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Abstract—Capsule networks are recently proposed as an
alternative to modern neural network architectures. Neurons are
replaced with capsule units that represent specific features or
entities with normalized vectors or matrices. The activation of
lower layer capsules affects the behavior of the following capsules
via routing links that are constructed during training via certain
routing algorithms. We discuss the routing-by-agreement scheme
in dynamic routing algorithm which, in certain cases, leads the
networks away from optimality. To obtain better and faster
convergence, we propose a routing algorithm that incorporates
a regularized quadratic programming problem which can be
solved efficiently. Particularly, the proposed routing algorithm
targets directly on the discriminative power of class capsules
making the correct decision on input instances. We conduct
experiments on MNIST, MNIST-Fashion, and CIFAR-10 and
show competitive classification results compared to existing
capsule networks.

I. INTRODUCTION

Convolutional neural networks have been deeply studied in
recent years. Its variations are successfully and widely applied
in different tasks including classification [1], generation [2],
segmentation [3], and so on. Convolution layers abstract
common features hierarchically by scanning the object with
shared kernels that decomposes the original images into small
and simple instances which are hence used for classification
task. However, the process to some extent violates the nature
of recognizing objects, that the visual system resembles parse
tree-like [4] structures on fixation points adopted by human
vision. In each layer of a parse tree, neurons are grouped
together representing certain objects, which are known as
capsules.

Capsule networks are recently proposed as an alternative
of modern convolutional neural network architectures that
changes the way neural networks are trained and features
are represented, and, as a result, it also brings robustness
to adversarial attacks and overlapped objects [5]. A capsule
is a group of neurons that represent a feature or an entity.
The capsule length reflects by how much the capsule is
activated or the probability a corresponding entity exists
in a given image. Capsules in adjacent layers are densely
connected via traditional neuron links with their weights
learned through routing-by-agreement algorithms, as shown
in Figure 1. Another characteristic of capsule networks is that
lower level features are constructing higher level entities as
layer goes deeper, compared to convolutional neural networks
that perform feature abstraction layer by layer.
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Fig. 1 Visualization of capsule layers with 10 capsules in the
output layer that represent the existence of 10 classes.

Two recent capsule routing algorithms are dynamic routing
[5] and EM routing [6]. Dynamic routing quantifies the agree-
ment between capsules via their inner-product. The greater
inner-product value indicates two capsules agree more with
each other and the dynamic routing aims to amplify the
agreement. EM routing models each higher level capsule as
a Gaussian and the posterior probability of previous layer
capsules determines in which level they are connected to
higher level capsules. In both routing algorithms, capsules
are coupled to higher level capsules according to certain
agreement metrics without considering the prediction results.

In this work, we discuss and analyze the routing-by-
agreement mechanisms in capsule networks and propose a
routing algorithm that can achieve faster convergence and bet-
ter discrimination results in classification tasks. The algorithm
is inspired by two observations: (1) the ultimate objective of
training capsule networks is to make the correctly activated
output capsules have the largest lengths and (2) the feature
capsules (capsules before the output layer) are reasonable to
have negative effects on capsules in the following layers. We
also propose several training tricks to enlarge the solution
space that can result in higher classification accuracy on
several datasets. We pick the capsule network architecture
used in [5] as a case study to show how our methods benefit
the training of capsule networks.

II. RELATED WORKS

[7] developed credibility networks where images are inter-
preted as a parse tree or a collection of parse trees with the leaf
nodes being image pixels. Each node and its associated latent
variables represents an object and its pose information that
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forms higher level objects. The concept of capsule comes from
transforming auto-encoders [8], where each capsule consists
of an instantiation of certain entity. All the entities together
reconstructs images with some transformation that is applied
on the instantiation vectors with some probabilities. Although
the capsule in [8] aims at reconstruction, it already comes
with similar features of the capsule discussed in this paper,
i.e., associating with a higher level object in a feedforward
style. [5] and [6] are two latest implementations of capsule
networks for object classification, certain routing algorithms
have been discussed in previous section. [9] rephrased the
dynamic routing algorithm as a KL divergence regularized
clustering problem that inspires an improved solution resem-
bling agglomerative fuzzy k-means, which can be solved by
coordinate descent.

