection,”

in International Conference on Machine Learning (ICML), 2015, pp. 1632–1641.

[13] A. Beck and L. Tetruashvili, “On the convergence of block coordinate descent type

methods,” SIAM Journal on Optimization (SIOPT), vol. 23, no. 4, pp. 2037–2060,

2013.

[14] “Intel Math Kernel Library,” http://software.intel.com/en-us/mkl.

[15] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for parti-

tioning irregular graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1, pp.

359–392, 1998.

[16] S. R. Nassif, “Power grid analysis benchmarks,” in IEEE/ACM Asia and South

Pacific Design Automation Conference (ASPDAC), 2008, pp. 376–381.

Design Flow and Power Grid Optimization ISPD’18, March 25–28, 2018, Monterey, CA, USA

67

http://software.intel.com/en-us/mkl

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Power Grid Model and Reduction

	3 Overall Flow
	4 Node Elimination
	5 Edge Sparsification
	5.1 Mathematical Formulation
	5.2 GCD-based Algorithm

	6 Algorithm Analysis
	6.1 Convergence and Runtime Analysis
	6.2 Comparison with Other Algorithms

	7 Experimental Results
	7.1 Edge Sparsification Comparison
	7.2 Reduction Framework Validation

	8 Conclusion
	References

