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Abstract—As VLSI technology nodes continue, the gap be-
tween lithography system manufacturing ability and transistor
feature size induces serious problems, thus lithography hotspot
detection is of importance in physical verification flow. Existing
hotspot detection approaches can be categorized into pattern
matching-based and machine learning-based. With extreme
scaling of transistor feature size and the growing complexity
of layout patterns, the traditional methods may suffer from
performance degradation. For example, pattern matching-based
methods have lower hotspot detection rates for unseen patterns,
while machine learning-based methods may lose information in
manual feature extraction for ultra-large-scale integrated circuit
masks. To overcome the drawbacks derived from existing meth-
ods, in this paper, we survey very recent deep learning techniques
and argue that the pooling layers in ordinary deep learning
architecture are not necessary. We further propose a novel
pooling-free neural network architecture, whose effectiveness is
verified by industrial benchmark suites.

I. INTRODUCTION

With the VLSI technology node continuously shrinking

down, there is a large gap between the mask pattern feature

size and the 193nm lithography system wavelength [1], [2].

The printability of the mask layout is seriously affected by

light diffraction and circuit failures (open or short circuit)

are more likely to occur for some patterns. Therefore it is

necessary to detect and correct the problematic patterns (i.e.

hotspots) before the manufacturing process. Varies resolution

enhancement technologies (RETs) have been proposed and

developed to provide yielding-friendly patterns under the

sub-wavelength lithography condition. Existing RETs include

optical proximity correction (OPC) [3], [4], phase shift masks

(PSMs) [5] and sub-resolution assist features (SRAFs) [6].

However, the effectiveness of RETs is affected by many fac-

tors including the patterns’ compatibility with OPC algorithms

and the pitch differences, therefore simply adopting them

cannot guarantee to print ideal shapes and additional layout

refinements are required to increase the quality of the printed

patterns.

The objective of hotspot detection task is identifying the

problematic patterns or layout regions that need further refine-

ments. Lithography simulation is currently the most accurate

approach to recognize lithography hotspots and estimate the

mask layout process windows [7], yet the progress is time

consuming to obtain the full chip characteristics. To speed

up the physical verification flow (see Fig. 1), state-of-the-

art approaches usually apply one or more rounds of hotspot

classification or prediction, where hotspot candidates are
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Fig. 1: VLSI physical verification flow.

extracted from the designed mask layout via efficient clas-

sification procedure and only hotspot candidates are required

to feed into the lithography simulation engine. As a result,

the verification flow is significantly facilitated.

A major challenge of the physical verification flow is how

to extract reliable hotspot candidates (i.e. predict hotspot

regions) that can cover as much the real problematic re-

gions as possible. Pattern matching and machine learning

are two main methodologies to extract hotspot candidates.

On one hand, pattern matching based methods discover the

problematic regions through comparing the topologies of the

designed layout patterns with the topologies of the patterns in

hotspot libraries [8]–[10]. Because the quality of the hotspot

candidates rely highly on the hotspot library, pattern matching

based methods have weak generality especially for unique

topologies under advanced technology nodes. On the other

hand, in machine learning flow, layout patterns are usually

converted into a low dimensional representation known as

feature extraction. Then efficient machine learning models

are able to learn the beneath relationships between the layout

features and their attributes [11]–[18]. However, as the layout

feature size shrinks down to 22nm and beyond, manually

crafted layout features cannot effectively grasp the pattern

properties. Very recently, deep neural networks have shown

great success in pattern recognition tasks because of the

existence of convolution layers that are able to automatically

extract pattern features [19]–[21]. Several attempts are made

to apply convolutional neural networks for hotspot detection

and achieve promising hotspot prediction results [22]–[25].

Although [23]–[25] include customized training strategies
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according to the properties of layout datasets, there are still

several aspects that have not been taken into account when

designing the neural networks.

