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Abstract

After a short tutorial on the fundamentals of Bayes approaches and Bayesian Ying-Yang
(BYY) harmony learning, this paper introduces new progresses. A generic information
harmonising dynamics of BYY harmony learning is proposed with the help of a
Lagrange variety preservation principle, which provides Lagrange-like implementations
of Ying-Yang alternative nonlocal search for various learning tasks and unifies attention,
detection, problem-solving, adaptation, learning and model selection from an
information harmonising perspective. In this framework, new algorithms are developed
to implement Ying-Yang alternative nonlocal search for learning Gaussian mixture and
several typical exemplars of linear matrix system, including factor analysis (FA), mixture
of local FA, binary FA, nonGaussian FA, de-noised Gaussian mixture, sparse multivariate
regression, temporal FA and temporal binary FA, as well as a generalised bilinear matrix
system that covers not only these linear models but also manifold learning, gene
regulatory networks and the generalised linear mixed model. These algorithms are
featured with a favourable nature of automatic model selection and a unified
formulation in performing unsupervised learning and semi-supervised learning. Also,
we propose a principle of preserving multiple convex combinations, which leads
alternative search algorithms. Finally, we provide a chronological outline of the history
of BYY learning studies.

Keywords: Automatic model selection; Lagrange; Variety preservation; Ying-Yang
alternation; De-noised Gaussian mixture; Factor analysis; Local factors; Binary factors;
nonGaussian factors; Temporal factors; Multivariate regression; Bilinear matrix system;
Linear mixed model

Background
Bayes approach and automatic model selection

Learning in an intelligent system is featured by three levels of inverse problems, for which
details are referred to Sect. 1 of (Xu 2010a,b). To be self-contained, we make a brief
overview on typical learning tasks and approaches from such a viewpoint, with help of
the illustration in Figure 1.
Learning tasks associated with the front level can be viewed from a perspective of learn-

ing a mapping x → y, called representative model, by which an observed sample x in a
visible domain X is mapped into its corresponding encoding y as a signal or inner code to
perform a task of problem solving, such as abstraction, classification, inference and con-
trol. Existing learningmethods for a representative model can be roughly divided into two
groups as follows:

© 2015 Xu. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40535-015-0008-4-x&domain=pdf
mailto: lxu@cse.cuhk.edu.hk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


Xu Applied Informatics  (2015) 2:5 Page 2 of 45

Figure 1 Learning studies from a viewpoint of three levels of inverse problems.

(1) One is featured by learning a mapping x → y according to whether a principle is sat-
isfied by the resulted inner encodings of y, while not explicitly taking the other directional
mapping y → x in consideration. One exemplar family is featured by a linear mapping
y = Wx that transforms x into y of independent components, such as principal compo-
nent analysis (PCA) and independent component analyses (ICA) (Xu 2003a). The other
widely studied family is supervised learning by a linear or a nonlinear mapping that makes
samples of y to approach the desired target samples.
(2) The other group is featured by learning a mapping x → y as an inverse of a given

mapping y → x that describes how observed samples are generated. Some efforts aim at
that the cascade of x → y and y → x implement a unitary transform x → x, as often
encountered in adaptive control. Most of studies consider y → x in a probabilistic sense
by q(x|y) together with y described by q(y). Accordingly, x → y is either directly the
Bayesian inverse of q(x|y)q(y) or its certain approximation.

Typically, the mapping y → x in the front level is unknown and should be learned from
a given set XN = {xt}Nt=1 of samples, which is also called generative learning. Usually, the
corresponding distribution structure (or called generative models) is designed accord-
ing to types of applications. One widely studied structure is the linear system shown in
Figure 1. As to be further addressed in the subsequent sections, this structure not only
covers subspace methods, Gaussian mixture, factor analysis and its extensions to binary
or nonGaussian factors but also can be further generalised to many others.
The generative learning task is estimating θ = {ψ ,φ} in the pre-designed distributions

q(x|y,ψ) and q(y|φ). One most widely used principle is the maximum likelihood, that is,

θ∗ = argmax
θ

L(θ), L(θ) =
N∑
t=1

ln q(xt|θ), q(x|θ) =
∫

q(x|y,ψ)q(y|φ)dy. (1)

Though it can be implemented directly by a gradient-based algorithm, an effective alter-
native is called the expectation-maximisation (EM) algorithm (Dempster et al. 1977) that
alternatively implements its E step for x → y by the following Bayes inverse:

p(y|x) = p(y|x, θold), p(y|x, θ) = q(x|y,ψ)q(y|φ)

q(x|θ)
, (2)
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and its M step that updates θ by

θnew = argmaxθ L(θ , θold), (3)

L(θ , θold) = ∑N
t=1

∫
p(y|xt , θold) ln [ q(xt|y,ψ)q(y|φ)]dy.

This EM iteration is guaranteed to converge to a local maximum of L(θ)without requiring
any learning stepsize, while the gradient-based algorithm needs an appropriate learning
stepsize that results in learning instability if the size is too big or a very slow convergence
if the size is too small. Moreover, the EM algorithm keeps the constraints of Gaussian
mixture satisfied and demonstrates a super-linear convergence rate, with further details
referred to Xu and Jordan (1996).
In many applications, the computation of p(y|x, θ) is intractable. The variational

method is proposed to maximise a lower bound of L(θ) (Dayan et al. 1995; Jordan et al.
1999). Precisely, estimating θ by Equation 1 or Equation 2 implements another inverse
problem XN → θ in the second level shown in Figure 1, on which all the levels share the
same q(x|y,ψ) that maps y, ψ (a part of θ ), and also inclusively k all together to describe
how observed samples of x are generated. Similarly, we may consider XN → θ by a Bayes
inverse p(θ |XN ) of q(x|θ)q(θ |k). However, its computation is intractable. Instead, we get
XN → θ by the following maximum posterior (MAP) (or called the classic or naive Bayes
learning):

θ∗ = argmax
θ

[ L(θ) + ln q(θ |k)] . (4)

How to use a priori q(θ |k) is a topic that has a long history and has been considered
from several aspects. The classic Bayes school uses different parametric distributions on
different parts of θ according to the natures of learning tasks and empirical experiences.
Typical examples are those of conjugate priors (Diaconis and Ylvisaker 1979; Ntzoufras
and Tarantola 2013). Extensive studies along this line have been made in the machine
learning literature, especially on Dirichlet-multinomial for Gaussian mixture. Related
studies also include those on multivariate linear regression and extensions. When Gaus-
sian priori is used on each regression coefficient, learning by Equation 4 implements the
ridge regression (Hoerl 1985) and Tikhonov regularisation (Tikhonov et al. 1995). When
Laplace priori is used on each regression coefficient, learning by Equation 4 implements
LASSO regression (Tibshirani 1996) or called sparse learning.
Another Bayes school prefers to use a non-informative priori. For a parameter varies

on a compact support, such a priori is simply a uniform distribution. However, there is
no such a uniform distribution on an infinite large support. Typically, a non-informative
improper distribution q(θ |k) is used under the name of Jeffery priori (Jeffreys 1946),
which has been widely used in the machine learning literature too. Also, there are some
efforts that attempt to blend the two schools, e.g. the Jeffery priori is jointly used with a
proper priori by the minimummessage length (MML) method (Figueiredo and Jain 2002;
Wallace and Dowe 1999). Moreover, there is also one effort called induced bias cancella-
tion (IBC), by which the use of a priori is to cancel an implicit prior induced from using a
learning model on a finite size of samples, e.g. see Eqs (20) and (21) in Xu (2000a) and also
Sect. 3.4.3 in Xu (2007a). Interestingly, as addressed on page 304 of Xu (2010a), this IBC
may be regarded as a degenerated but easy computing approximation of the normalised
maximum likelihood (NML) that is obtained from a mini-max principle (Barron et al.
1998), which takes a key role in the recent developments of the MDL encoding.
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One critical weak point of learning by Equation 4 is prone to a bad priori because q(θ |k)
takes an important position that is equal to the empirical estimator via L(θ). To mitigate
such a bad effect, the up-to-date Bayes studies prefer to consider the following one:

k∗ = argmaxkL(XN , k), L(XN , k) = ∑N
t=1 ln q(xt|k),

q(x|k) = ∫
q(x|θ)q(θ |k)dθ . (5)

