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Abstract

With the aggressive and amazing scaling of the feature size of
semiconductors, hotspot detection has become a crucial and chal-
lenging problem in the generation of optimized mask design for
better printability. Machine learning techniques, especially deep
learning, have attained notable success on hotspot detection tasks.
However, most existing hotspot detectors suffer from suboptimal
performance due to two-stage flow and less efficient representa-
tions of layout features. What is more, most works can only solve
simple benchmarks with apparent hotspot patterns like ICCAD
2012 Contest benchmarks. In this paper, we firstly develop a new
end-to-end hotspot detection flow where layout feature embed-
ding and hotspot detection are jointly performed. An attention
mechanism-based deep convolutional neural network is exploited
as the backbone to learn embeddings for layout features and clas-
sify the hotspots simultaneously. Experimental results demonstrate
that our framework achieves accuracy improvement over prior arts
with fewer false alarms and faster inference speed on much more
challenging benchmarks.

1 Introduction

As the technology node of integrated circuits scales down to
7nm and beyond, the techniques for lithographic processes are sup-
posed to manage the ever-shrinking feature size. However, owing
to the delayed progress of lithography techniques, lithographic
processes variations emerge during the manufacturing, and thus
lead to yield loss. For example, lower fidelity patterns on a wafer
(a.k.a. lithography hotspot) is one of the crucial issues. Many tech-
niques of early detection for hotspots have been proposed to ensure
manufacturability. The prevalently applied lithography simulation
technique could attain high accuracy, nevertheless, it is also known
to be pretty time-consuming. Therefore, two other types of quick
detection methods are proposed as alternatives to lithography sim-
ulation. One is based on pattern matching [1-3], and the other is
machine learning-driven. The pattern matching approaches take in-
put pre-defined pattern library of known hotspots, but they cannot
detect unknown hotspots. Fortunately, detection methods which
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Figure 1: The snapshots of layout clips from ICCAD12
benchmarks [15] and Barnes-Hut t-SNE [16] visualizations
of feature embeddings on the same benchmarks: (a) The ex-
amples of hotspots and non-hotspots; (b) The DCT feature
embeddings of TCAD’19 [10]; (c) The feature embeddings of
our proposed framework. “HS” is used to represent hotspot
clips, while “NHS” refers to non-hotspot clips.

are built upon machine learning methodologies [4-9], and partic-
ularly deep learning techniques [10-14], are able to offer fast and
accurate solutions to both known and unknown hotspot patterns.

Motivated by the recent advances of deep learning in other do-
mains like computer vision, Yang et al. firstly proposed the hotspot
detector based on a shallow convolutional neural network (CNN),
where layout clips were firstly converted into the frequency do-
main via discrete cosine transform (DCT) before fed into networks
[10]. To extract DCT features in different scales, the inception mod-
ules are introduced in the work [11] to modify the structure of
neural networks. In [12], to overcome the limitation imposed by
the number of labelled hotspots or non-hotspots, the concept of
semi-supervised learning was introduced so that unlabeled data can
be harnessed as well. By considering input layout clips as binary
images, Jiang et al. employed a binarized neural network to further
speed up the detection process [13].

These prior arts have been proven very effective, nevertheless,
most of them fall into a two-stage flow, where layout feature ex-
traction and detection process are separable. Moreover, existing
techniques for layout feature extraction lack both good understand-
ings of similarity among different layout clips and guidances from
supervised information. Only a few hotspot detectors [13] ensemble
the feature extraction and detection into a one-stage framework.
Unfortunately, the features which are automatically learned by
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Figure 2: The snapshots of layout clips from the via layer
benchmarks and Barnes-Hut t-SNE visualizations of feature
embeddings on the same benchmarks: (a) The examples of
hotspots and non-hotspots; (b) The DCT feature embeddings
of TCAD’19; (c) The feature embeddings of our proposed
framework. The via layer benchmarks consist of via pat-
terns that contain vias and model-based sub-resolution as-
sist features (SRAFs). Here “via” refers to the via connecting
multiple metal layers.

