
TimingCamouflage: Improving Circuit Security against
Counterfeiting by Unconventional Timing

Grace Li Zhang1, Bing Li1, Bei Yu2, David Z. Pan3 and Ulf Schlichtmann1
1Institute for Electronic Design Automation, Technical University of Munich (TUM), Munich, Germany

2CSE Department, The Chinese University of Hong Kong, Hong Kong
3ECE Department, University of Texas at Austin, Austin, TX, USA

Email: {grace-li.zhang, b.li, ulf.schlichtmann}@tum.de, byu@cse.cuhk.edu.hk, dpan@ece.utexas.edu

Abstract—With recent advances in reverse engineering, attackers
can reconstruct a netlist to counterfeit chips by opening the die
and scanning all layers of original chips. This relatively easy
counterfeiting is made possible by the use of the standard simple
clocking scheme where all combinational blocks function within one
clock period. In this paper, we propose a method to invalidate the
assumption that a netlist completely represents the function of a
circuit. With the help of wave-pipelining paths, this method forces
attackers to capture delay information from manufactured chips,
which is a very challenging task because we also introduce false
paths. Experimental results confirm that wave-pipelining paths and
false paths can be constructed in benchmark circuits successfully
with only a negligible cost, while the potential attack techniques can
be thwarted.

I. INTRODUCTION

Today’s semiconductor business model involves many global
vendors from various countries and regions. This distributed
supply chain makes integrated circuits vulnerable to attacks and
counterfeiting in nearly all phases from design to post-fabrication.
Consequently, the research community has invested a great effort
to deal with security challenges [1].

A major IC counterfeiting threat is the production of illegal
chips by a third party with a netlist reverse engineered from
authentic chips. In reverse engineering, authentic chips are de-
layered and imaged to identify logic gates, flip-flops, and their
connections. Afterwards, the recognized netlist can be processed
by a standard IC design flow and manufactured in a foundry,
even with a different technology. This reverse engineering flow
gives counterfeiters much freedom in reproducing authentic chips,
because the recognized netlist carries all necessary design infor-
mation and counterfeiters can revise and optimize it freely.

Several techniques have been proposed to thwart reverse engi-
neering attacks on authentic chips. Firstly, IC camouflage tries to
prevent the netlist from being recognized easily. In [2] transistors
are manipulated with a stealthy doping technique during manufac-
turing so that they function differently than they appear. The work
in [3]–[5] mixes real and dummy contacts to camouflage standard
cells. The method in [6] explores netlist obfuscation by iterative
logic fanin cone analysis at circuit level. Moreover, the method
in [7] introduces a quantitative security criterion and proposes
camouflaging techniques with a low-overhead cell library and an
AND-tree structure. In addition, logic locking inserts additional
logic gates, e.g., XOR/XNOR in [8], [9], AND/OR in [10] and
MUX in [11], into the netlist to disable its function if the correct
key is not applied. This method is expanded in [12] to incorporate
delay information into the locking mechanism.

The methods discussed above all focus on either making the
netlist more difficult to be recognized, or making the correct
behavior of the circuit dependent on additional input information
even after the netlist is recognized. In this paper, we propose

a new perspective to counter counterfeiting based on reverse
engineering. By integrating unconventional timing information,
a netlist, even if recognized exactly through reverse engineering,
does not function correctly anymore when a conventional timing
scheme is assumed.

The advantages of the introduced method include:

• The camouflaged netlist only works with a given set of timing
information, which, however, is difficult to be recognized
exactly by reverse engineering even with much additional
effort and cost.

• The camouflaged netlist only contains normal logic gates, so
that it is challenging for attackers to isolate and then identify
the timing encryption locations.

• The introduced wave-pipelining false paths obstruct test-based
counterfeiting methods further by camouflaging originally
testable paths as false paths.

• The proposed method is fully compatible with other security
techniques introduced previously, so that they can be com-
bined seamlessly.

The rest of this paper is organized as follows. In Section II,
we explain the motivation and the basic idea of the proposed
method. In Section III, we give a detailed description of the
wave-pipelining technique. In Section IV, we analyze potential
attack techniques and propose counter measures to thwart them.
We describe the implementation details of constructing wave-
pipelining paths and false paths in Section V. Experimental results
are reported in Section VI. Conclusion is stated in Section VII.