To address the issues in state-of-the-art hotspot detec-

tors, in this paper we study the functionality of the current

convolutional neural network architecture and analyze the

necessity of different layers, based on which, an updated

network architecture is built and trained to classify hotspot

candidates accurately and efficiently. Our contributions are

listed as follows.

• We elaborate the state-of-the-art hotspot detector solu-

tions based on machine learning techniques, including

both shallow and deep learning models, and analyze the

advantages and drawbacks.

• We analyze the functionality of different layer types

within the deep neural networks and develop an improved

network architecture that can offer better detection re-

sults.

• Experimental results show that our neural network model

achieves satisfactory results on both pre-OPC and post-

OPC layout datasets.

The rest of the paper is organized as follows. Section

II introduces some terminologies of the hotspot detection

problem. Section III surveys and analyzes traditional machine

learning based hotspot detectors. Section IV elaborates the

deep learning solutions for hotspot detection and presents an

improved architecture to achieve better detection results. Sec-

tion VI lists the experimental results, followed by conclusion

in Section VI.

II. PRELIMINARIES

In this section, we will introduce some terminologies

related to the hotspot detection problem. As mentioned in

previous section, a good hotspot detector should be able

to predict as much real hotspot regions as possible at the

minimum cost of false positives. Therefore, we adopt the

evaluation metrics that are defined in the ICCAD Contest 2012

[26].

Definition 1 (Accuracy). The ratio between the number of
correctly predicted hotspot clips and the number of all real
hotspot clips.

Definition 2 (False Alarm). The number of non-hotspot clips
that are predicted as hotspots by the classifier.

Problem 1 (Hotspot Detection). Given a set of clips con-
sisting of hotspot and non-hotspot patterns, the object of
hotspot detection is training a classifier that can maximize
the accuracy and minimize the false alarm.

Because hotspot detectors aim to speed up the physical

verification flow, the model test runtime, which though is less

important than the accuracy and the false alarm, is also taken

into consideration.

III. SHALLOW LEARNING MODELS

Machine learning methods have been applied in the design

automation field extensively [27], e.g., adder synthesis [28],

statistical path selection [29], sensor placement [30], para-

metric yield estimation and improvement [31]–[35], hardware

security enhancement [36], and post-silicon tuning buffer

allocation [37]–[39]. Artificial neural networks (ANN) [12],

[40], support vector machine (SVM) [11]–[13] and Boosting

[14], [15] have been widely explored specifically for hotspot

detection problems. These solutions share a similar process

called feature extraction, which obtains low dimensional rep-

resentations of layout clips. In this section, we will elaborate

both the feature extraction methods and learning models for

hotspot detection.

A. Feature Extraction
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Fig. 2: Density-based feature representation. The local

density information is converted to a feature vector

{x11, x12, ..., x44}.

1) Density-based Feature: Usually mask layouts with high

pattern density show a higher risk of suffering defects, there-

fore it is reasonable to measure the mask printability via its

local pattern density [9], [14]. As shown in Fig. 2, each layout

clip is first divided into square grids and each grid G(i, j)
corresponds to a value xi,j reflects the density information

that is calculated through the Equation (1).

xi,j =
AM (i, j)

AG(i, j)
, (1)

where AM (i, j) denotes the mask pattern area within G(i, j)
and AG(i, j) is the area of G(i, j). Finally, the density

information is flattened into a vector x = {x11, x12, ..., x44}
that is applicable for varies machine learning models.
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Fig. 3: Topology-based layout representation. Polygon edges

divide the clip into grids. The grid filled with geometry is

labeled 1 and the grid filled with space is labeled 0.

2) Layout Topology: The topological representation of a

layout clip contains the geometry relationships of the patterns

(rectangles) within it [13], [41]. As shown in Fig. 3, all edges
234



Fig. 4: Concentric circle area sampling.

are extended to the border of the clip and cut the clip into

grids, which are filled with either geometry or space. If we

label each grid with 1 (for geometry) and 0 (for space),

the original layout clip can then be converted into a binary

matrix representation. The topology matrix itself has already

been a good representation for pattern matching [41] and

constructing the space of design layout configurations and

sub-configurations [42]. Besides, by incorporating with design

rules, the topological representation can be a effective layout

feature for accurate hotspot detection [13].