convolutional kernels may be ill-separated owing to the lack of
discrimination-oriented similarity metrics. Without an effective
weighing procedure on the features per their informative signifi-
cance, those redundant or even misleading features may very well
degrade the overall prediction accuracy and performance. In light
of these facts, those existing works can only solve simple bench-
marks with apparent hotspot patterns like ICCAD 2012 Contest
benchmarks, whilst in the case where non-hotspot patterns and
hotspot patterns become increasing similar brings a big challenge
to them. To visualize our concern, we sample some hotspots and
non-hotspots from ICCAD12 [15] and new via layer benchmarks
as exemplars in Figures 1(a) and 2(a). Besides, the embeddings
learned from TCAD’19 and ours on both benchmark suites are pro-
jected into a two-dimension space (shown in Figures 1(b), 1(c), 2(b)
and 2(c)). It can be seen that, in easy benchmarks like ICCAD12,
the layout clips sharing the same label are usually similar, while the
layout clips from different classes have prominent differences. Op-
posite to ICCAD12 benchmarks, layout clips in the via benchmarks
from different classes may look very similar. What’s worse, the
lack of diversity of via layer patterns introduces an additional chal-
lenge to existing hotspot detectors. According to the distributions
of layout feature embeddings displayed in Figures 1(b) and 2(b),
we can infer that although existing works like TCAD’19 work well
on ICCAD12 benchmarks, they may have poor performance on
more challenging benchmarks. As demonstrated above, layout pat-
terns in such easy benchmarks like ICCAD12 contain too much
discriminative information to determine the true states of hotspot
detectors.

In this work, we argue that it is of great importance to learn
good embeddings of layout clips, which can be assembled into one-
stage hotspot detection flow. In accordance with this argument, we
propose an end-to-end detection framework where the two tasks,
learning embeddings and classification, are jointly performed and
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mutually benefited. Furthermore, in order to focus on important
features and suppressing unnecessary ones, we introduce an atten-
tion module and incorporate it into the proposed hotspot detector.
To the best of our knowledge, this is the first work for layout em-
bedding learning seamlessly combining with hotspot detection task,
and there is no prior work applying attention mechanism based
deep metric learning into hotspot detection. To evaluate the true
efficacy of existing works and the proposed detector, we adopt a
much more challenging benchmark suite. Figures 1(c) and 2(c) prove
the performance of the proposed framework on both easy and more
challenging benchmarks to some extent. Our main contributions
are listed as follows.

o Leverage deep layout metric learning model to learn the
good layout feature embeddings.

e Analyze the generalized representation ability of triplet-
based deep metric learning algorithm.

o Incorporate feature embedding and hotspot detection into a
one-stage multi-branch flow.

e Apply attention mechanism to learn better feature embed-
dings.

e A more challenging benchmark suite that fills the void cre-
ated by previous easy benchmarks will be released.

o The proposed detector improves the performance on accu-
racy, false alarm, and runtime of inference compared to the
state-of-the-art frameworks.

The rest of the paper is organized as follows. Section 2 introduces
some preliminaries on metrics and problem formulation in the pa-
per. Section 3 first gives a whole view of the proposed framework,
then illustrates the backbone network with the applied inception
and attention modules, as well as multi-branch design. Section 4
describes the loss functions for each branch and some training
strategies. Section 5 depicts the new via benchmarks and then pro-
vides experimental results, followed by the conclusion in Section 6.

2 Problem Formulation

In general, our task can be defined as an image classification
problem. Our proposed framework treats input layout clips as im-
ages. The label of a layout clip is given according to the information
that whether the core region [15] of the clip contains hotspots or
not.

We adopt the same metrics exploited in previous work to evaluate
the performance of our proposed hotspot detector. The following
show definitions of these metrics.

Definition 1 (Accuracy). The ratio between the number of cor-
rectly categorized hotspot clips and the number of real hotspot
clips.

Definition 2 (False Alarm). The number of non-hotspot clips that
are classified as hotspots by the classifier.

With the evaluation metrics above, our problem is formulated
as follows.

Problem 1 (Hotspot Detection). Given a collection of clips con-
taining hotspot and non-hotspot layout patterns, the objective of
deep layout metric learning-based hotspot detection is training a
model to learn optimal feature embeddings and classify all the clips
so that the detection accuracy is maximized whilst the false alarm
is minimized with a less runtime overhead.
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Figure 3: The architecture of the proposed hotspot detector.