It actually implements the third level inverse XN → k (In Figure 1 there are merely two
levels because the 2nd and 3rd levels are merged in a consideration of automatic model
selection to be addressed after Equation 7). This task is usually called model selection.
However, the integral over θ is computationally intractable, which is typically handled
with help of some approximating technique. One classical one is made by the Bayesian
information criterion (BIC) (Schwarz 1978) that approximately turns L(XN , k) into

L(XN , k) ≈ L(XN , θ∗) − 0.5klnN , (6)

by which learning is made via a two-stage implementation. The first stage enumerates all
possible numbers of k to obtain a set of candidate models featured by different values of k,
and estimates θ∗ by Equation 1 for each candidate. At the second stage, we select the best
candidate by Equation 5 with L(XN , k) given by Equation 6. In implementation, the mini-
mum description length (MDL) (Rissanen 1978) is actually equivalent to this BIC. There
are also a number of other variants of L(XN , k) available in the literature, e.g. another
classic one is Akaike’s information criterion (AIC) (Akaike 1974, 1987).
However, a two-stage implementation suffers from a huge computation because it

requires parameter learning for each candidate. Also, estimating θ∗ by Equation 1 will
become less reliable when the component number k is large and thus incurs for more free
parameters.
This problem is tackled by considering a learning process or principle with a nature

of automatic model selection, e.g. discarding extra hidden dimensions of y in Figure 1.
With k initialised large enough, a learning principle demonstrates such a nature with the
following two features:

• there is an indicator �π(θ) on θ or its subset, based on which a particular subset π

can be effectively discarded if we have

�π(θ) → 0, (7)

e.g. �π(θ) is the variance of y(i) in Figure 1.
• in learning implementation there is an intrinsic mechanism that leads to Equation 7

when the corresponding structure is redundant and thus can be effectively discarded.

Such automatic model selection is actually made during implementing the inverse prob-
lem XN → θ . Thus, we merge the corresponding two levels in Figure 1 because it
combines both the inverse problem XN → θ and the inverse problem XN → k.
For the existing studies, there are three roads towards automatic model selection. One

is a heuristic road, featured by an early effort called Rival Penalised Competitive Learning
(RPCL) made in the early 1990s (Xu et al. 1992, 1993), which gets an appropriate number
k of clusters automatically determined during learning.
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The second road is getting an aid from appropriate priories. For examples, learning by
Equation 4 demonstrates such a nature by using either a Laplace priori in sparse learning
(Tibshirani 1996) or jointly the Jeffery priori and a proper priori by the minimum mes-
sage length (MML) (Figueiredo and Jain 2002). Another example is the Variational Bayes
(VB) (Corduneanu and Bishop 2001; McGrory and Titterington 2007) that approximately
maximises a lower bound of L(XN , k) in Equation 5 via learning the hyper parameters in
both a priori q(θ |k) and an approximate posteriori p(θ |XN ).
The third road is the following BYY harmony learning (BYY) that was firstly proposed

in 1995 (Xu 1995) and subsequently developed systematically, which provides a general
framework for learning XN → θ and XN → k under the BYY best harmony principle.

Bayesian Ying-Yang harmony learning

We reformulate Figure 1 into a general probabilistic formulation, resulting in Figure 2.
We use R = {Y , {θ}} to summarise three levels of inner representation and P(R|X) for the
mapping X → R that consists of the mappings X → Y and X → θ . On the one hand,
we have p(X,R) = p(R|X)p(X) to describe the joint distribution of X, R, which is fea-
tured by a visible domain X (called Yang according to Chinese ancient philosophy) and a
transformation from samples of observations into inner codes (in a function like a male
animal and thus also called Yang according to the same Chinese philosophy). Jointly we
called p(X,R) = p(R|X)p(X) a Yang structure or machine. On the other hand, we have
a Ying structure or machine q(X,R) = q(X|R)q(R) to describe also the joint distribu-
tion of X, R, which is featured by q(R) to describe the invisible (thus called Ying) domain
R for inner representation and a transformation from inner codes to observations (in a
function like a female animal and thus called Ying). The paired Ying-Yang structures for-
mulates a system called Bayesian Ying-Yang (BYY), in a tribute to the Chinese ancient
philosophy.

Figure 2 Bayesian Ying-Yang system.
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The task of learning a BYY system starts from its structure design. That is, we need
to give each of four component distributions a specific mathematical structure. Usually,
p(X) comes from a given set XN of samples as follows:

pNh (X) =
N∏
t=1

G(x|xt , h2I), especially pN0 (X) = δ(X − XN ), (8)

where G(x|μ,�) denotes a Gaussian density with the mean vector μ and the covariance
matrix �.
For the rest of the three components, we start at designing the structures of q(X|R) and

q(R), based on which we further design the structure of p(R|X) that is typically a sort of an
inverse of the Ying q(X|R)q(R) machine. This is consistent to the Ying-Yang philosophy,
according to which Ying is primary and comes first, while the Yang is secondary and bases
on the Ying.
The design of each component is guided by the corresponding one of the following

three principles (Xu 2009):

• A principle of least redundant representation for q(R).
• A principle of divide-conquer for q(X|R).
• A principle of Ying-Yang uncertainty conversation or variety preservation for p(R|X).

Further details are referred to Sect.4.2 of (Xu 2010a) and Sect.3.2 of (Xu 2012a). The
first two principles are adopted from the existing studies, while the third is specific
to the BYY system. In a compliment to the Yin-Yang philosophy, it requires that Yang
machine preserves a dynamic range to appropriately accommodate uncertainty or infor-
mation contained in the Ying machine. That is, we have U(p(X,R)) = U(q(X,R))

under a uncertainty measure U(p) as shown within the table of Figure four(a) in
Xu (2009).
Given a BYY system designed, the unknown values of all variables in R = {Y , {θ}} are

learnt according to a Ying-Yang best harmony principle. Mathematically, it is equivalent
to make p(R|X)p(X) and q(X|R)q(R) become a best matching pair in a most compact
form with a least complexity, which is achieved via maximising the following harmony
functional:

H(p||q) = ∫
p(R|X)p(X) ln[ q(X|R)q(R)] dXdR,

subject to U(p(X,R)) = U(q(X,R)). (9)

On the one hand, maximising H(p||q) forces the Ying q(X|R)q(R) to match the Yang
p(R|X)p(X). There are always certain structural constraints imposed on the Ying-Yang
structures and also a constraint comes from p(X) = pNh (X) by Equation 8 on a finite size of
samples, because of which a perfect equality q(X|R)q(R) = p(R|X)p(X) may not be really
reached but still be approached as close as possible. At this equality, H(p||q) becomes
the negative entropy that describes the complexity of the BYY system. Further maximis-
ing it will decrease the system complexity and thus provides an ability for determining an
appropriate k.
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As addressed in Sect.4.1 of Xu (2010a), this principle is spelled as Ying-Yang best har-
mony from a perspective that Ying and Yang both adapt each other to reach the best
agreement in a most tacit way (consuming a least amount of effort made in information
communication), which can be better understood by rewriting Equation 9 into

H(p||q) = HR|X − KL(p(R|X)p(X)‖q(X|R)q(R)),

HR|X =
∫

p(R|X)p(X) ln[ p(R|X)p(X)] dXdR,

where KL(p‖q) =
∫

p(u) ln
p(u)

q(u)
du. (10)

MaximisingH(p||q) consists of minimising the second term for a best matching or agree-
ment between the Ying-Yang pair and of minimising the first term for a least amount of
information to be communicated from the Yang to the Ying towards an agreement.
The novelty and salient features of Equation 9 may also be observed from other aspects.

Further details are referred to Sect. 4.1 in Xu (2010a) and Sect. 4.2.3 in Xu (2012a). Shown
in Table 1 are recent applications and empirical studies of the BYY harmony learning.
Currently, the implementation of BYY harmony learning may suffer a dilemma of

suboptimal solution versus learning instability. It is this dilemma that motivates the
progresses introduced in this paper, which are outlined as follows:

• A Lagrange implementation of the principle of variety preservation is proposed for
learning the Yang structure, with a new Ying-Yang alternation nonlocal search
obtained and the abovementioned dilemma removed.

• An information harmonising perspective for BYY harmony learning such that the
tasks of attention, detection, problem-solving, adaptation, learning and model
selection are integrated in a concise formulation.