III. THE ALGORITHM

In this section, we will discuss the details of the routing-by-
agreement scheme in the dynamic routing algorithm based on
which, an improved routing algorithm is proposed that targets
directly at the discriminative power of class capsules.

A. Dynamic Routing-by-Agreement

Routing-by-agreement aims to couple the lower level cap-
sules to higher level capsules when they agree with each other.
Here we will discuss the coupling procedure from primary
capsules to output capsules in [5]. Each primary capsule ui

is first projected to the space of digital capsules in the follow-
up layer by

ûj|i = Wijui, (1)

and the digital capsules are then derived from the weighted
summation of all ûj|is, as in Equation (2),

vj =
∑
i

cijûj|i, sj = squash(vj). (2)

where squash brings nonlinearity to digital capsules and scales
capsule length to between 0 and 1,

squash(v) =
||v||22

1 + ||v||22
· v

||v||2
, (3)

and cijs are softmaxed coupling coefficients bijs (see Equa-
tion (4)) that determines the probability on primary capsule
ui should contribute to activate the digital capsule vj .

cij =
exp(bij)∑
k exp(bik)

. (4)

In each routing iteration, cij will be amplified if capsule
i agrees with capsule j the most. There are two beneath
assumptions in the dynamic routing algorithm.

Assumption 1. Primary capsules do not have negative impact
on the activation of digital capsules.

Assumption 2. All digital capsules are activated correctly.

Assumption 1 comes from the fact that cijs are always
positive due to Equation (4), which guarantees each primary

capsule will more or less contribute to higher level capsules.
Such design cannot efficiently represent the case when one
or more specific entities/features can never exist in certain
objects. The dynamic routing algorithm is coherent with
Assumption 2, because in each routing iteration, cij will
always be increased if ûj|i has largest inner product with
vj . Here are some potential drawbacks when accepting these
assumptions. Assumption 1 can possibly limit the solution
space with always-nonnegative cij’s. On the other hand,
more importantly, Assumption 2 does not necessarily hold
during training especially at very early epochs. Uncondition-
ally coupling with a digital capsule simply based on inner-
product agreement even that capsule is incorrectly activated
will hold back the whole training procedure. According to the
observations above, we will introduce an improved routing
algorithm that is expected to achieve better classification
results and faster convergence.

B. Routing Towards Discriminative Quality

The length of a capsule is originally designed as indicators
of the existence of corresponding features. Features with
larger capsule vector length are more likely to exist in a
given instance. For simplicity, we will use the architecture
in [5] in the following discussion. Digital capsules, as the
output layer of capsule networks, make the final decision
of prediction tasks. Therefore, the activation error should be
considered when determining routing coefficients. According
to the prediction mechanism of capsule networks, intuitively,
the length of capsules that are supposed to be activated should
be maximized, while the length of inactivated capsules should
be minimized. This objective can be written in a unified form
as shown in Equation (5).

max
bj

δij ||vj ||22, (5a)

s.t. δij =

{
1, if i = j,

−1, otherwise,
(5b)

where i corresponds to the labels of given observations and
the indicator function δij ensures Equation (5) consistent with
the discrimination mechanism of digital capsules. We denote
bj as the routing coefficients corresponding to the jth output
capsule before going into softmax function. To additionally
enlarge the representation space of digital capsules, we also
discard the softmax of routing coefficients such that each
digital capsule is calculated directly through

vj =
∑
i

bijûj|i = Û>bj , (6)

where rows of Û are the primary capsules projected into dig-
ital capsule space with ûj|i, and the objective of Equation (5)
becomes

max
bj

δij,kb
>
j ÛkÛ

>
k bj . (7)



Note that Equation (7) can not fit each individual observation
in the training dataset, because it will always give optimal
optimal solution of

b∗j =

{
0, if δij,k = −1,
inf, if δij,k = 1.

(8)

Rewrite Equation (7) into batch mode we have a slightly better
formulation:

max
bj

∑
k

δij,kb
>
j ÛkÛ

>
k bj , (9)

where j corresponds to the jth digital capsule and k is the
kth observation in the training batch. We are able to obtain a
local optimal of Equation (9) as long as

∑
k δij,kÛkÛ

>
k � 0.