3 Hotspot Detection Architecture

3.1 Overall Framework

The prior arts are either in a two-stage framework or lacking
discriminative feature extractor. By contrast, our proposed algo-
rithm adopts a well-designed multi-branch flow which works in
an end-to-end manner. During the training, the proposed multi-
branch flow simultaneously works on two branches: one is feature
embedding and the other is classification. When the training pro-
cess finishes, our hotspot detector identifies not only layout feature
embeddings, but also a pretty good boundary to divide the hotspots
and non-hotspots in embedding space. By the merit of the end-to-
end nature, our detector is fast and flexible for both training and
inference phases.

Figure 3 shows the architecture of the proposed framework,
where “®” stands for the element-wise multiplication. The proposed
framework is composed of three main components: (1) Backbone
network which is based on inception structures and attention mod-
ules. It is shared by two jointly learned tasks and then is split into
two branches. The whole backbone includes 5 inception modules, 5
attention modules and 1 fully connected layer; (2) For deep layout
metric learner branch, it is guided by a triplet loss function to strive
for good embeddings of layout clips; (3) For hotspot classification
branch, it behaves as an ordinary learning model-based hotspot
detector as in other works.
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3.2 Backbone: Inception Block

Recent progress of deep learning techniques in computer vision
reveals that by virtue of the increasing model complexity, a deeper
neural network achieves a more robust feature expression and a
higher accuracy comparing to a shallow one. However, deeper net-
works are susceptible to be overfitted, and gradient vanish emerges.
What is worse, the turn-around-time at inference stage and training
stage are greatly affected, too.

In our context, more cases are needed to concern. For instance, a
layout pattern which usually contains several rectangles is monoto-
nous. Another example is in our via pattern, the distances between
vias and surrounding SRAFs, the distances among vias have pretty
large variations. A single-sized kernel cannot capture multi-scale
information. To tackle these issues, we employ an Inception-based
structure [17] which consists of several convolutional kernels with
multiple sizes. At the same level, these convolutional kernels per-
form convolution operations with different kernel scales on layout
patterns, and the outputs are concatenated in the channel dimen-
sion. After going through pooling layers, the fused feature maps
are scaled down in height and width dimensions. As a result, the
feature maps are comprehensive and rich. The backbone network
based on inception structure is illustrated in Figure 3.

3.3 Backbone: Attention Block

Recently presented attention mechanism which mimics human
perception has achieved much success in the computer vision do-
main [18-20]. With attention techniques, neural networks focus
on the salient parts of input features and generate attention-aware
feature maps. In order to capture structures of feature maps better,
we exploit this mechanism and embed the corresponding modules
into our backbone network.

As we know, the features include both cross-channel and spatial
information on the back of convolution computations. Based on
that fact, the embedded attention modules can emphasize informa-
tive parts and suppress unimportant ones along the channel and
spatial axes. Channel-wise attention focuses on the informative
part itself, while spatial attention concentrates on its spatial loca-
tion. They are complementary to each other. To fit the motivation,
the structure of one attention module consists of two sub-parts:
one is channel-wise, and the other is spatial-wise. For a better un-
derstanding, we visualize an attention module and zoom in on its
intra-structure in Figure 3. The whole attention module sequentially
infers a 1D channel attention map, and then a 2D spatial attention
map. Through the broadcasting operation, each attention map will
perform element-wise multiplication with input feature maps.

The whole process of channel-wise attention is concluded in
Equations (1) and (2), and visualized in Figure 4. First, given an in-
put feature tensor T, spatial information of T is firstly aggregated by
average-pooling and max-pooling operations, and then two differ-
ent spatial context descriptors are produced. Next, two descriptors
go through a shared encoder-decoder network (i.e. a single hidden
layer perceptron named ED() in Equation (2)), and output feature
vectors are merged using element-wise summation. After activa-
tion operation (i.e. defined by o() in Equation (2)), the elements
of the channel-wise attention masks A.(T') are firstly broadcasted
along the spatial dimension, then multiplied with corresponding
elements in feature maps. Finally, the module outputs the feature
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tensor T’. In a nutshell, the channel-wise attention module infers
the channel-wise attention masks, and each mask will be multiplied
element-wisely with input feature maps.