• Learning algorithms that implement Ying-Yang alternative nonlocal search for
learning GMM, FA, local FA, binary FA, nonGaussian FA, de-noised GMM,
temporal FA, temporal binary FA and sparse multivariate regression, as well as a
generalised bilinear matrix system that covers not only these linear models but also
manifold learning, gene regulatory networks and the generalised linear mixed model,
with a favourable nature of automatic model selection and a unified formulation in
performing unsupervised and semi-supervised learning.

• A principle of preserving multiple convex combinations for implementing BYY
harmony learning, which leads another type of Ying-Yang alternative nonlocal search
algorithms.

Finally, at the end of this paper, a chronological outline is given on the innovative time
points in the history of BYY harmony learning studies.

Methods
BYY harmony learning: Lagrange Ying-Yang alternation

Ignoring a priori q(θ), we simplify the best harmony of H(p||q) by Equation 9 into

maxθ H(θ) subject to U(p(X,Y ))=U(q(X,Y )), (11)

H(θ) = ∫
p(Y |X)pNh (X) ln[ q(X|Y , θ)q(Y |θ)] dY dX,
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Table 1 Recent BYY applications and empirical studies

Papers Outcomes

Shi et al. (2011a) A comparative investigation has been made on three Bayesian related
approaches, namely, variational Bayesian (VB), minimum message length (MML)
and BYY harmony learning, through the task of learning Gaussian mixture model
(GMM) with an appropriate number of components automatically determined.
On not only simulated GMM data sets but also the Berkeley segmentation
database of real world images, extensive experiments have shown that BYY
harmony learning considerably outperforms both MML and VB regardless
whether a Jeffreys prior or a conjugate Dirichlet-Normal-Wishart (DNW) prior is
used and whether the hyper-parameters of DNW prior are further optimised.

Tu and Xu (2011a) A further comparison has been made on factor analysis (FA) with an
appropriate number of factors determined, and extensive experiments have
shown that not only BYY and VB outperform AIC, BIC and DNLL but also BYY
outperforms VB considerably. Moreover, using VB to optimise the
hyper-parameters of priors deteriorates the performanceswhile using BYY for this
purpose can improve the performances.

Tu and Xu (2011b) Empirical comparisons have also beenmade on factor selection performances of
AIC, BIC, Bozdogan’s AIC, Hannan-Quinn criterion, Minka’s (MK) criterion,
Kritchman & Nadler’s hypothesis tests (KN), Perry & Wolfe’s MiniMax rank (MM)
and BYY harmony learning, by varying signal-to-noise ratio (SNR) and training
sample size N. It has been shown that AIC and BYY harmony learning, as well as
MK, KN and MM, are relatively more robust than the others against decreasing N
and SNR, and BYY is superior for a small size N.

Shi et al. (2014); Tu and Xu
(2014)

Extension of FA has been made to binary FA with automatic factor selection.
Again, it is empirically shown that BYY outperforms VB and BIC. Also, efforts of
(Shi et al. 2014) extend the studies of (Shi et al. 2011a) and two FA
parameterizations in (Tu and Xu 2011a) into Mixture of Factor Analyzers (MFA)
and Local Factor Analysis (LFA) for the problem of automatically determining
the component number and the number of factors of each FA. On not only a
wide range of synthetic experiments but also real applications of face recogni-
tion, handwritten digit image clustering and unsupervised image segmentation,
it has been also shown that BYY outperforms VB reliably on both MFA and LFA.

Chen et al. (2014) Further developments of (Shi et al. 2011a) have also been made to avoid some
learning instability (see Remarks at the bottom of this table), an implementation
of BYY harmony learning by either a projection-embedded algorithm or the
algorithm by Table 3 in this paper needs no priori but outperforms not only MML
with Jeffreys prior and VB with Dirichlet-Normal-Wishart prior but also BYY with
these priors given in (Shi et al. 2011a). On the Berkeley segmentation data set, the
semantic image segmentation performances have shown that BYY
outperforms not only MML, VB, BYY-Jef and BYY-DNW but also three leading
image segmentation algorithms, namely gPb-owt-ucm, MN-Cut and Mean Shift.

Remarks.
For the first three items above, the BYY harmony learning is implemented via one of two techniques as follows:
(a) Gradient-based local search that needs a small step size to be pre-specified. If this step size is too small, learning is too
slow and easy to get stuck at a local optimal solution. If this step size is too big, learning becomes unstable.
(b) Ying-Yang nonlocal search that consists of an expectation-maximisation (EM) like two steps, with no learning stepsize
but a correcting δ in E step. For GMM, it follows from Eq. (11) in (Xu L 2010a) that E step of the EM algorithm that allocates xt
to the 	 th Gaussian by p(	|xt , θold) is replaced by p(	|xt , θold) + δ(θold) with an approximation that may cause learning
instability, also see Equations 88 and 89 for details. �

where the above constraint is a simplification of the counterpart in Equation 9. One exam-
ple is considered in Sect. 4.1 in Xu (2010a) and Sect. 4.2.3 in Xu (2012a), featured with the
following counterpart without considering the component p(X):

p(Y |X) = q(Y |θ ,X), q(Y |θ ,X) = q(X|Y , θ)q(Y |θ)

q(X|θ)
,

q(X|θ) =
∫

q(X|Y , θ)q(Y |θ)dY . (12)

Even earlier in 2007, another example is given by Eq.(72) in Xu (2007a), under the name
of equal covariance with U(p(X,Y )) = U(q(X,Y )) denoting that the Yang preserves the
covariance of q(X,Y ).
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The existing algorithms for maxθ H(θ) directly impose the constraint U(p(X,Y )) =
U(q(X,Y )), which makes learning suffer a dilemma of either local optimal solution or
some learning instability, see the remarks in Table 1.
In this paper, we indirectly consider a relaxation of U(p(X,Y )) = U(q(X,Y )) via con-

sidering KL(p(X,Y )‖ q(X,Y )) = 0 as a Lagrange constraint (since KL(p‖q) ≥ 0 becomes
zero at the target p = q), resulting in the following augmented maximisation:

max
θ

HL(θ), HL(θ) = H(θ) − ηKL(p(Y |X)p(X)‖q(X|Y , θ)q(Y |θ)) ≤ H(θ), (13)

where η > 0 is a Lagrange coefficient. A nonzero value η will relax the target
KL(p(X,Y )‖q(X,Y )) = 0. The smaller the value η is, it becomes more relaxed, or vice
versa.
Moreover, Equation 13 can be rewritten into

maxθ HL(θ), HL(θ) = (1 + η)H(θ) + η[EY |X + EX(h)] , (14)

EY |X = − ∫
p(Y |X)pNh (X) ln p(Y |X)dY dX, EX(h) = − ∫

pNh (X) ln pNh (X)dX.

Given p(Y |X) = poldY |X fixed, maxθ HL(θ) becomes

θnew = argmaxθ H(θ)pY |X=poldY |X
, hnew = argmaxh HL(θ)pY |X=poldY |X

, (15)

with HL(θnew) ≥ HL(θold).
Given θ = θnew, h = hnew, maximising HL(θ) subject to

∫
p(Y |X)dY = 1 with respect

to a free p(Y |X) results in

pnewY |X = [q(X|Y ,θnew)q(Y |θnew)](1+1/η)∫
[q(X|Y ,θnew)q(Y |θnew)](1+1/η)dY , (16)

which keeps HL(θ) to be nondecreasing too.
Therefore, alternatively updating Equations 15 and 16makesHL(θ)monotonically non-

decrease and finally converge. That is, learning stability is guaranteed.
Given h fixed, the term EX(h) can be ignored because it is irrelevant to updating θ and

p(Y |X). With help of EX(h), an appropriate h can be estimated in a way similar to ones
summarised in Sect.2 of (Xu L 2003b).
Without losing generality, we consider Equation 14 at the special case h = 0 and get

maxθ HL(θ), HL(θ) = (1 + η)H(θ) + ηEY |X ,
H(θ) = ∫

p(Y |XN ) ln[ q(XN |Y , θ)q(Y |θ)] dY ,

EY |X = − ∫
p(Y |XN ) ln p(Y |XN )dY , (17)

from which we get two types of detailed implementation according to the types of
variables in Y .
When the variables in Y are discrete valued, the integral over Y becomes summation. It

follows from Equations 15 and 16 that we are led to the general procedure for Ying-Yang
alternative implementation given in Algorithm 1.
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Algorithm 1 Ying-Yang alternative procedure (A)
Require: initialise θold , ηold , poldY |XN

in equal probability over the domain of Y .
Repeat the following two steps until converged:
Ying-Step: get θnew = argmaxθ H(θ)pY |X=poldY |X

.
trimming: descard a subset π ⊂ θ if �π(θ) → 0.
Yang-Step: get pnewY |X = [q(X|Y ,θnew)q(Y |θnew)](1+1/η)∑

Y [q(X|Y ,θnew)q(Y |θnew)](1+1/η) .