3) Concentric Circle Area Sampling: It has been believed

that layout hotspots are caused by optical proximity (diffrac-

tion) effect in the lithography process. Whether a pattern is

problematic or not is determined by all the patterns within

a square [26] or circular ambit [43]. In the 28nm tech-

nology node, the ambit area is approximately 1μm2 which

corresponds to an R
1000000 space with 1nm precision that

makes it difficult to do quantitative analysis for OPC and

hotspot detection. Concentric circle area sampling (CCAS)

[3], developed from concentric square sampling (CSS) [44],

has become an efficient feature extraction method because of

being coherent with the fact that diffracted light propagates in

a circular concentric scheme. As illustrated in Fig. 4, all the

circles are concentrated on the center of the clip (or ambit).

Eight points are evenly sampled from each circle and each

point is labeled 0 or 1 based on whether it is located on the

geometry or space. Although CCAS is originally designed for

machine learning based OPC [3], it is also effective in hotspot

detection [17].

B. Learning Models

1) Boosting: Boosting is a family of ensemble machine

learning methods which are able to build a strong classifier

from a set of weak classifiers. [14] and [15] are two rep-

resentative works for hotspot detection, where decision tree

is chosen as the weak classifier. Decision tree works in the

form of a flow chart where each non-leaf node splits the data

by examining one attribute and leaf nodes predict the label.

Information gain (IG) is utilized to determine the feature of

each node, as shown in Equation (2) [45].

IG(P, f) = H(P )−H(P |f), (2)

where H(P ) is the entropy related to feature f of the parent

node and H(P |f) is the weighted entropy of all children.
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Fig. 5: Artificial neural network architecture.

Final prediction are made by a weighted combination of the

results from all decision trees (weak classifiers).

2) SVM: SVM is deemed as one of the most powerful

machine learning models with the problem formulation as

follows.

max

N∑
i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjdidjk(xi,xj), (??eq:svm)

s.t.

N∑
i=1

αidi = 0, (3a)

0 ≤ αi ≤ C, ∀i = 1, 2, . . . , N, (3b)

where αi and di are the Lagrangian coefficient and the

label that correspond to the instance xi. C is a manually

chosen constant that controls the soft margin for non-separable

datasets. After solving the problem, we can form the following

classifier for hotspot detection.

d =

NS∑
i=i

αidik(xi,x), (4)

where xis are support vectors from the training set that

have non-zero Lagrangian coefficients. Because designers are

free to choose different kernels, SVM provides more robust

solutions for hotspot detection problems [12], [13].

3) ANN: ANN is a standard multilayer perceptron model

that is able to fit highly nonlinear functions. An example of

ANN is presented in Fig. 5 with one input layer, one hidden

layer and one output layer. The output layer generates the

prediction scores or regression values. The value of each node

corresponds to the weighted sum of the nodes in previous

layer, as shown in the following equations.

h = f(W1x), (5)

y = g(W2h), (6)

where f and g are activation functions that perform element

wise operation on each neuron. If we map layout features to

x = {x1, x2, x3, . . . }, the ANN can do either regression tasks

(e.g. OPC [40]) or classification tasks (e.g. hotspot detection

[12]).

IV. DEEP LEARNING MODELS

Traditional machine learning methods rely highly on man-

ually designed layout features. Such crafted features cannot
235
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Convolution Layer Pooling Layer Fully Connected Layer

Fig. 6: Ordinary convolutional neural network architecture with two convolution layers (blue), two pooling layers (grey), and

two fully connected layers (circle).
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Fig. 7: Example of different pooling operations on 2×2 regions with a stride of 2 pixels between pooling regions. (a) Maximum

pooling. (b) Average pooling. (c) Stochastic pooling.

always grasp the dominant information even with prior knowl-

edge. Recently, convolutional neural network (CNN) starts

to show strong feature learning ability and brings promising

hotspot detection results [22]–[25]. In this section, we will

introduce the basis of CNN and the functionalities of different

layer types, based on which a customized architecture is

designed for complex layout hotspot detection.