T =A(T)®T, 1
Ac(T) = o(ED(AvgPool(T)) + ED(MaxPool(T))). (2)

We mathematically summarize the computation process for
spatial-wise attention module in Equations (3) and (4), and visual-
ize it in Figure 5. First, through pooling operations, we aggregate
channel information of the input feature tensor T’, which is also
the output of channel-wise attention module. Then, concatenate
(denoted by Cat() in Equation (4)) two aggregated features and
perform convolution computation (i.e. Conv()) on the concatena-
tion. After activated by sigmoid function, the spatial attention mask
Ag(T’) is generated. At last, the mask will be multiplied with T’
element-wisely, which is shown in Equation (3).

T = A(T")® T, ®)
As(T’) = o(Conv(Cat(AvgPool(T’), MaxPool(T")))).  (4)

3.4 Multi-branch Design

Our end-to-end framework has two jointly-performed tasks:
hotspot classification and deep layout metric learning. The two
tasks share the backbone network for feature extraction, but are
guided by different loss functions. For the deep layout metric learner,
the proposed triplet loss is directly calculated on the high dimen-
sional vector which is the output of the fully connected layer in
the backbone network. The learner searches for a good feature
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embedding which non-linearly maps the image representations of
layout patterns (i.e. grey images) into a new space. Therefore, pairs
of hotspot patterns and non-hotspot patterns can be effectively
measured and separated by Euclidean distance metric. For hotspot
detection, the main task is to find an appropriate boundary that
well divides hotspots and non-hotspots. Via back-propagation, the
guide information (i.e. gradients) from two branches update the
backbone collectively.

4 Loss Functions and Training

4.1 Metric Learning Loss in Branch I

Metric learning is typically referred to learning a distance met-
ric or pursuing an embedding function to map images onto a new
manifold. Given a similarity metric function, similar images are pro-
jected into a neighbourhood, while dissimilar images are mapped
apart from each other. Note that the term “similar images” means
the images share the same label. Over past decades, the machine
learning community has witnessed a remarkable growth of metric
learning algorithms used in a variety of tasks such as classification
[21], clustering [22], image retrieval [23] and etc. However, many
metric learning approaches explore only linear correlations, thus
may suffer from nonlinearities among samples. Although kernel
tricks have been developed, it is resource-consuming to find an
appropriate one. With a notable success achieved by deep learn-
ing, deep metric learning methods have been proposed to find the
non-linear embeddings. By taking advantage of deep neural net-
works to learn a non-linear mapping from the original data space
to the embedding space, deep metric learning methods measuring
Euclidean distance in the embedding space can reflect the actual
semantic distance between data points.

Contrastive loss [24] and triplet loss [25] are two conventional
measures which are widely utilized in most existing deep metric
learning methods. The contrastive loss is designed to separate sam-
ples of different classes with a fixed margin and pull closer samples
of the same category as near as possible. The triplet loss is more
effective and more complicated, which contains the triplets of an-
chors, positive and negative samples. Since the triplet loss takes
into consideration of higher-order relationships in embedding space
and thus can achieve better performance than the contrastive loss.
Therefore, in the proposed deep layout metric learning, we adopt
the triplet loss.

As aforementioned, the goal of deep metric learning aims at
finding a good embedding which is denoted by fy, (x) € R? with
w as the parameter of f in our assumption. The embedding func-
tion fi (-) projects the layout pattern x onto a hypersphere located
in a d—dimensional compact Euclidean space, where distance di-
rectly corresponds to a measure of layout similarity. In other words,
the normalization constraint || fi, (x)||§ = 1 is attached to all em-
beddings. The mechanism behind the triplet loss is based on the
following rules:

e During training, the layout clips constitute several triplet
instances, where f,,(x;), fw(xit), fw(x;”) denote an an-
chor layout clip, a layout clip sharing the same label with
the anchor and a layout clip which has the opposite label,
respectively;
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e Each triplet instance indicates the triplet relationship among
three layout clips as:

S(fuw (i), faw(xi7)) + M < S(fuw(x1), frw(xi ™)),
V(fuw (i), fu(xi™), fuw(xi7)) € T ®)

In Equation (5), S is the similarity measurement metric and
can produce the similarity values always satisfying the triplet
relationship. M refers to a margin between positive and
negative pairs, and T collects all valid triplets in training
set with |T| = n.

o The Euclidean distance is employed as the metric to measure
the similarity between the embedding pairs in new feature
space.