Remarks:
(a) The Ying step shares a same format of the M-step of the popular EM (expectation

and maximisation) algorithm. Ignoring the part of trimming, we may simply obtain the
M-step of the EM algorithm for the maximum likelihood learning.
(b) The part of trimming is associated with automatic model selection nature. As pre-

viously addressed about Equation 7, such a nature makes �π(θ) → 0 and thus the
corresponding subset π can be discarded.
(c) The difference of this algorithm from the EM lies in the Yang step, featured by η,

which makes pnewY |XN
become more selective for automatic model selection. When η = ∞,

the Yang step will degenerate into the E-step.
(d) η is controlled as described by Equation 27 and the discussions thereafter.

When the variables in Y are real valued, the integral over Y becomes intractable, for
which we seek the help of the following Taylor expansion around u∗ up to the second
order :

maxηu

∫
p(u)Q(u)du ≈ Q(u∗) − 1

2Tr[�u�u∗ ] ,

u∗ = argmax
u

Q(u), �u = − ∂2Q(u)

∂u∂uT , (18)

where ηu,�u are the mean and the covariance of p(u).
From Equations 17 and 18, we approximately have

H(θ) ≈ π(XN ,Y∗, θ) − 1
2Tr[�

Y
XN

�Y
XN

] ,

π(XN ,Y , θ) = ln[ q(XN |Y , θ)q(Y |θ)] , (19)

Y∗ = argmaxY π(XN ,Y , θ), �Y
XN

= − ∂2π(XN ,Y ,θ)

∂vec(Y )∂vec(Y )T
,

�Y
X = Covp(vec(Y )|X)vec(Y ),

where Covp(u)u denotes the covariance matrix of p(u) and vec(A) denotes the vector
obtained by stacking the column vectors of A one by one.
Maximising the above H(θ), we get another type of Ying-Yang alternative implementa-

tion, as summarised in Algorithm 2.
Given Y∗ = Yold∗ , �Y

XN
= �Y old

XN
, the counterpart of Equation 15 becomes simply

θnew = argmaxθ H(θ), (20)

which acts as the Ying step of Algorithm 2.
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Algorithm 2 Ying-Yang alternative procedure (B)
Require: initialise θold , ηold , Y ∗old,�Y old

XN
.

Repeat the following two steps until converged:
Ying-Step: perform Equation 20 with H(θ) by Equation 19, i.e.

θnew = argmaxθ H(θ),
trimming: descard a subset π ⊂ θ if �π(θ) → 0.

Yang-Step: perform Equation 21, i.e. get
Ynew∗ = argmaxY π(XN ,Y , θnew), �Y new

X = η
1+η

�Y new−1
X ,

with ηnew controlled as Remark (d) in Algorithm 1.

Remarks: Its relation to the EM algorithm is similar to Algorithm 1. Again, η makes a
difference via sharping the covariance �Y new

XN
to become more selective.

Given θ = θnew and Ynew∗ , the counterpart of Equation 16 become simply

�Y new
X = argmaxθ [ (1 + η)H(θ) + ηEY |X]= η

1+η
�Y new−1

X , (21)

where EY |X ≈ 0.5dY ln (2πe)+0.5 ln |�Y
X | is obtained by approximately regarding it as the

entropy of a Gaussian density with a covariance matrix �Y
XN

.
Another insight on Equation 13 comes from observing q(Y |θ ,X)q(X|θ) =

q(X|Y , θ)q(Y |θ) from Equation 12, by which KL(p(Y |X)p(X)‖q(X|Y , θ)q(Y |θ)) becomes

KL(p(Y |X)p(X)‖q(Y |θ ,X)q(X|θ))

= ∫
p(X)KL(p(Y |X)‖q(Y |θ ,X))dX + KL(p(X)‖q(X|θ)). (22)

With p(X) = pN0 (X) by Equation 8 and with q(Y |θ ,X), q(X|θ) by Equation 12, we can
rewrite Equation 13 into

maxθ HL(θ), HL(θ) = H(θ) − ηKL(p(Y |XN )‖q(Y |θ ,XN )) + η ln q(XN |θ), (23)

from which we observe that the maximisation of HL(θ) consists of not only a best Ying-
Yang harmony but also a degree η of jointly a top-downmaximum likelihood learning and
a bottom-up best matching between the posteriors p(Y |XN ) and q(Y |θ ,XN ).
The maximisation of the above second and third terms is exactly what has been widely

called variational learning (Corduneanu and Bishop 2001; Jordan et al. 1999; McGrory
and Titterington 2007), which is equivalent to the Ying-Yang best matching, as previously
pointed out in Xu (2010a) (especially see the roadmap in its Figure A2). The sum of two
terms may be simply observed from

−[H(θ) + EY |X]= −KL(p(Y |X)‖q(XN |Y , θ)q(Y |θ)) (24)

= ln q(XN |θ) − KL(p(Y |X)‖q(Y |θ ,X)) ≤ ln q(XN |θ),

which is a degenerated case that does not have the harmonising information flowH(θ) in
the centre of Figure 3.
Next, we consider to drop off the last term in Equation 23, resulting in

maxθ HG(θ),

HG(θ) = H(θ) − ηKL(p(Y |XN )‖q(Y |θ ,XN ))

= −η ln q(XN |θ) + (1 + η)H(θ) + ηEY |X ≤ H(θ),
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Figure 3 Information harmonising formulation.

whichmay also be obtained from considering the constraint by Equation 12 in a Lagrange.
At the special case η = 1, wemay regard it as counterpart of Equation 24, with a difference
in that H(θ) replaces ln q(XN |θ).
On the other hand, we may also generalise Equation 24 by a Lagrange as follows:

ln q(XN |θ) − ηKL(p(Y |X)‖q(Y |θ ,X))

= (1 − η) ln q(XN |θ) + ηH(θ) + ηEY |X ≥ H(θ) + EY |X ,

which becomes the counterpart of Equation 24 generally instead of only at η = 1.
Alternatively, we may reach a tighter lower bound by an appropriate value of η.
Last but not least, maximising HL(θ) by Equations 14 and 17 relates closely to some

previous efforts summarised in Table 2.

Table 2 Related studies: KL-η-HL spectrum

Year Outcomes

1998 The following convex combination with 0 ≤ η ≤ 1 is heuristically proposed
(1 − η)KL(p(Y|X)p(X)‖q(Y|R)q(Y)) − ηH(θ), (A)

as a criterion for model selection, e.g. see Eq. (49) in Xu (1998a) and Eq. (22) in Xu (1998b).
The above equation (A) can be rewritten into a format that is exactly equivalent toHL(θ) =
(1 + η)H(θ) + ηEY|X in Equation 17.

2000 It is further proposed to make maxθ HL(θ) with η > 0 monotonically decreased from a
big value (i.e. remove the constraint η ≤ 1), see Eq. (23) in Xu (2000a), which is
further addressed for learning Gaussian mixture in Xu (2001a), e.g. see paragraphs around
its Eq. (42) and Eq. (43).

2003 The above equation (A) has been also reexamined from a perspective of the KL-η-HL
spectrum, with details referred to Eqs. (62-64) in (Xu 2003a).