II. MOTIVATION AND BASIC CONCEPT

Digital circuits rely on their structures to define their functions.
A netlist is usually sufficient to reproduce a correctly working
circuit. To prevent a netlist from being recognized by reverse
engineering, techniques from physical level to netlist level can be
applied to camouflage the logic. These methods, however, are still
restricted to the conventional single-period clocking timing model
so that attackers only need to recognize the netlist correctly.

In the conventional single-period clocking timing model, all
the paths in a combinational block operate within one clock
period. Figure 1(a) shows a part of a sequential circuit with three
flip-flops F1, F2 and F3. At each sampling clock edge, assumed
as the rising clock edge henceforth, the data at the inputs of the
flip-flops are latched. To guarantee the correct operation of the
flip-flops, the data at the input of a flip-flop must become stable
tsu time before the rising clock edge, and the data must stay
stable th time after the rising clock edge.

With the single-period clocking model, designers only need
to guarantee that the logic functions of combinational blocks are
correct without having to worry about the interaction between
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Figure 1: Conventional timing and wave-pipelining: (a) Single-period
clocking; (b) Pipelining with two data waves.

different clock stages. Consequently, the netlist carries all logic
information and this simplification allows attackers to counterfeit
chips relatively easily because they only need to recognize the
logic types of gates, flip-flops, and interconnect connections
during reverse engineering.

To thwart the attack attempt on a design, we propose to
invalidate the conventional timing model in some parts of the
circuit. For example, we can remove the flip-flop in the middle of
Fig. 1(a) to construct the circuit in Fig. 1(b). On the combinational
path from F1 to F3, there are now two data waves without a flip-
flop separating them. If the second wave does not catch the first
one before it is latched by F3, the correct function of the circuit
is still maintained. This technique is called wave-pipelining (WP)
and has been investigated for circuit optimization [13]–[15]. When
attackers recognize a netlist as in Fig. 1(b), they face the challenge
to determine whether there should be one or two logic waves. If
they assume the former and process the netlist using a standard
EDA flow, the circuit loses synchronization because the data at
the input of F3 is latched one clock period earlier. If they want to
determine whether it is the latter case, additional effort is required
to extract the timing information for the combinational path.

In the circuit in Fig. 1(b), at each rising clock edge, a new
data is injected into the combinational path by flip-flop F1, so
that the two waves are always separated by one clock period
initially. To guarantee that the second data wave does not flush
the first data wave when it is waiting for the next rising clock edge
to be latched by F3, the path delay between F1 and F3 should
be larger than one clock period. This path delay is, however,
not contained in the extracted netlist from conventional reverse
engineering. Consequently, the function of the circuit depends on
both its structure and the timing of combinational paths.

Though attackers may have access to the standard cell library,
e.g., through a third-party IP vendor, it is still very hard to
obtain accurate interconnect/RC parasitics by delayering authen-
tic chips, due to unknown process parameters, challenges in
3D RC extraction, and switching-window-dependent crosstalk-
induced delay variations, etc. In any case, the more accurate the
original timing information should be recognized from delayered
chips, the harder and more expensive it becomes. In combination
with other obfuscation methods, such as, dopant-level camouflage
gate delay [2], [16] and dummy contact insertion [3]–[5], the
unconventional timing concept has a potential to open up a new
dimension of netlist security.

Although wave-pipelining paths look similar to multiple-cycle
paths in digital design, the essential difference is that there is
only one wave on a multiple-cycle path at a moment and the
circuit still works if a multiple-cycle path is optimized to finish
its calculation in one clock period, or if the clock frequency is
lowered to make it work in one clock period. Therefore, multiple-
cycle paths cannot be used to replace wave-pipelining paths to
increase netlist security.

0 T 2T 3T
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Figure 2: Temporal/spatial diagram for wave propagation on a combina-
tional path.

III. WAVE-PIPELINING

A wave-pipelining path such as the one in Fig. 1(b) allows
two data waves propagating on the path at the same time. Since
the second data wave should not catch the first one, special timing
constraints should be specified for this path. The scenario of
data wave propagation is illustrated in Fig. 2. At first, wave 1
is injected into the path by F1. This data wave propagates along
the path continuously and should reach F3 after the first rising
clock edge at T and before the second rising clock edge at 2T .
At time 2T , the first data is latched by F3. The second wave is
injected by F1 at the rising clock edge at time T and it starts
to propagate along the same path. Since this wave arrives at F3
with a delay larger than T , it does not catch the first wave at any
time during the propagation, shown as the vertical gap between
the two data waves in Fig. 2. Consequently, the two data waves
on the path never interfere and F3 always latches the same value
as in the original circuit shown in Fig. 1(a).