To explore the relationship among triplet layout clips, the ob-
jective function of deep layout metric learning can be formulated
as a loss function Lpmesric((fw(xi), fw(xit), fw(xi™))), which is
based on the hinge loss (displayed in Equation (6a)) with Constraint
(6b). Lmetric((fw(xi), fw(xi™*), fw(xi 7)) is also called empirical
loss. Minimizing the empirical loss is equivalent to minimizing the
violations on the relationship defined in Equation (5).

1N
min Z; max(0. M + || fu (xi) = fuo (i I3

= 1 fw(xi) = fuw (i DIIZ) (6a)
st 1 fw@lly = 1, Y(fuw(xi), fuwei ), fw(xi7) € T (6b)

The illustration for the proposed loss is shown in Figure 6. It can
be seen that after training, the layout clips of the same category
will be kept apart from the one which is from the other class. The
proposed layout triplet loss attempts to enforce a margin between
each pair of layout clips from hotspot to non-hotspot. To prove the
property, we calculate the gradients of £ ,esric With respect to the
embedding vectors by the following Equations (7a) to (7c).

0L metric(fw(xi), fw(xi+)7 fw(xi7)) 2

(fw (xi™) = fuw(xi))

3 fw(xi*) n
-1 (Lmetric(fw(xi)vfw(xi+)’ fw(xi_)) > 0) s (7a)
L merric(fw (i), fw(xi ), fuw(xi7)) _ 2 N -
3 fw(xi) = (fw(xi) = fuw(xi7))
-1 (Lmetric(fw(xi)vfw(xiJr)’ fw(xii)) > 0) s (7b)
aLmericwiawi+,wi_ - +
RS LD 2 0
-1 (Lmetric(fw(xi),fw(xi+)’ fw(xi_)) > 0) s (7¢)
where 1 is the indicator function which is defined as:
1 if xis true,
160 = {0 otherwise. ®)

When the distance constraint is satisfied, i.e. there are no violations
on the triplet relationship, gradients become zeros. As a result,
triplet loss £ petric allows the layouts from one category to live on
a manifold, while still keep the distance and hence discriminative
to another category.

We further analyze the effectiveness of triplet loss by offering
its bias between the generalization error and the empirical error.

ICCAD ’20, November 2-5, 2020, Virtual Event, USA

Negative Negative
(Non-hotspot) (Non-hotspot)
v Anchor L .
Anchor (Hotspot) -
(Hotspot) O
P Deep layout et /

N Metric Learning H E '

M E Ve Positive ——— e Positive

. \(Hotspot)

. \ (Hotspot)

Figure 6: The visualization of the proposed deep layout met-
ric learning. In the worst case, the anchor is much similar
to the negative than to the positive. In other words, in origi-
nal space, the distance between the anchor and the negative
is shorter than the one between the anchor and the positive.
But after deep layout metric learning, in a new manifold, the
two hotspotlayout clips are kept apart from the non-hotspot
clip.

In other words, we evaluate the upper-bound of the network rep-
resentation ability in a more mathematical way. In the following
descriptions, for a better explanation, we use (x;, Xj, Xp) express-
ing a valid triplet. Before showing the bias, we readily extend the
pair-based definitions in [26] to the triplet scenarios, as in Lemma 1.

Lemma 1. A triplet-based metric learning algorithm has f-uniform
stability (f = 0), if

sup |€ (fwg () xi,xj, x5) — € (fw’fi ), x,-,xj,xk)‘ <B, VI,Ti,

xi, xj,x~D

©)
where { indicates a loss function, T; is the training set T with sample
x; replaced by an independent and identically distributed exemplar x,
and D is some kind of distribution. f,,(-) and fWﬂTl (+) are mapping
functions learned over the training set T and T, respectively.