Remarks.
(a) This family is further investigated in 2012 from a perspective of the Yang structure, see Sect. 3.4.2 in Xu (2012a) and
especially the parts around its Eq. (46) on a family of the Yang structures. Each of such structures corresponds an inverse of
Ying machine in a range from superBayes (η > 0) to Bayes (η = 0).
(b) What was discussed in Xu (2012a) is actually a range that also includes a subBayes inverse of Ying machine coming from
(η < 0), that is, superBayes→Bayes→subBayes.
(c) The symbol η was actually λ in the above mentioned studies.
(d) The concept of superBayes versus subBayes may be understood from Equation 16. The two factors of q(X|Y , θ)q(Y|θ) are
mutually linear for Bayes, superlinear for superBayes and sublinear for subBayes. �
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Information harmonising dynamics

According to the Ying-Yang philosophy placed at the upper right corner of Figure 3, the
Ying and Yang constitutes a harmony system surviving in an environment, by which the
Ying is primary while the Yang has not only a nature of variety but also a good adaptability
to both the Ying and its environment. We may not only understand Equations 13, 14 and
17 from a classic perspective but also get new insight on how the Ying and Yang interact
dynamically.
The status of Ying-Yang harmony is jointly featured by H(p||q) and the Lagrange quan-

tity η, where H(p||q) is given in Equation 9 or simply H(p||q) = H(θ) in Equation 11,
while η is given in Equations 13 an 14, reflecting an agreement of balance between Ying
and Yang in one of the following aspects:

(a) Balance within the Yang domain, i.e. seeking a match between pNh (X) by Equation 8
and q(XN |θ) = ∫

q(X|Y , θ)q(Y |θ)dY , measured by a divergence
−KL(pNh (X)‖q(XN |θ)) or equivalently a likelihood L(θ) = ln q(XN |θ).

(b) Balance along the Yang pathway, i.e. to satisfy the constraint by Equation 12, e.g.
measured by −KL(p(Y |XN )‖q(Y |θ ,XN )).

(c) Balance between Ying-Yang, i.e. both (a) and (b), measured by
KL(p(Y |X)p(X)‖q(X|Y , θ)q(Y |θ)), as in Equation 13.

Here, we focus on the standard cases, i.e., Ying dominated models or the Ying is pri-
mary. For some exceptional cases that the Yang is primary, e.g. forward architecture (see
Sect.II(C) in Xu (2001b)), we may consider a balance within the Yang domain and a
balance via the Yang pathway.
Typically, η could be a monotonically increasing function of a goodness that measures

such a balance, while a best Ying-Yang harmony is reached at a balance that the Ying-Yang
system has a least complexity.
Quantitatively, the harmonising dynamics remains to be an open topic that demands

further investigation. Qualitatively, this dynamics may be roughly depicted via the
dynamics of η as follows.
We start at considering two extreme cases. One happens at a bad Ying-Yang balance,

featured by

η takes a very small value around 0. (25)

The dynamics of maximisingHL(θ) focuses at maximisingH(θ) that makes p(Y |θ ,XN ) =
δ(Y − Y ∗) with Y ∗ = argmaxY π(XN ,Y , θ) become mostly focused and least flexible in
order to rapidly satisfy the most urgent need of Ying, that is, the BYY harmony learning
degenerates to one special case that is an extension of competitive learning. Though it
still works when the resulted H(θ) is used as a model selection criterion, e.g. see Eq.(10a)
in Xu (1996), it becomes prone to an initialisation and poor in automatic model selection
because of the winner-take-all (WTA) competition among the inner representations of Y .
Therefore, we should not let ηt always stay at a too small value.
The other extreme happens when the Ying-Yang balances well, featured by

η takes a very large value (26)
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such that η ≈ 1 + η. In such cases, maximising HL(θ) by Equation 17 actually focuses
at maximising η[H(θ) + EY |X], or equivalently minimising the Kullback divergence
ηKL(p(Y |X)‖q(XN |Y , θ)q(Y |θ)) for a Ying-Yang best matching, which makes p(Y |θ ,XN )

tend to Equation 12 and thus enjoy a larger varying range or a big flexibility to cope
with new samples. However, the harmonising information H(θ) in the centre of Figure 3
becomes neglectable, i.e. becoming weak in reducing the system complexity. In such a
case, Algorithm 1 and Algorithm 2 become equivalent to the EM algorithm for the max-
imum likelihood, which is poor in model selection too. This means that the dynamics
is approaching an equilibrium as η tends a big value, during which model selection or
structure changing is gradually shut off while parameters may still be refined.
In the beginning, a BYY system is given with a pre-designed Ying-Yang structure and

usually with all the unknown parameters initialized either randomly or according to a
priori knowledge. Thus, the BYY system fits a given set XN of samples badly, resulting in a
poor Ying-Yang balance with a small η value in a way similar to the first extreme case. The
dynamics focuses on not only adjusting the structure but also updating the parameters
towards a balance with η quickly growing up, which gradually tends to an equilibrium
with XN well described by a Ying-Yang structure in an appropriate complexity.
Surviving in an environment, the BYY system typically stays at one equilibrium of

its harmonising dynamics. As the environment changes, the dynamics is featured by
performing the following actions:

(A) Equilibrium and attention When the system feels familiar with its observations,
the dynamics stays at one equilibrium with a big value of η. An unexpected environ-
mental change will make η drop. A large drop will trigger the system’s attention to
detect environmental novelty. In other words, there is an attention mechanism associated
with η.
(B) Detection and problem-solving A small drop of η is associated with a deviation
from one equilibrium, which causes an incremental of KL. This incremental is associ-
ated with actions of detecting objects, recognising patterns and solving problems (e.g.
inference or control) by the mapping X → Y via p(Y |θ ,XN ).
(C) Adaptation and learning When the two opposed changes of η and of KL are not
big enough such that the value of ηKL may not change considerably, learning will not be
triggered and HL(θ) by Equation 17 approximately stays unchanged. However, maximis-
ing HL(θ) will start to minimise KL when the incremental of KL becomes large while η

remains a high value, i.e. becoming close to the second extreme case by Equation 26. In
this case, the learning made by Algorithm 1 or Algorithm 2 becomes closer to the maxi-
mum likelihood learning that merely updates the parameters in the system without a big
structural change, that is, no model selection occurs.
(D)Model selection and structure pruning A big drop of η will happen when the BYY
system faces a largely different environment, i.e. becoming the extreme case η = 0, the
dynamics has to not only adjust the structure but also update the parameters towards a
new equilibrium with η brought up quickly.

In a summary, the above actions are featured by a feedback signal η as follows:

η = g(v), v = f (dM, dD, dU),
dg(v)
dv

< 0,
∂f
∂du

> 0, u = M,D,U . (27)
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Conceptually, η monotonically decreases with a vigilance signal v, and this v monotoni-
cally increases with dM, dD and dU , where dM reflects the discrepancy between data X
and its counterpart X̂ reconstructed by the model, e.g. measured by the negative log-
likelihood − ln q(XN |θ) or KL(pNh (X)‖q(XN |θ)), while dD reflects the deviation of an
inner representation Y from the desired Yd , e.g. measured by the square error Y and its
corresponding Ŷ . Moreover, dU is a measure that reflects salient occurrences that attract
attentions. Further investigation is needed on the detailed forms of dM, dD and dU , as well
as the specific form of g(f (·, ·, ·)), which may be considered by nonlinear regression.
As illustrated in Figure 3, the strength η controls the flexibility and adaptability that

Yang enjoys, described by an entropy gain −η
∫
p(Y |X)pNh (X) ln p(Y |X)pNh (X)dYdX =

η[EY |X +EX(h)]. Transferring this information from the Yang to the Ying, the Ying
attempts to harmonise the information by updating parameters and modifying its struc-
ture to increase an amount of negative entropy ηH(θ). Therefore, a net amount of
harmonising information (1 + η)H(θ) + η[EY |X + EX(h)] is maximized, by which we are
led to Equations 14 and 17.
For a large η, the Yang enjoys a large flexibility to avoid an overfitting of samples and

to prepare an adaptability for possible environmental changes. The more flexibility (i.e.
ηEY |X) that the Yang currently enjoys, the larger amount of negative entropy (i.e. ηH(θ))
is needed for the Ying to manage. When it becomes difficult to manage, the Ying-Yang
balance will deteriorate and thus incur for a drop of η to reduce the flexibility of Yang.
In other words, there is a negative feedback mechanism that stabilises the dynamics of
information harmonising, as illustrated in Figure 4.

Learning Gaussian mixture and learning factor analysis

We start at considering Gaussian mixture as follows

q(x, y|θ) = ∏k
	=1 q(x, θ	)

y(	) , q(x, θ	) = α	G(x|μ	,�	), (28)

Figure 4 Negative feedback stabilises dynamics.
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with x ∈ Rd and θj = {αj,μj,�j}, where y =[ y(1), · · · , y(k)]T satisfies∑k
	=1 y(	) = 1, y(	) takes either 0 or 1.