In forming wave-pipelining paths, a flip-flop is removed from
the circuit as in the example from Fig. 1(a) to 1(b). In practice,
this operation may lead to many paths with wave pipelining,
because any combinational path reaching F2 together with any
path starting from F2 forms a new wave-pipelining path. All
these wave-pipelining paths should meet two constraints. First,
the delay of a path should be larger than the clock period T ;
otherwise, the data wave is latched at the first rising clock edge
instead of the second by F3. Second, the delay of the path should
be no larger than 2T to guarantee that the data is latched by F3
in time. Assume the set of all these paths is P and the delay of
a path p ∈ P is dp. The timing constraints for all these paths can
be written as

dp ≥ T + th, ∀p ∈ P ⇐⇒ min
p∈P

{dp − th} ≥ T (1)

dp ≤ 2T − tsu, ∀p ∈ P ⇐⇒ max
p∈P

{dp + tsu} ≤ 2T. (2)

After removing a flip-flop from the circuit, if all the wave-
pipelining paths meet the two constraints (1) and (2), the wave-
pipelining version of the circuit is functionally equivalent to the
original circuit.

IV. ATTACK TECHNIQUES AND COUNTER MEASURES

In attacking a design with wave-pipelining, if attackers have
no knowledge that this technique has been applied, the recognized
netlist by reverse engineering does not function correctly. Once
attackers become aware of this technique, various methods may
be deployed to identify where the wave-pipelining paths are or
to circumvent them simply. In the assumed attack model, the
available information includes a netlist recognized by reverse
engineering and estimated delays of logic gates as well as
interconnects with an inaccuracy factor τ . The objective of the
attack is to identify on which combinational paths in the netlist
wave-pipelining is applied. The potential attack techniques are
summarized in Fig. 3.
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Figure 3: Attack techniques to identify or circumvent wave pipelining,
where the last three techniques may be combined to reduce the problem
space of attack.

The first attack technique is to measure all gate and intercon-
nect delays while the netlist is recognized by reverse engineering.
With all gate and interconnect delays known, path delays can
be calculated from the netlist easily. Since the delays of wave-
pipelining paths are between T and 2T as defined in (1) and
(2), these paths can therefore be identified. The challenge of this
attack technique is that it is difficult to extract accurate gate and
interconnect delays just from reverse engineering. Assume that
the real delay of a path is d and the delay recognition technique
suffers an inaccuracy factor τ (0 < τ < 1). Consequently, this
path delay can be any value in the range [(1−τ)d, (1+τ)d] when
recognized. If the upper bound of a path delay is smaller than T ,
this path is definitely a single-period clocking path. If the lower
bound of a path delay is larger than T , the path is definitely a
wave-pipelining path. However, if a path delay covers the clock
period T , namely,

(1− τ)d ≤ T ≤ (1 + τ)d. (3)

This path can only be considered as suspicious of wave-
pipelining but without a clear differentiation. In the following,
we call the range [(1− τ)d, (1 + τ)d] the gray region for a path
with delay d. In reality, a well-optimized design contains many
critical paths with delays close to the clock period T so that their
gray regions cover T easily. When constructing wave-pipelining
paths in the proposed method, we also guarantee that their delays
are in the gray region.

With the estimated delays, attackers can actually narrow down
the number of potential wave-pipelining paths, because paths
with delays definitely smaller or larger than T considering the
inaccuracy in delay estimation can be screened out. The second
attack technique is to test the delays of the remaining paths using
authentic chips from the market. With the netlist recognized, it
is not difficult to determine test vectors to trigger the suspicious
paths. Since the only information of interest is whether a path
delay is larger than T , only one delay test for each path is
sufficient. Without considering the cost to test many paths, this
test strategy is in fact able to differentiate wave-pipelining paths
from other paths eventually.

To prevent all suspicious paths from being tested, we introduce
a counter measure to create unsensitizable paths with wave-
pipelining. When we construct wave-pipelining paths by removing
flip-flops, we prefer the paths that, viewed directly with the
conventional single-period clocking, are false paths, which cannot
be sensitized by any test vectors.

false path after wave-pipelining

controlling signal

removed flip-flop

v1

v2

Figure 4: Two true paths form a wave-pipelining false path.