1) l2-Regularization: Observing that each capsule is
equipped with very small number of neuron nodes that makes
Ûk ∈ Rm×n have very few columns and as a result, ÛkÛ

>
k

has a very low rank that also makes it possible to turn
Equation (9) into a ridge regression-like [10] problem with
a small regularization on bj , as in Equation (10).

max
bj

p∑
k=1

δij,kb
>
j ÛkÛ

>
k bj − λ||bj ||22, (10)

where λ is the regularization coefficient which is usually set
small, e.g. 0.001. Note that Equation (10) is no longer convex
that makes the maximization reasonable, by the fact that

p∑
k=1

δij,k(b
>
j ÛkÛ

>
k bj)− λ||bj ||22

= b>j (

p∑
k=1

δij,kÛkÛ
>
k − λI)bj

= b>j Q(Λ− λI)Q>bj � 0,

(11)

where λ > 0 and Λ is a diagonal matrix with as least m−pn
zeros in its diagonal that ensures Λ − λI to be indefinite
as long as the batch size p is not extremely large. The
regularization term also avoids bj going too large or too small
that resembles momentum in classical neural network training
algorithms [11]. Because the capsule coupling coefficients are
designed to approximate a large set of observations, we solve
the problem greedily by ascending the gradient of on a batch
of observations, as in Equation (13). Let

r =

p∑
k=1

δij,k(b
>
j ÛkÛ

>
k bj)− λ||bj ||22, (12)

and bj can be updated as follows:

bj = bj + γ
∂r

∂bj

= bj + γ

p∑
k=1

∂b>j (δij,kÛkÛ
>
k −

λ

p
I)bj

∂bj

= bj + 2γ

p∑
k=1

(δij,kÛkÛ
>
k −

λ

p
I)bj , (13)

where p denotes the observation batch size.

2) l1-Regularization: In the original capsule networks
design, primary capsules and digital capsules are densely
connected. It has been shown in previous works such densely
connected structure is easily suffering from overfitting [12],
[13]. Enforcement weight sharing in CNN and drop neurons
when training densely connected nets (also known as dropout)
are two major solutions in deep learning scope. Weight shar-
ing is similarly applied with the implementation of capsule
networks in [6].

Instead of predetermine the neuron/capsule connectivity or
randomly drop connection, we propose an alternative that
can automatically learn how capsules in different layers are
linked with each other. The routing objectives can be found
in Equation (14),

max
bj

p∑
k=1

δij,kb
>
j ÛkÛ

>
k bj − λ||bj ||1, (14)

where an l1 penalty term is applied on bj that admits a sparse
solution [14]. Because solving Equation (14) requires to
calculate the gradient of |x| at x = 0, we define ∂|x|

∂x

∣∣∣
x=0

= 0.
Routing coefficients can then be similarly updated as follows:

bj = bj + 2γ(

p∑
k=1

b>j δij,kÛkÛ
>
k − λ

∂||bj ||1
∂bj

). (15)

C. Training Capsule Networks

Note that for both strategies in Equation (13) and Equa-
tion (15) are compatible with networks that contain more
than 2 capsule layers, where the routing coefficients can be
accordingly updated through chain rule. When training other
neuron weights, we adopt the margin loss as in Equation (16)
[5].

Lk = Tk max(0,m+ − ||vk||2)2

+ λ′(1− Tk)max(0, ||vk||2 −m−)2,
(16)

where Tk = 1 if class k is present in the kth output capsule.
As shown in Algorithm 1, the routing coefficients and other

neuron weights are updated alternatively in each training step,
where nd, nb and nr are the number of output capsules,
the number of iterations to update regular weights and the
number of iterations for routing, respectively. In each training
iteration, we first sample a minibatch of observations from
the training set (lines 1–2), we then update the regular neuron
weights for nb steps with routing coefficients fixed (lines 3–
6), and finally the routing coefficients are updated according
to the formulation in Equation (10) or Equation (14) (lines
7–9).