Given XN = {xt}Nt=1 of i.i.d. samples, its corresponding samples Y = {yt}Nt=1 are also
i.i.d. Accordingly, pnewY |XN

in Equation 16 becomes simplified into

pnewY |XN
= ∏N

t=1 p(yt|xt , θnew, ηnew), p(y|x, θ , η) = q(x,y|θ)
1+η
η∑

y q(x,y|θ)
1+η
η

,

p(	|x, θ) = p(y(	) = 1, y(j) = 0,∀j �= 	|x, θ , η) = [α	G(x|μ	,�	)]
1+η
η∑k

j=1[αjG(x|μj ,�j)]
1+η
η

, (29)

from which the Yang step of Algorithm 1 is turned into the Yang step of a new Ying-Yang
alternating algorithm for learning Gaussian mixture, summarised in Algorithm 3. Its Ying
step is obtained by maximising HL(θ) in Equation 17 with

H(θ) =
N∑
t=1

∑
yt

p(yt|xt , θ , η) ln q(xt , yt|θ). (30)

Algorithm 3 BYY learning for Gaussian mixture
Require: initialise θold , ηold, and let p	,t = 1/k, η varies as described by Remark (d) of

Algorithm 1.
Repeat the following two steps until converged:
Ying-Step: get αnew

	 ,μnew
	 ,�new

	 as follows:
n	 = ∑N

t=1 p	,t , αnew
	 = n	∑k

j=1 nj
, μnew

	 = 1
n	

∑N
t=1 p	,txt ,

�new
	 = 1

n	

∑N
t=1 p	,t(xt − μnew

	 )(xt − μnew
	 )T ,

trimming:
if αnew

i → 0 or αnew
i Tr[�new

i ]→ 0, discard the ith Gaussian, let k=k-1.
Yang-Step: for t = 1, · · · ,N and 	 = 1, · · · , k, get p	,t = p(	|xt , θnew) by Equation 29.

Remarks: When η = ∞, this algorithm degenerates to the EM algorithm (Redner and
Walker 1984) for the maximum likelihood learning on Gaussian mixture. A finite value η

makes it differ from the EM algorithm in that p	,t becomes more selective for automatic
model selection.

Next, we consider one popular linear system as follows:

x = Ay + e, q(y|φ) = G(y|ν,�), � = diag[ λ1, · · · , λk] ,
EeyT = 0 or q(e|y,ψ) = q(e) = G(e|0,�), (31)

which leads to what is typically called factor analysis (FA), where � is a nonnegative
diagonal matrix.
Classically, the name FA is used to refer the model Equation 31 with � = I. In this

paper, we use FA-a to shortly denote this classical FA, and use FA-b to refer the one
by Equation 31 with a diagonal matrix � �= I together with the following orthogonal
constraint

ATA = I. (32)
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For the maximum likelihood learning, FA-a and FA-b are equivalent. However, FA-b
becomes much more favourable by using a learning algorithm with a nature of automatic
model selection. Readers are referred to Sect.2.2 in Xu (2011 and Tu and Xu (2011a) for
further studies on FA-b versus FA-a.
Given XN = {xt}Nt=1 of i.i.d. samples and its corresponding Y = {yt}Nt=1, HL(θ) in

Equation 19 and H(θ) in Equation 17 become simplified into

H(θ) ≈ ∑N
t=1H(θ |xt), HL(θ) ≈ ∑N

t=1HL(θ |xt), (33)

H(θ |xt) = π(xt , yt , θ) − 1
2Tr[�y|x�y|x] ,

π(x, y, θ) = ln [G(x|Ay + μ,�)G(y|ν,�)], �y|x = AT�−1A + �−1.

HL(θ |xt) = (1 + η)H(θ |xt) + η
ln |�y|x|+m ln (2πe)

2

yt = argmaxy π(xt , y, θ) = Wxt + w, W = �y|xAT�−1, w = �−1ν − Wμ,

Usually, ν is set to be 0. Here we use ν to denote a constant vector for convenience of a
further extension in Algorithm 14.
We update �new,�new by Equation 20 via solving them analytically as follows:

yt = Woldxt + wold, et = xt − μ − A old(yt − ν), (34)

�new = A old�old
y|x A old T + 1

N
∑
t
eteTt , �new = �old

y|x + 1
N

∑
t
(yt − ν)(yt − ν)T .

Moreover, for updating Anew we can get

A = Rxy�new−1, Rxy = 1
N

∑
t
et(yt − ν)T . (35)

For updating FA-a, the above obtained A can be directly used as Anew. However, it can not
be directly used as Anew for updating FA-b because there is also the orthogonal constraint
by Equation 32 to be satisfied, for which we let

Anew = GS[Rxy�new−1] , (36)

where GS[A] denotes a Gram-Schmidt operator that orthogonalizes A. Even simply, we
may make a gradient-based local search

Anew = Aold + γA�A, (37)

where γA > 0 is a small learning stepsize, and �A is a projection ∇AH(θ) onto
Equation 32, e.g. for A given by Equation 35 we simply get

�A = (I − AAT )∇AH(θold), ∇AH(θ) = �new−1[Rxy − �newA] . (38)

The orthogonal constraint by Equation 32 also takes a role of removing a scale indeter-
minacy of the linear system by Equation 31, because an arbitrary diagonal matrix D �= I
will make Equation 32 break though we may have Ay = (AD)(D−1y) = A∗y∗ with y∗ still
from G(y|ν,�). Further details are referred to Sect.2.2 in Xu (2011).
Also, there are alternative constraints in place of Equation 32, e.g. see Eqs. (33) and (34)

in Xu (2011).
One weak point by the above Equations 37 and 38 is that an appropriate γA is needed;

otherwise, it may cause learning instability. Alternatively, we may replace Equation 32 by
the following easy computing one:

Tr[ATA]= 1. (39)
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Shortly, the notation FA-c is used to refer such a type of FA, namely, the one by
Equation 31 not only with a diagonal � �= I but also with Equation 39. Then, we consider
∇AHγ (θ) via Lagrange Hγ (θ) = H(θ) − γ (Tr[ATA]−1), resulting in

�new∇AHγ (θ) = Rxy − �newA − γ�newA, (40)

which is solved as follows

Anew = Aγ ∗ , Aγ = Rxy(�new + γ�new)−1, γ ∗ is the root of Tr[Aγ ], (41)

where γ ∗ is obtainable by any one-variate iterative algorithm, e.g. Newton.
In summary, we can turn Algorithm 2 into Algorithm 4 for learning factor analyses, via

modifying the Ying step, that is, we update �new,�new based on Equation 34 and then
update Anew according to a choice of possible constraints on A.
When � = σ 2I, we also get an alternative algorithm for learning Principal Component

Analysis (PCA) with automatic model selection on the number of principal components.
Further details about PCA versus FA are referred to Sect.3.2 of (Xu 2010a).

Algorithm 4 BYY learning for FA

Require: Given {xt}, get μ =
∑

t xt
N and ν.

initialise yt randomly from G(y|ν, I), let θ = {A,�,�,W ,w},�y|x, and � =
diag[ λ1, · · · , λm] .
Repeat the following two steps until converged:
Ying-Step: get �new,�new

e by Equation 34 and get

Anew

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
by Equation 35, for FA-a,
by Equation 37 together with Equation 38, for FA-b,
by Equation 41, for FA-c.
by Equation 57 plus Equations 59 and 60, see Equation 61.

trimming: for i = 1, 2 . . . , k, discard the ith column of A
and the ith element of y if λnewi → 0, let k = k − 1.

Yang-Step:
�new
y|x = η

1+η
(AnewT�new−1Anew + �new−1)−1.

Wnew = �new
y|x AnewT�new−1, wnew = �newν − Wnewμ.

Remarks: It degenerates to the EM algorithm (Rubin and Thayer 1982; Tipping and
Bishop 1999; Xu 1998c,d), by simply letting η

1+η
replaced by 1.