A. CNN Basis

Convolution layers, pooling layers and fully connected lay-

ers are three main components of normal CNN architecture,

as shown in Fig. 6. We detail the functionalities of each layer

type as follows.

1) Convolution Layers: Convolution layers are the key

elements of deep neural networks, and they work similarly

with traditional ANN except some edges share same weights

which enables the automatic extraction of common features.

The operations are also changed from simple inner products

(i.e., Equations (5) and (6)) to convolution, as shown in

Equation (7).

I⊗K(x, y) =

c∑
i=1

m∑
j=1

m∑
k=1

I(i, x− j, y − k)K(i, j, k), (7)

where I is input image or feature maps, while K ∈ R
c×m×m

is the convolution kernel (i.e. shared weights). Within the

convolution layer, the kernel scans the input image or feature

maps from the upper-right to the bottom-left corner. The

output pixel values are obtained from the inner product of

each scanning step.

2) Pooling Layers: Pooling layers extract the statistical

summary of the local regions of the previous layer which can

reduce the feature map dimension as well as make the neural

network not sensitive to small changes. Maximum pooling,

average pooling and stochastic pooling are three main pooling

methods which output the maximum, average or random value

of a local region. We visualize the pooling operation in Fig. 7.

When building the CNN architecture, pooling can be applied

on any local region in any dimension.

3) Fully Connected Layers: In the design of CNN architec-

ture, multiple convolution layers and pooling layers can stack

together to form deeper networks. Fully connected layers

are used to flatten the feature maps, which are extracted

from multiple convolution and pooling operations into a one

dimensional vector to predict the final results. The operations

inside the fully connected layers are pure inner product which

is the same as ANN. For the hotspot detection problems, node

number in the last fully connected layer is two that correspond

to the score of the instance being hotspot and non-hotspot,

respectively.

4) Rectified Linear Unit: Unlike ANN, modern CNNs

usually take the rectified linear unit (ReLU, as in Equation (8))

as activation functions instead of traditional sigmoid function

and tanh. ReLUs are applied after convolution layers and fully

connected layers to perform element-wise operations on each

intermediate node and introduce nonlinearity to the neural
236



TABLE I: Proposed Neural Network Configuration.

Layer Kernel Size Stride Padding Output Vertexes

Conv1-1 2× 2× 4 2 0 512× 512× 4
Conv1-2 3× 3× 4 2 0 256× 256× 4
Conv2-1 3× 3× 8 1 1 256× 256× 8
Conv2-2 3× 3× 8 1 1 256× 256× 8
Conv2-3 3× 3× 8 1 1 256× 256× 8
Conv2-4 3× 3× 8 2 0 128× 128× 8
Conv3-1 3× 3× 16 1 1 128× 128× 16
Conv3-2 3× 3× 16 1 1 128× 128× 16
Conv3-3 3× 3× 16 1 1 128× 128× 16
Conv3-4 3× 3× 16 2 0 64× 64× 16
Conv4-1 3× 3× 32 1 1 64× 64× 32
Conv4-2 3× 3× 32 1 1 64× 64× 32
Conv4-3 3× 3× 32 1 1 64× 64× 32
Conv4-4 3× 3× 32 2 0 32× 32× 32
Conv5-1 3× 3× 32 1 1 32× 32× 32
Conv5-2 3× 3× 32 1 1 32× 32× 32
Conv5-3 3× 3× 32 1 1 32× 32× 32
Conv5-4 3× 3× 32 2 0 16× 16× 32

FC1 – – – 2048
FC2 – – – 512
FC3 – – – 2

TABLE II: Benchmark Statistics

Benchmarks
Training Set Testing Set

HS# NHS# HS# NHS#

ICCAD 1204 17096 2524 13503
Industry1 34281 15635 17157 7801
Industry2 15197 48758 7520 24457
Industry3 24776 49315 12228 24817

network.