Theorem 1. Assume { be a loss function upper-bounded by B > 0,
and let T be a training set consisting of n valid triplets drawn from
distribution D, and fy..(-) the mapping function parameterized by
w which is learned over the training set T by a ff-uniformly stable
deep metric learner. The empirical loss over T is L(fw (+)), while the
expected loss of learned mapping function fi. (-) over distribution
D is Exi,xj,kag[f(fwT(-), Xi, Xj, X )]. Then, for0 < § < 1, with
confidence 1 — § approaching to 1, the following inequality exists:

Ex,—,xj,xk~‘D [K(f‘W(]'<)a Xi, Xj, xk)] - L(fW(T())

log (10)

<3+ (2np+3B) o "

Sl

The proof of Theorem 1 is detailed in Appendix A. It can be
observed that with the increasing of the number of training triplets,
the bias converges. Our analyses for generalized representation
ability of triplet-based deep metric learning demonstrate the per-
formance of the proposed layout metric learner.

4.2 Classification Loss in Branch II
Except for the same backbone network, there are two fully-
connected layers in our classification branch. Different from those
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hotspot detectors in previous deep learning-based work, the pro-
posed classifier predicts labels based on the features learned by
backbone network and deep layout metric learner. Like prior art
[10], the loss function for classification, defined by £, ediction, i
cross-entropy loss:

= (ylog(y™) + (1 - y)log(1 - y*)), (11)

where y* is the predicted probability of a layout clip, while y is the
relevant ground truth (binary indicator).

4.3 Training Strategies

Hotspot detection is haunted with a crucial issue that relative
datasets (e.g. ICCAD12 benchmark suite [15]), no matter in academia
or industry, are quite unbalanced. That is, the number of hotspots
is much less than that of non-hotspots. This property results in a
biased classification towards the non-hotspots. Additionally, lim-
ited by the bottleneck of hardware, it is infeasible to compute the
arg min or arg max across the whole training set. Hence, sampling
matters in our framework.

What we do is to generate triplets from a balanced mini-batch in
an online fashion. This can be done by constructing a balanced mini-
batch (i.e. the numbers of hotspots and non-hotspots are equal) in
one iteration and then selecting the hard negative exemplars from
within the batch. Here we divide the negative samples based on a
simple rule that easy negatives will lead the loss to become zero,
whilst the hard negatives make the loss valid. Since only picking the
hardest negatives leads to bad local minima early during training,
we keep all anchor-positive pairs in a mini-batch while selectivity
sample some hard negatives. Besides hardest negatives, we also
consider some negative exemplars which are further away from
the anchor than the positive samples but still hard. Those so-called
“semi-hard” negatives which lie inside the margin obey the following
inequality:

[1fow (i) = fur (i DI < 11 fow i) = fru i3
<M+ |lfw(x) = fuwlaDIE. (12)

Aiming at progressively selecting false-positive samples that will
benefit training, this kind of sampling strategy is widely used in
deep metric learning methodologies. Many visual tasks [27-31]
have proven its effectiveness. One reason is that it reduces the
number of layout tuples that can be formed for training, and thus
enhances the training efficiency.

Nonetheless, the problem that the hotspot clip number is much
less than the non-hotspot clip number still exists. We perform top-
bottom and left-right flipping on hotspot clips, as flipping a clip does
not affect its property during lithography process [10]. This data
augmentation will introduce diversity to the dataset and further
increase the generalization of our model.

5 Experiment Results

The implementation of our framework is in Python with the
TensorFlow library [32], and we test it on a platform with the
Xeon Silver 4114 CPU processor and Nvidia TITAN Xp Graphic
card. To verify the effectiveness and efficiency of our detector, two
benchmarks are employed. One is ICCAD12 benchmarks [15], and
the other is a more challenging via layer benchmark suite which is
under 45nm technology node. For fair comparisons against previous
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Table 1: Benchmark Statistics

Benchmarks Training Set | Testing Set | Size/Clip
HS# | NHS# | HS# | NHS# | (um?)

ICCAD12 1204 | 17096 | 2524 | 13503 | 3.6 X 3.6
Via-1 3418 | 10302 | 2267 | 6878 | 2.0x2.0
Via-2 1029 | 11319 | 724 7489 | 2.0x2.0
Via-3 614 | 19034 | 432 | 12614 | 2.0 X 2.0
Via-4 39 23010 26 15313 | 2.0x 2.0
Via-Merge | 5100 | 63665 | 3449 | 42294 | 2.0 X 2.0

works, following these arts, all 28nm designs in ICCAD12 bench-
marks [15] are merged into a unified case named ICCAD12. The
details for ICCAD12 and the via benchmarks are listed in Table 1.