Learning local factor analysis

We can combine factor analysis by Equation 31 and Gaussian mixture by Equation 28 into
the following general one:

q(y, 	|φ) = G(y|ν	,�	)q(	|α), q(	|α) = ∑k
j=1 α	δ	,j,

∑k
j=1 αj = 1, 1 ≥ αj ≥ 0,

π(x, y, 	, θ) = ln [G(x|A	y + μ	,�	)q(y, 	|φ)q(A	)], (42)

where δi,j is the Kronecker delta with δi,j = 1 if i = j and δi,j = 0 otherwise, which
actually describes i.i.d. samples XN = {xt}Nt=1 by a mixture of local factor analysis or local
subspaces at a special case �	 = σ 2

	 I.
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Accordingly, HL(θ) in Equation 23 is rewritten into

HL(θ) = ∑N
t=1

∑k
	=1 p(	|xt , θ)[ (1 + η)HL(θ |	, xt) − η ln p(	|xt , θ)] , (43)

HL(θ |	, xt) = H(θ |	, xt) + η
1+η

Ey|	,xt ,
Ey|	,xt = − ∫

p(y|	, xt , θ) ln p(y|	, xt , θ)dy,

H(θ |	, xt) = ∫
p(y|	, xt , θ)π(xt , y, 	, θ)dy.

Similar to HL(θ |xt) in Equation 33, we further get

HL(θ |	, xt) = π(xt , yt,	, 	, θ) + 0.5η
1+η

[ ln |�	,y|x| + ln (2π)m	 ] ,

Ey|xt = 0.5[ ln |�	,y|x| + m	 ln (2πe)] , (44)

H(θ |	, xt) = π(xt , yt,	, 	, θ) − 1
2Tr[�	,y|x�	,y|x] ,

�	,y|x = AT
	 �−1

	 A	 + �−1
	 , �new

	,y|x = η
η+1�

old−1
	,y|x ,

yt,	 = argmaxy π(xt , y, 	, θ) = W	xt + w	,
W	 = �	,y|xAT

	 �	
−1, w	 = �−1

	 ν	 − W	μ	,

from which we further get θnew via maximising
∑N

t=1
∑k

	=1 p(	|xt , θ)H(θ |	, xt), result-
ing in the Ying step of a new Ying-Yang alternating algorithm for learning a mixture of
local factor analysis, as in Algorithm 5. Actually, this Ying step combines the Ying of
Algorithm 3 and the Ying of Algorithm 4.

Algorithm 5 BYY learning for local factor analysis
Require: initialise θ = {A	,�	,W	,w	,�	 = diag[ λ	,1, · · · , λ	,m	

] }, �y|x, and η,
initialise p	,t = 1/k, and get yt randomly from G(y|0, I).
Repeat the following two steps until converged:
Ying-Step: get αnew

	 ,μnew
	 ,Anew

	 ,�new
	 , νnew	 ,�new

	 by
αnew

	 = 1
N

∑N
t=1 p	,t , μnew

	 = 1
Nαnew

	

∑N
t=1 p	,txt ,

yt,	 = Wold
	 xt + wold

	 , et,	 = xt − μnew
	 − A old

	 yt,	, νnew	 = 1
Nαnew

	

∑N
t=1 p	,tyt,	,

�new
	 = A old

	 �old
	,y|xA old T

	 + 1
Nαnew

	

∑N
t=1 p	,tet,	eTt,	,

�new
	 = �old

	,y|x + 1
Nαnew

	

∑N
t=1 p	,tyt,	yTt,	, R

xy
	 = 1

Nαnew
	

∑N
t=1 p	,tet,	yTt,	.

For FA-b, we get Anew
	 by one of the four choices in the Ying step of Algorithm 4 with

all the involved symbols getting the corresponding subscript 	 = 1, . . . , k attached.
TRIMMING:
if one λnew	,i of tends to 0, discard the ith column of A	, letm	 = m	 − 1.
if αnew

i → 0 or αnew
i Tr[�new

i ]→ 0, discard G(x|Aiy + μi,�i) and G(y|νi,�i), let
k = k − 1.
Yang-Step: We get p	,t = p(	|xt , θnew) by Equation 45. It follows from Equation 44 that
we also get

�new
	,y|x = η

1+η
(AnewT

	 �	
new−1Anew

	 + �new−1
	 )−1.

Wnew
	 = �new

	,y|xAnewT
	 �	

new−1, wnew
	 = �new−1

	 νnew	 − Wnew
	 μnew

	 .
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Maximising HL(θ) with respect to p(	|xt , θ) yields

p(	|xt , θ) = e
η+1
η

π(xt ,y,	,θ)+ 1
2 ln [|�	,y|x|(2π)m	 ]

∑k
	=1 e

η+1
η

π(xt ,y,	,θ)+ 1
2 ln [|�	,y|x|(2π)m	 ]

= [α	G(xt|μ	,A	�	AT
	 + �	)]

η+1
η∑k

	=1[α	G(xt|μ	,A	�	AT
	 + �	)]

η+1
η

, (45)

from which and together with Equation 44, we see that the Yang step of Algorithm 5
actually combines the Yang of Algorithm 3 and the Yang of Algorithm 4.
This algorithm degenerates back to not only Algorithm 4 with k = 1 but also

Algorithm 3 with y = 0 and A	 = 0 for each 	.

Learning binary factor analysis

We consider another setting of the linear system, with each y(	) taking either 0 or 1 and
q(y|φ) in Equation 31 being a multivariate Bernoulli distribution as follows:

q(y|φ) = ∏
i α

y(i)
i (1 − αi)1−y(i) , q(x|y,ψ) = G(x|Ay + μ,�), (46)

which is called binary factor analysis (BFA).
Together with adding the constraint on y in Equation 28, we are lead to an equivalent

form of Equation 28. In other words, learning BFA may be regarded as a relaxation or
extension of learning Gaussian mixture.
Putting this setting into Equation 17, we get its simplified version as follows:

HL(θ) = (1 + η)H(θ) + ηEY |X , H(θ) = ∑N
t=1

∑
y∈Ctf

p(y|xt , θ)π(xt , y, θ),

π(x, y, θ) = ln [G(x|Ay + μ,�)
∏

i
α
y(i)
i

(1−αi)y
(i)−1 ],

EY |X = − ∑N
t=1

∑
y∈Ctf p(y|xt , θ) ln p(y|xt , θ). (47)

For a small k, Ctf can be the entire set that consists of all the possible values of y. For a
large k, such an entire set could be huge, instead we consider one Ctf that merely consists
of one subset of values that we focus on. One choice is given by

Ctf = {y : differing from y∗
t by less than κ bits}, (48)

where y∗
t = argmaxy π(xt , y, θold) and κ is a small number, e.g. κ = 1 or 2.

One example was given by Eq. (20) in Xu (2010a) for binary FA, and the other example
may also be found in Sect. 2.1.5 of Xu (2012a) on learning Gaussian mixture.
Given yt and Ctf , t = 1, . . . ,N by Equation 48, we maximise HL(θ) with respect to

p(y|x, θ), resulting in

p(y|x, θ) = exp[ 1+η
η

π(x,y,θ)]∑
y∈Ctf exp[

1+η
η

π(x,y,θ)]
, (49)

from which we get the Yang step of Algorithm 6 for binary factor analyses, similar to
getting the Yang step of Algorithm 3 from the Yang step of Algorithm 1.
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Algorithm 6 BYY learning for binary FA
Require: Given {xt}, getμ = 1

N
∑
t
xt and get each Ctf by randomly picking nκ values of y.

initialise py|xt = 1/nκ , y ∈ Ctf and θold = {Aold ,αold ,�old}.
Repeat the following two steps until converged:
Ying-Step: get Np = ∑N

t=1
∑

y∈Ctf py|xt , αnew = 1
Np

∑N
t=1

∑
y∈Ctf py|xt yt ,

et = xt − μ − A oldyt , �new = 1
Np

∑N
t=1

∑
y∈Ctf py|xt ete

T
t ,

�new = 1
Np

∑N
t=1

∑
y∈Ctf py|xt yy

T , Rxy = 1
Np

∑N
t=1

∑
y∈Ctf py|xt ety

T ,

Anew =
{
Rxy�new−1, with no priori,
by Equation 57 plus Equations 59 and 60, see Equation 61.

trimming: for i = 1, 2 . . . , k, discard the ith column of A and the ith element of y
if αnew

i (1 − αnew
i ) → 0, let k = k − 1.

Yang-Step: for t = 1, · · · ,N , get Ctf by Equation 48 and then get
py|xt = p(y|xt , θnew), for y ∈ Ctf , by Equation 49.