ReLU(x) =

{
x, if x > 0,
0, if x ≤ 0.

(8)

B. Pooling Is Not Necessary

In ordinary object recognition tasks, the existence of pool-

ing layer makes the neural network have more generality

because small variations are diminished after the pooling

operation. However, this characteristic will not benefit the

hotspot detection problem when predicting post-OPC patterns.

That is, a portion of the edge displacements that turns a

hotspot pattern into a non-hotspot pattern may be ignored by

the neural network due to the pooling layer. For such reason,

we propose removing the pooling layers to avoid information

loss in hotspot detection. In this work, we extend the CNN

architecture developed in [24], and replace all the pooling

layers with 3×3 convolution layers. The strides are the same

as original pooling layer to make sure the modification is

minimized. More details on the polished architecture are listed

in TABLE I, where our modifications are highlighted in bold.

V. EXPERIMENTAL RESULTS

The proposed deep learning model is implemented us-

ing Python with TensorFlow library [46]. We conduct the

experiment on four benchmarks, as shown in TABLE II,

where ICCAD contains all the 28nm clips from ICCAD-2012

CAD contest [26] and Industry1-Industry3 are three

more complicated industrial benchmarks. Columns “HS#” and

“NHS#” denote the number of hotspot and non-hotspot clips

in each benchmark respectively. To show the effectiveness

of our model, we compare our results with four recently
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Fig. 8: Runtime Comparison with State-of-the-art Hotspot

Detectors.

proposed hotspot detectors as detailed in TABLE III, where

[14] and [17] are two hotspot detectors with boosting models.

Besides, [24] is an ordinary CNN classifier that takes raw

layout clips as input, while [25] applies small CNN model on

frequency representations of layout patterns. Here columns

“Accu (%)” and “FA#” correspond to the hotspot detection

accuracy and the number of false alarm respectively.

Our model is developed based on [24] by replacing all the

pooling layers with convolution layers. Compared to [24], the

average hotspot detection accuracy increases from 90.55%

to 92.49% and the false alarm drops 337, both of which

demonstrate the effectiveness of removing pooling layers.

Particularly, the improvements are prominent on post-OPC

patterns. On average, CNN solutions work better that shallow

learning models with 2.91% advantage on accuracy and 1247

less false alarm penalties. It should be noted that since [25]

optimizes the detector with bias, it achieves better detection

accuracy with some cost of false alarm penalties.

VI. CONCLUSION

Lithography hotspot detection is a key step in VLSI phys-

ical verification flow. In this paper, we survey state-of-the-art

machine learning models and varies layout representations for

the hotspot detection problem. To address the drawbacks of

the shallow learning models and the manually crafted features,

we motivate the deep neural network as an alternate hotspot

detector. We further propose a pooling-free CNN architecture

that fits well with post-OPC mask images. The experimental

results show that our model achieves the best false alarm

among several recently proposed hotspot detectors. Moreover,

through this paper we hope to demonstrate the importance of

application-specific CNN design.
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L. Mattii, Y.-C. Lai, and P. Hurat, “In-design and signoff lithography
physical analysis for 7/5nm,” in SPIE Advanced Lithography, 2017, pp.
1 014 705–1 014 705.

[44] A. Gu and A. Zakhor, “Optical proximity correction with linear regres-
sion,” IEEE TSM, vol. 21, no. 2, pp. 263–271, 2008.

[45] Z. John Lu, “The elements of statistical learning: data mining, inference,
and prediction,” Journal of the Royal Statistical Society: Series A
(Statistics in Society), vol. 173, no. 3, pp. 693–694, 2010.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “Ten-
sorFlow: A system for large-scale machine learning,” in Proc. OSDI,
2016, pp. 265–283.

238



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