Columns “Train HS#” and “Train NHS#” list the total number of
hotspots and the total number of non-hotspots in the training set,
whilst columns “Test HS#” and “Test NHS#” refer to the total number
of hotspots and the total number of non-hotspots in the testing
set. “Size/Clip (um?)” shows the resolution for each benchmark. It
is manifest that the via benchmark suite has four individual cases,
which are arranged in order of the density of target designs. For
example, Via—-1 has the highest density of target designs in its
layout clips among other cases. As a result, it contains the most
hotspot patterns. In a low-density case, like Via—-4, the number of
hotspot clips are reduced accordingly. We also merge all four small
cases into a big one named “Via-Merge”. Note that, as listed in
Table 1, images in the testing set of ICCAD12 have a resolution of
3600 x 3600 which is larger than the images in the via benchmarks
of 2048 x 2048.

Table 2 summarizes the comparing results between the proposed
framework and several state-of-the-art hotspot detectors. Column
“Bench” lists 6 benchmarks used in our experiments. Columns
“Accu”, “FA”, “Time” are hotspot detection accuracy, false alarm
count and detection runtime, respectively. Columns “TCAD’19
[10]”, “DAC’19 [13]”, “ASPDAC’19 [12]” and “JM3°19 [11]” denote
the results of selected baseline frameworks respectively. We can see
that our framework outperforms TCAD’19 averagely with 15.22%
improvement on detection accuracy and 2% less false alarm penalty.
Especially, our framework behaves much better on average with
89.89% detection accuracy compared to 77.78%, 83.06%, 58.93%
and 62.9% for TCAD’19, DAC’19, ASPDAC’19, JM3’19, respectively.
Moreover, the advantage of the proposed one-stage multi-branch
flow can also be noticed that it achieves over 3x speedup compared
to previous two-stage flows. Note that DAC’19 exhibits a slightly
better accuracy on ICCAD12 case, it suffers from high false alarm
penalties over almost all cases due to the nature of the binarized
neural network.

An ablation study is also performed on the proposed flow to
investigate how different configurations affect the performance.
Figure 7 illustrates the contribution of attention module, inception
block and layout metric learning loss to our flow. “w/o. Atten” refers
to the detector without attention modules, “w/o. Incept” stands for
the detector with inception blocks replaced by vanilla convolutional
layers, “w/o. Metric” denotes the detector trained without layout
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TCAD’19 [10] DAC’19 [13] ASPDAC’19 [12] JM3°19 [11] Ours
Bench Accu FA Time | Accu FA Time | Accu FA Time | Accu FA Time | Accu FA Time
(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)
ICCAD12 98.40 3535 502.70 | 98.54 3260 561.28 | 97.66 2825 441.96 | 97.82 2651 505.67 | 98.42 2481 143.79
Via-1 71.50 773 43.36 | 89.85 1886 57.76 | 64.18 1077 52.95 | 89.19 2624 47.87 | 93.42 1589 19.83
Via-2 65.06 1290 40.02 | 73.00 1222 21.66 | 30.52 372 43.21 | 38.81 454 43.06 | 86.32 1100 13.22
Via-3 48.15 760 60.23 | 73.38 3406 43.15 | 26.92 148 77.09 | 21.06 42 67.13 | 88.20 2105 20.69
Via-4 76.92 155 67.44 | 73.08 15288 51.98 | 61.54 74 87.24 | 46.15 21 77.15 | 80.77 152 20.70
Via-Merge | 88.01 7633 165.85 | 90.42 9295 105.30 | 72.77 3859 228.57 | 84.34 6759 170.91 | 92.20 6453 59.74
Average 74.67 2357.67 146.60 | 83.06 5726.17 140.19 | 58.93 1392.50 155.17 | 62.90 2091.83 151.97 | 89.89 2313.33  46.33
Ratio 0.83 1.02 3.16 0.92 2.48 3.03 0.66 0.60 3.35 0.70 0.90 3.28 1.00 1.00 1.00
~ . 5,000 we hope to apply our ideas into more general VLSI layout feature
S . .
= 90 | § 4,000/ learning and encoding.
3
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Figure 7: Comparison among different configurations on (a)
average accuracy and (b) average false alarm.