Definition 1. False Path: A combinational path which cannot be
activated in functional mode or test due to controlling signals
from other paths [17], [18]. On the contrary, true paths can be
activated in functional mode or test.

Definition 2. Wave-Pipelining False Path (WP False Paths): A
combinational path with wave pipelining that is a false path when
viewed with the conventional single-period clocking.

Wave-pipelining false paths are true paths with data waves
propagating along them when the circuit is running, but they
are false paths when the netlist is examined only. An example
of wave-pipelining false paths is shown in Fig. 4, which is a
snippet of the s298 circuit from the ISCAS89 benchmark set.
When the flip-flop in the middle is removed, the dashed path
becomes a wave-pipelining path and also a false path, if it is
considered as working within a single clock period. In this case, a
signal switching at the beginning of the dashed path never reaches
the final flip-flop. If the signal v2 has a value ‘1’, which is the
controlling signal to an OR gate, it blocks the dashed path at the
last OR gate; if the signal v2 has a value ‘0’, it blocks the dashed
path at the AND gate right away. Consequently, the dashed path
cannot be triggered for delay test and attackers have no way to
differentiate it from all the other false paths in the original circuit,
which may contribute up to 75% of all the combinational paths
in real circuits [19].

Since the delays of false paths cannot be tested, the third attack
technique, brute-force logic simulation, could be considered to
differentiate the camouflaged false paths from real false paths. In
this method, each false path that cannot be excluded by delay
screening in the first step is assumed to be a real false path once
and a wave-pipelining false path once. Assuming the number of
such paths is n, then 2n simulations of the complete circuit should
be performed to check which combination is correct. In theory,
this method can eventually find the correct combination of real
false paths and wave-pipelining false paths. However, it is still
impractical because of the unaffordable simulation time due to
the large number of false paths in the original design [17], [19]
and the very long runtime for a full simulation of the complete
circuit.

The fourth technique to attack wave-pipelining false paths is
to consider all false paths in the circuit as wave-pipelining paths
and size logic gates so that delays of all these paths meet the
constraints (1) and (2). The concept behind this technique is that
false paths are not triggered anyway so that they do not affect
the logic of the circuit if their delays are larger than the clock
period T . This assumption, however, is too optimistic because
false paths sized to have delays larger than T may still affect the
normal circuit operation [18]. Another challenge of this attack
technique is that it is very difficult to find a solution to size so
many false paths without affecting the normal true paths whose
delays should be smaller than T .

The fifth technique to identify wave-pipelining paths is to
calculate all gate delays in a circuit from path delays measured by
at-speed test, such as applied in [20]. Since path delays are linear

Design, Automation And Test in Europe (DATE 2018) 93



combinations of gate delays, the measured path delays can be
used to calculate gate delays by linear algebra. The challenges of
this method are: 1) a large number of combinational paths should
be tested in a commercial design; 2) all logic gates should appear
on testable paths in a way that the coefficient matrix of linear
equations has a rank equal to the number of gate/interconnect
delays, even in view of a large percentage of false paths [17], [19];
3) inaccuracy in at-speed test of path delays due to environmental
factors such as noise and temperature as well as the nature of
binary-search of at-speed delay test.

V. WAVE-PIPELINING CONSTRUCTION

When constructing wave-pipelining paths into a circuit while
maintaining its original function, we need to guarantee that
the constructed paths meet the timing constraints (1) and (2).
To counter the attack techniques discussed in Section IV, the
constructed paths should not be screened out easily by delay
test and estimation. Furthermore, the constructed wave-pipelining
paths should contain false paths when considered as single-period
clocking paths. The wave-pipelining construction problem can
thus be formulated as follows.

Inputs: An optimized design; delay information; the given
clock period T ; the delay recognition inaccuracy factor τ (0 <
τ < 1); the required numbers of wave-pipelining true and false
paths nwpt and nwpf .

Outputs: A revised design containing at least the given num-
bers of wave-pipelining true and false paths. The delays of these
wave-pipelining paths should meet the gray region requirement
(3).

Objectives: The original design should be kept unchanged as
much as possible; the increased resource usage should be as little
as possible.