IV. EXPERIMENTS

To verify the proposed methods, in this paper, we adopt
the simplest capsule neural network architecture in [5], which
is implemented with tensorflow [15]. We conduct experi-
ments on three datasets that include MNIST [16], Fashion-
MNIST [17] and CIFAR-10 [18]. Notations “DR”, “L1”
and “L2”correspond to original dynamic routing [5], the
proposed algorithm with l1 regularization and l2 regularization



TABLE I Neural network configuration for each benchmark.

Layer Filter/Capsule Size Activation
Filter/Capsule/Neuron Number

MNIST Fashion-MNIST CIFAR-10

Conv1 9×9 ReLU 256 256 256
Cap1 8 Squash 32 32 64
Cap2 16 Squash 10 10 10
FC1 - ReLU 512 512 -
FC2 - ReLU 1024 1024 -
FC3 - Sigmoid 784 784 -

(a) input (b) dynamic routing (c) l2-regularized routing

Fig. 2 Visualization of the reconstructed images on Fashion-MNIST dataset. (a) 100 image samples from the Fashion-MNIST
dataset that can be correctly classified by the capsule networks that is trained with our algorithm; (b) The corresponding
images reconstructed from the capsule networks and the reconstruction networks trained with dynamic routing algorithm; (c)
The corresponding images reconstructed from the reconstruction networks trained in dynamic routing where the input capsules
are obtained from our l2-regularized routing algorithm without reconstruction networks.

Algorithm 1 Training Capsule Networks. Routing coefficients
bj , j = 1, 2, ..., nd and regular neuron weights W are updated
alternatively. In each iteration, nr steps routing and nb steps back-
propagation are conducted respectively. We pick nr = 1 and nb = 1
in all the experiments.

1: for number of training iterations do
2: Sample a minibatch of p observations {xi|i = 1, 2, ..., p}

from the training dataset;
3: for nb steps do
4: Update W by descending its gradient;

5: W ←W − 1

p

∑p
i=1

∑nd
j=1

∂Lk

∂W
;

6: end for
7: for nr steps do
8: Update bjs by ascending its gradient as in Equation (13)

or Equation (15);
9: end for

10: end for

respectively. “x/FC” denotes no fully connected reconstruction
net is applied.

A. Neural Network Architecture

In all the experiments, we adopt the simplest 3-layer
capsule networks as used in [5], with one convolutional layer,
one primary capsule layer and one output layer. Specifications
are listed in TABLE I. The first convolution layer is defined

TABLE II Classification results of three benchmarks in terms
of error rate (%).

Benchmarks DR [5] L2 L1 L2/FC L1/FC
MNIST 0.34 0.35 0.32 0.35 0.44

Fashion-MNIST 7.21 7.01 6.76 6.75 6.77
CIFAR-10 15.3 - - 14.52 14.04
Average 7.62 - - 7.21 7.08

by 256 9×9 kernels followed by two capsule layers with
capsule vector dimensions of 8 and 16 respectively. We use 32
primary capsules and 10 output capsules for the MNIST and
Fashion-MNIST dataset and the primary capsule number is
doubled when we are conducting experiments on CIFAR-10.
The reconstruction networks for MNIST dataset has 3 fully
connected layers with neuron nodes of 512, 1024 and 784
respectively. Reconstruction is not applied when training the
network on CIFAR-10. Each capsule layer is followed by the
squash activation as in Equation (3). We apply ReLU on the
rest of the layers except the last layer in the reconstruction
networks, which is equipped with sigmoid.

B. Image Classification

In the first experiment, we compare the classification results
with [5] on three benchmarks discussed above as shown in
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Fig. 3 Visualization of the convergence on different routing algorithms. (a)–(d) are regular training curves on MNIST, Fashion-
MNIST, CIFAR-10 and MultiMNIST, respectively.

TABLE II.
For the MNIST dataset, we observe that the margin loss

drops fast even at early training stage when fully connected
reconstruction networks are removed. Therefore we pick a
smaller batch size (i.e. 32) when training the capsule networks
without reconstruction networks. The learning rate decays by
0.5 every 1000 iterations. Because deep learning models can
easily achieves above 99.0% accuracy on MNIST, it is hard
to have further significant improvements. Here we only show
similar classification results compared to dynamic routing.