metric learning loss, whilst “Full"” is our detector with entire tech-
niques. The histogram shows that with attention modules, 1.29%
accuracy improvement without additional false alarms on average
is achieved, which confirms that the attention modules help the
backbone network extract feature more efficiently. With inception
blocks, we get a notable reduction on false alarm penalties, i.e. 1245
less on average, which means under the same experiment settings,
the inception blocks capture richer information on layout patterns
than vanilla convolutional layers. Comparing the whole framework
with the model trained without layout metric learning, the model
trained with layout metric learning loss reduces 49.72% of the false
alarm and get 6.41% further improvement on accuracy.

6 Conclusion

In this paper, for the first time, we have proposed a new end-to-
end hotspot detection flow where layout feature embedding and
hotspot detection are simultaneously performed. The deep layout
metric learning mechanism offers a new solution to extract features
from via layer patterns that contain much less discriminative in-
formation than metal layer patterns. We further exploit attention
techniques to make backbone network self-adaptively emphasize
on more informative parts. Additionally, to test the true perfor-
mance of hotspot detectors, a new via layer benchmark suite has
been used for comprehensive verification. The experimental results
demonstrate the superiority of our framework over current deep
learning-based detectors. The corresponding theoretical analyses
are also provided as the pillars. With the transistor size shrink-
ing rapidly and the layouts becoming more and more complicated,

Science Foundation of China (NSFC) research projects 61822402,
61774045, 61929102 and 62011530132.
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A The Proof for Theorem 1

Proor. The proof follows from [33, 34]. Fy is defined as a re-
placement to By, . v, ~IEfuwy (s Xis X7, X)] = £(fuy (). From
Equation (13a) to Equation (13b), we exploit the triangle inequal-
ity. Then, the upper-bound of Equation (13b) is attained by using
Jensen’s inequality and the definition of £. With the combination
of the triangle inequality, f-uniform stability and B-boundedness,
the further bound is found in Equation (13d).

Based on the upper-bound obtained in Equation (13), we utilize
McDiarmid’s inequality [35] to obtain Equation (14).

—2ne? ) ’ (14)

Pr[Fy > e + E[Fy]] < exp (m

With § set to be exp ((2;‘;:;‘3)2) € equals to (2nf + 3B)

Hence, with confidence 1 — §, Equation (15) exists.

log

=
(S

Fy < E[F7] + (2nf + 3B) (15)

For an effective bound, f = O(W) Assume § = O (nP). Since
limp— 400 (2n/f3_+3)2 =-00,1>2#(1+p)holdsand f =0 (\/LE)

Equation (16) shows the searching computing of the upper-
bound of E[F]. Note that from Equation (16a) to Equation (16b),
we harness a fact that replacing the examples with ii.d exem-
plars does not change the expected computation. More specifically,

ByplL (fug )] = ExonlL (fug, , O)1

Hao Geng, Haoyu Yang, Lu Zhang, Jin Miao, Fan Yang, Xuan Zeng, and Bei Yu

|Fy ~ Fy,|
= [, D) = £y () + B D [ (O, 600 37, 30)]
I [({ ORI 9 (13a)

IA

|Ex,~,xj,xk~D [f(fw'j’ ()7 Xi, Xj, xk)]
- Exi,xj,xk~D[€(fw-j-i (), Xiy Xj, Xk)|

. \L(fm-» = £(fu, ) (13b)

- ﬂ+ 177 ZZZ(Z(fWT() x]’xk’xl) g(anr () x],xk,xl))

J#I k#i 1#i
+ Z D (0, %), X, X0) = Efrw, (), X Xpes X))
J#I k#i
D g (X %0, X1) = W fow, (X7 % 1))
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In Equation (16), fu, .
L],

the training set T with x;, x;, xj. replaced by x, x, x,’c. Combing

the results of Equation (15) and Equation (16), Inequality (10) holds.

(fws ), xi,xj,xk)” < 3. (16d)

(+) is the mapping function learned over

Therefore, with f = o ( i) , the generalization gap will converge in

the order of O ( V») with high confidence 1-8. The proof completes.
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