V-A. Work flow of wave-pipelining construction

The major steps to construct wave-pipelining paths are shown
in Fig. 5. To construct wave-pipelining false paths, we visit flip-
flops in the netlist iteratively. At each flip-flop ffi , we check
whether there are wave-pipelining false paths formed from single-
period true paths on the left and on the right of ffi . The number
of such paths is stored in nf as shown in L5. Thereafter, we
construct wave-pipelining false paths at this flip-flop with the
function construct WP paths(ffi , T , τ ) which will be explained
later.

As shown in Fig. 1(b), a wave-pipelining path requires that the
flip-flop at the beginning of the path and the flip-flop at the end of
the path are kept in the circuit. These fanin and fanout flip-flops
are inserted into the set Fw and all the flip-flops tracked by Fw

cannot be considered as candidates to construct wave-pipelining
paths.

In the last step of our method, we construct additional wave-
pipelining paths that are still true when viewed with the single-
period clocking model. These paths are used to guarantee that
attackers must test all single-period clocking or wave-pipelining
true paths whose delays are in the gray region. Without these
paths, attackers can assume all testable paths are clocked by a
single clock period and skip the expensive test procedure. The
path construction in this step is nearly the same as L3–L11 in
Fig. 5. The only differences are that at L5 we should check wave-
pipelining true paths and in L9 and L10 we should use nwpt as
the number of such paths to be constructed.

Input: netlist, delay information, T , τ , nwpf , nwpt

For i=1 to |F| do

nf =check WP false paths(ffi , T , τ );

If nf > 0 then
construct WP paths(ffi , T , τ );

If nwpf ≤ 0 then

nwpf = nwpf − nf ;

break;

Fw = ∅;

If ffi /∈Fw then

Fw← ffi , fanin(ffi ) and fanout(ffi );

Construct wave-pipelining true paths similar to L3–L11

L1

L5

L10

L3

L11

L9

Figure 5: Major steps of wave-pipelining construction.

V-B. False path checking

In the work flow above, we need to check whether a path is a
false path. In our method, we consider the statically unsensitizable
paths as false paths [21], [22], such as the false path shown in
Fig. 4. In this example, the path cannot be sensitized because the
controlling signal blocks either the AND gate or the last OR gate
no matter what its value is.

To verify whether a path is statically unsensitizable, we assign
a Boolean variable to the output of each gate and formulate
false path checking as a SAT problem [22]. The logic relations
between these variables are established according to functions of
logic gates. If a path can be sensitized, all the side inputs of
the path must be set to the non-controlling values. For example,
the path in Fig. 4 requires that the condition (v2 ∧ ¬v2) is true,
which is, however, always false. In implementing the function
check WP false paths(ffi , T , τ ) in Fig. 5, we randomly select
500 paths that drive the current flip-flop ffi and exclude the
false paths from them, because the wave-pipelining paths to be
constructed should be formed by two single-period clocking true
paths. Similarly we select 500 paths that are driven by ffi and
exclude the false paths. The selected number is in fact abundant in
the circuits as demonstrated by experimental results in Section VI.
The concept of this path selection is illustrated in Fig. 6(a).

V-C. Wave-pipelining path construction

At flip-flop ffi , we need to construct wave-pipelining paths
in the circuit with the function construct WP paths(ffi , T , τ ) in
Fig. 5. Unfortunately, the intuitive idea to remove flip-flop ffi in
the middle is not a viable solution, because there usually are many
short paths on the left and on the right of ffi and connecting them
directly generates many paths whose delays are too small to meet
the lower bound of the path delay constraint (1).

To solve this problem, we duplicate the logic in the circuit and
size the gates so that the delays of all wave-pipelining paths meet
(1) and (2) as illustrated in Fig. 6(b). In the duplicated circuit
on the right of ffi , we only keep the flip-flops at which wave-
pipelining paths terminate. The other flip-flops stay in the original
circuit. Afterwards, we delete the logic gates backwards to remove
those gates that do not drive any flip-flop to reduce resource usage.
When duplicating the logic on the left of ffi , however, we need
to keep all the logic gates to maintain the correct function of the
circuit.