We train the Fashion-MNIST dataset with a batch size
of 128 and a starting learning rate of 0.001 that decays by
0.96 every 1000 iterations. We also train the network without
reconstruction layers and keep everything else unchanged. The
test error rate drops from 7.21% to 7.01% and 6.76% when
using our routing algorithms with l2 and l1 regularization
respectively. It can also be seen that the classification error
further drops when the reconstruction networks are removed
especially on the l2 regularized algorithm.

The CIFAR-10 model is trained on a single capsule net-
works (without any model ensemble) using the architecture
specified in TABLE I where the number of primary capsules
is doubled and reconstruction networks are removed as in
[5]. We also replace the classic ReLU with LeakyReLU [19]
during training that shows better performance. As shown in

TABLE II, our routing methods with l2 and l1 regularization
reduce the single model classification error rate by 0.78% and
1.26% respectively compared to dynamic routing.

1) Discussion of FC-Regularization: TABLE II shows
smaller classification error when the neural network is trained
without fully-connected reconstruction nets. One explanation
is that the training set is not necessarily covering the whole
data space. In this experiment, we evaluate the trained neural
networks on Fashion-MNIST with and without reconstruction
regularization. We feed correctly activated output capsule vec-
tors associated to the model without reconstruction networks
into the reconstruction networks and obtain the reconstructed
images as shown in Fig. 2. It can be seen that a fraction
of those images are not correspondingly reconstructed but
correctly classified, which agrees with TABLE II. For the
classification purpose only, removing the reconstruction net-
works can also improve the training efficiency by dropping
redundant trainable variables.

2) Segmenting Overlapped Digits: We also conduct ex-
periments to show our routing solution attains the ability to
recognize overlapped digits. In this experiment, we adopt the
MultiMNIST dataset as used in [5], where two digits from
different classes are overlapped together with at most 4 pixels
shift in each direction that forms into 36×36 images. The
MultiMNIST dataset contains 60 million training samples and
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10 million testing samples. We train the capsule nets using l2
and l1 regularized routing algorithms respectively. The initial
learning rate is set 0.001 that decays by 0.96 every 20000
iterations. We also set a larger regularization coefficient with
λ = 0.001 to avoid over-fitting. Because the MultiMNIST
training set is extremely large we train the neural networks
for 200000 steps for both “DR” and our routing algorithms,
when we achieved an evaluation error of 7.54% compared to
7.47% of dynamic routing. It should be noted that although
the evaluation errors are similar for both methods, the training
speed is relatively faster than dynamic routing, as discussed
in the following section.

C. Convergence of the Routing Algorithm

In support of the proposed routing algorithm, we visualize
the evaluation performance of the capsule networks along with
the training procedure in Fig. 3. All models show similar
convergence curves on MNIST dataset that reach an evalu-
ation error under 0.4%. For the more challenging Fashjon-
MNIST and CIFAR-10, all regularized routing algorithms
discussed in this work exhibit faster and better convergence
in terms of evaluation error and hence demonstrates the
effectiveness and the efficiency of our methods. Because the
MultiMNIST dataset is extremely large, we only visualize the
training behavior in 20000 steps. We can observe that the
evaluation error drops much faster than dynamic routing at
early training steps, which is consistent with the discussion
about Assumption 2. Our algorithm also shows an advantage
in terms of training runtime that each step can save at least
20% runtime compared to dynamic routing (DR), as shown
in Fig. 4.

V. CONCLUSION

The basis of capsule neural networks and associated rout-
ing algorithms are studied in this paper, based on which a
new objective on determining routing coefficients between
capsules are established. An algorithm targeting at the new
routing objective is proposed to achieve faster model con-
vergence and competitive classification results, compared to
the baseline results achieved by dynamic routing algorithm
on the same capsule network architecture. We also discuss
the effectiveness of fully connected reconstruction networks
in support of the classification results and visualized coun-
terexamples. Additional researches on development efficient

capsule network architecture and hyper-parameter exploration
to compete with state-of-the-art solutions on larger datasets
(e.g. ImageNet [20]) will be conducted in our future work.
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