In the duplicated logic in Fig. 6(b), we do not duplicate
flip-flop ffi . Therefore, all combinational paths in the duplicated
logic are wave-pipelining paths and their delays should meet the
gray region requirement (3) as well as (1)–(2). To meet these
constraints, we size the gates in the duplicated logic with an ILP
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Figure 6: WP path construction. (a) The number of paths on each side of
ffi is limited to 500. A WP false path is constructed by two single-period
clocking true paths. (b) Logic duplication and gate sizing.

formulation. In this formulation, we assign two variables to a pin
of a logic gate to represent the latest and earliest arrival times,
respectively. Assume that an input pin of a gate is indexed by i
and the variables are written as ai and ai. Similarly, assume that
the output pin of the gate is indexed by j and the two variables
are aj and aj . Furthermore, the gate delay from an input pin
to the output pin is written as dij , which is a variable since
the corresponding logic gate is sized. With these definitions, the
arrival time constraints from an input pin to the output pin can
be written as

aj ≥ ai + dij (4)

aj ≤ ai + dij . (5)

To reduce the number of duplicated gates, we try to connect
the input pins of logic gates in the duplicated logic to the original
gates as much as possible, as illustrated in Fig. 6(b). In the
original logic, the latest and the earliest arrival times are constants.
Assume that the two arrival times to the original counterpart of an
input pin are aci and aci , and a 0-1 variable pi indicates whether the
input pin in the duplicated logic should be driven by the original
logic. We can then extend the constraints (4)–(5) as

aj ≥ ai + dij − piM (6)

aj ≥ aci + dij − (1− pi)M (7)

aj ≤ ai + dij + piM (8)

aj ≤ aci + dij + (1− pi)M, (9)

where M is a very large positive constant used to transform the
conditional constraints to linear constraints [23]. In either case
when the input pin is connected or disconnected in the duplicated
logic, only two constraints in (6)–(9) are valid.

In the description above, we do not bound gate delays
strictly. Instead, we allow them to exceed the maximum gate
delays defined in the library, respectively, so that the path delay
constraints (1)–(2) and the gray region constraint (3) can be
guaranteed. However, we try to keep the increased gate delays
as small as possible, so that they can be absorbed by interconnect
delays during physical design. To reduce resource usage and avoid
excessive delay padding, we formulate the optimization problem
as

minimize α
∑

I

dij − β
∑

I

pi (10)

subject to (1)–(2), (3), (6)–(9), (11)

Table I: Results of Constructing WP Paths

Circuit WP Cons. Runtime
ns ng nt nwpt nwpf nd np tr(s)

s35932 1728 16065 180039 20 1022 178 80 625.29
s38584 1452 19253 502561 48 431 130 117 3685.88
s38417 1636 22179 298922 82 63 321 65 1711.01
s15850 522 9772 361544 20 838 186 141 3018.06
s13207 669 3716 927424 20 115 152 74 446.17
s9234 228 5597 10922 20 983 148 83 291.45
s5378 179 2779 10143 401 78 139 55 266.022
s4863 104 2342 4140 680 0 184 77 3766.98
s1423 74 657 8506 450 12 75 213 1170.71
s1238 12 508 15 3 4 94 90 2.07

where α 
 β and I is the index set of all input pins. After the
ILP problem above is solved, the gates that do not drive any other
gates in the duplicated logic are removed from the circuit.

VI. EXPERIMENTAL RESULTS

The proposed method was implemented in C++ and tested
using a 3.20 GHz CPU. We demonstrate the results using circuits
from the ISCAS89 benchmark set. The number of flip-flops and
the number of logic gates are shown in the columns ns and
ng in Table I, respectively. The benchmark circuits were sized
using a 45 nm library. We kept 15% of timing margin to tolerate
PVT (Process, Voltage and Temperature) variations and we set the
inaccuracy factor τ of delay estimation in (3) to 20%. We used
Gurobi [24] to solve the optimization problems in the proposed
method.

The results of wave-pipelining path construction are shown
in Table I. The column nt shows the number of single-period
clocking combinational paths that are true paths in the original
circuits and whose delays meet the gray region requirement (3).
When attackers try to detect the locations of wave-pipelining
paths, these true paths need to be tested to determine whether
their delays are actually larger or smaller than T . These results
show that attackers need to perform many expensive test iterations
to attack a chip even if they can estimate gate delays to some
degree.

The column nwpt shows the numbers of wave-pipelining
true paths whose delays are in the gray region. These paths
are used to guarantee that attackers must test all single-period
clocking or wave-pipelining true paths whose delays are in the
gray region. The column nwpf shows the numbers of wave-
pipelining false paths whose delays are in the gray region. These
paths are used to obstruct the attempt that attackers test all paths
to determine the wave-pipelining paths. In our experiments, we
set the target numbers of wave-pipelining true and false paths
both to 10. We executed the construction of wave-pipelining true
and false paths shown as in Fig. 5. When we constructed wave-
pipelining false paths using the technique illustrated in Fig. 6,
we also found wave-pipelining true paths in the duplicated circuit
snippet. In addition, we found wave-pipelining false paths in the
circuit snippet duplicated to construct wave-pipelining true paths.
Consequently, the numbers of these paths shown in the columns
nwpt and nwpf are larger than 10 for many test cases except
s4863 and s1238. In s4863 there is no wave-pipelining false path
and in s1238 the numbers of wave-pipelining paths are very small
due to the limited circuit size. In all the large test cases, however,
wave-pipelining paths have been constructed successfully,

The column nd in Table I shows the number of logic gates
duplicated in the final circuits. Since we only inserted wave-
pipelining paths at limited locations, generally the number of
duplicated gates does not increase with respect to circuit size.
The column np shows the number of delay units equivalent to
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Table II: Wave-pipelining False Paths in Test Cases

Circuit nf τ = 0.2 τ = 0.1

s5378 122757 80386 4845
s4863 0 0 0
s1423 2331927 58992 37312
s1238 392 0 0
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Figure 7: Comparison of gate numbers before/after reduction.

buffer delays that were inserted to extend wave-pipelining path
delays. Since the number of duplicated gates does not increase
with respect to circuit size, the area cost for constructing wave-
pipelining paths is negligible in relatively large circuits. The last
column tr in Table I shows the runtime of the proposed method,
which is acceptable because wave-pipelining construction is a
one-time effort.

In the proposed method, the number of wave-pipelining false
paths depends on the original circuit structure. If there is no such
a path in a circuit, we cannot use this technique to thwart test-
based attack. To verify whether this feature is common for most
circuits, we checked the numbers of wave-pipelining false paths
in the test cases and the results are shown in Table II, where
the column nf shows the numbers of wave-pipelining false paths
without considering path delays. The columns τ = 0.2 and τ =
0.1 show the numbers of such paths with delays meeting the
gray region requirement (3). Since τ = 0.1 means that the gray
region is smaller, the numbers of wave-pipelining paths under this
condition decrease compared with the τ = 0.2 cases. For all the
other test cases not appearing in Table II, the numbers of such
paths corresponding to the three columns are all larger than 100k,
meaning that there are plenty of wave-pipelining false paths which
can be used to camouflage the timing of these circuits.

In our wave-pipelining construction formulation (10)–(11), we
maximize the number of signals that can be driven by the original
circuit as illustrated in Fig. 6. Consequently, the number of logic
gates in the duplicated circuit can be reduced. Fig. 7 compares
the numbers of gates in the originally duplicated circuit before
the removed flip-flop in Fig. 6 and the number of gates after
reduction. In all the test cases, the numbers of duplicated gates
were reduced significantly.

In our experiments, we also simulated the gate sizing attack on
the netlist as discussed in Section IV. The basic idea was that all
false paths whose delays were in the gray region were treated as
wave-pipelining paths and their delays were sized to meet (1)–(2).
The results of this simulated attack are shown in Fig. 8, where the
first bar shows the number of false paths we used to simulate the
attack. The last bar shows the number of false paths that were
not sized successfully. In all these simulation cases, no sizing
attack succeeded. As discussed in Section IV, false paths may
be sensitized if their delays exceed one clock period. The second
bar in Fig. 8 shows the number of the false paths that can be
sensitized when considered as wave-pipelining paths in the attack.
Obviously many of them can be sensitized so that the circuit does
not work even if the sizing attack could succeed.
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Figure 8: Results of false path sizing attack.

VII. CONCLUSION

In this paper, we have proposed a new timing camouflage
technique to secure circuit netlists against counterfeiting. Since
a netlist itself does not carry all design information anymore,
the difficulty of attack has been increased significantly due to
additional test cost and the introduced wave-pipelining false
paths. This technique potentially opens up a new dimension of
circuit security and it is fully compatible with all previous anti-
counterfeiting methods. Future work includes incorporating gate
delay camouflage by doping modification [2], [16] to decouple
gate delays from layout further. In addition, clock skew scheduling
in [25]–[28] would also be explored in the same timing dimension
to enhance the security of netlists.
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