With p(y|x, θ) fixed, we get θnew by maximising H(θ), resulting in the Ying step of
Algorithm 6.
Imposing the constraint on y in Equation 29 and letting Ctf to cover the entire domain

y, this algorithm degenerates to Algorithm 3 for Gaussian mixture when �	 = �.
The summation over Ctf will incur for a high computing cost when Ctf consists of many

elements. Alternatively, we may assume that p(y|xt , θ) = ∏
i p(y(i)|xt , θ) with 0 ≤ ξ

(i)
y|xt =∫

y(i)p(y(i)|xt , θ)dy(i) ≤ 1, and we simplify H(θ) and EY |X into

H(θ) = ∑N
t=1 π(xt , y, θ)y=[ξ (1)

y|xt ,...,ξ
(k)
y|xt ]

T ,

EY |X = − ∑N
t=1

∑k
i=1 ξ

(i)
y|xt ln ξ

(i)
y|xt , (50)

from which we get Algorithm 7 with a simplified Ying step, but its Yang step needs to get
ξy|xt by solving a constrained quadratic optimisation via one of typical existing techniques
(Fang et al. 1997; Floudas and Visweswaran 1995).

Algorithm 7 Another algorithm for binary FA
Require: Given {xt}, get μ = 1

N
∑
t
xt , initialise θold = {Aold ,αold ,�old} and ξy|xt =

[ 1
k , . . . ,

1
k ]

T .
Repeat the following two steps until converged.
Ying-Step: αnew =

∑N
t=1 ξy|xt
N , ξy|xt =[ ξ (1)

y|xt , . . . , ξ
(k)
y|xt ]

T , et = xt − μ − A oldξy|xt ,
�new = 1

N
∑N

t=1 eteTt , �new = 1
N

∑N
t=1 ξy|xtξTy|xt ,R

xy = 1
N

∑N
t=1 etξTy|xt ,

Anew =
{
Rxy�new−1, with no priori,
by Equation 57 plus Equations 59 and 60, see Equation 61.

trimming: for i = 1, 2 . . . , k, discard the ith column of A and the ith element of y
if αnew

i (1 − αnew
i ) → 0, let k = k − 1.

Yang-Step: for t = 1, · · · ,N , get ξy|xt to maximise HL(θ) by a constrained quadratic
optimisation (Fang et al. 1997; Floudas and Visweswaran 1995).
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Learning nonGaussian factor analysis

We progress to consider an even general case, called nonGaussian factor analysis (NFA),
with each independent component of y being nonGaussian, e.g. from a mixture of
univariate Gaussians. Here, we consider the following setting:

q(y, z|φ) = ∏
i{G(y(i)|ν(i)

z(i) , λ
(i)
z(i) )q(z

(i)|α)},
z =[ z(1), . . . , z(k)]T , z(i) = 1, . . . ,mi with mi ≥ 1,

q(z(i)|α) = ∑mi
j=1 α

(i)
j δj,z(i) ,

∑mi
j=1 α

(i)
j = 1,

π(x, y, z, θ) = ln [G(x|Ay + μ,�)q(y, z|φ)q(A)]. (51)

where 1 ≥ α
(i)
j ≥ 0. Putting it into Equation 23, similar to Equation 43 we get

HL(θ) = ∑N
t=1

∑
z∈Ctf p(z|xt , θ)[ (1 + η)HL(θ |z, xt) + ln p(z|xt , θ)] ,

HL(θ |z, xt) = H(θ |z, xt , ) + η
1+η

Ey|z,xt (θ),

Ey|z,xt (θ) = − ∫
p(y|z, xt , θ) ln p(y|z, xt , θ)dy,

H(θ |z, xt) = ∫
p(y|z, xt , θ)π(xt , y, z, θ)dy.

Similar to Equation 49, maximising HL(θ) gets p(z|xt , θ) in the Yang step. Similar to
Equation 44, we also get yz,t =[ y(1)

z,t , . . . , y
(k)
z,t ]T = argmaxy π(xt , y, z, θ) and �z,y|x =

argmax �z,y|x HL(θ |z, xt).
We maximise HL(θ) to update θ , resulting in the Ying step of Algorithm 8 for

learning NFA. The Ying step consists of the first part for updating each component
α

(i)
j G(y(i)|ν(i)

z(i) , λ
(i)
z(i) ) and the second part for updatingG(x|Ay+μ,�). Also, the role of δj,z(i)

is picking those components that have contributions to the corresponding α
(i)
j , ν(i)

j , λ(i)
j

according to whether z = j. The number mi of the components is determined via
trimming off G(y(i)|ν(i)

z(i) , λ
(i)
z(i) ) if (α

(i)
j λ

(i)
j )new → 0.

Unsupervised vs semi-supervised

Instead of knowing i.i.d. samples XN = {xt}Nt=1, there maybe a subset Xs ⊂ XN in
which each xt ∈ Xs is associated with a supervision sample y∗

t . The problem is called
unsupervised learning when Xs is an empty set, and called supervised learning when
Xs = XN . Generally, the problem is called semi-supervised learning as Xs is between the
two extreme cases.
For the BYY harmony learning, unsupervised, semi-supervised and supervised learning

are all expressed in a same formulation. There are two types of implementation according
to whether y is discrete or real.
When y is discrete, we modify HL(θ) by Equation 17 into

maxθ HL,S(θ) = HL(θ) + γHS(θ),

HS(θ) = ∑
xt∈Xs

∑
yt δyt ,y∗t p(yt|xt , θ , η) ln q(xt , yt|θ),

where y∗
t is the teaching label associated with Xs, and γ > 0 is a confidence factor. The

bigger the γ > 0 is, the higher our confidence is on the supervision sample.
Accordingly, maximising HL,S(θ) results in

p(y|x, θ) = q(x,y|θ)
[γ δy,y∗t +1+η]/η

∑
y q(x,y|θ)

[γ δy,y∗t +1+η]/η . (52)
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Algorithm 8 BYY learning for nonGaussian FA

Require: Initialise θ = {A,�, {α(i)
j }, {ν(i)

j }, {λ(i)
j }}. Get Ctf by randomly picking nκ values

of z, let μ = 1
N

∑
t
xt . For z ∈ Ctf , get pz|xt = 1

nκ
and get yz,t randomly from G(y|0, I).

Repeat the following two steps until converged:
Ying-Step: For j = 1, . . . , ki; i = 1, 2 . . . ,m, we get

n(i) = ∑mi
j=1

∑N
t=1

∑
z∈Ctf pz|xtδj,z(i) , α

(i)new
j =

∑N
t=1

∑
z∈Ctf pz|xt δj,z(i)
n(i) ,

δx,y =
{
1, x = y,
0, x �= y;

ν
(i)new
j =

∑N
t=1

∑
z∈Ctf pz|xt δj,z(i)y

(i)
z,t

n(i) ,

where yz,t =[ y(1)
z,t , · · · , y(m)

z,t ]T is computed in the Yang step.

λ
(i)new
j =

∑N
t=1

∑
z∈Ctf pz|xt δj,z(i) [(y

(i)
z,t−ν

(i)new
j )2+ρ

(i)
z,xt ]

n(i) .
where ρ

(i)
z,xt is the ith diagonal element of �old

z,y|x.

Np = ∑N
t=1

∑
z∈Ctf pz|xt , �new =

∑N
t=1

∑
z∈Ctf pz|xt [ete

T
t +Aold�old

z,y|xAold T ]
Np

,

et = xt − μ − Aoldyz,t , �new = 1
Np

∑N
t=1

∑
z∈Ctf pz|xt diag[ λ

(1)new
z(1) , . . . , λ(k)new

z(k) ] ,
Rxy = 1

Np

∑N
t=1

∑
z∈Ctf pz|xt ety

T
z,t ,

Anew =
{
Rxy�new−1, with no priori,
by Equation 57 plus Equations 59 and 60, see Equation 61.

Trimming: if (α(i)
j λ

(i)
j )new → 0, discard ν

(i)
j , λ(i)

j , let m → m − 1; discard the
ith column of A and the ith element of y ifmi = 1 and (λ(i))new → 0, let k = k − 1.
where λ(i) is the sum of λ(i)

j ’s that are not discarded yet.
Yang-Step: for t = 1, · · · ,N , get Ctf by Equation 48 and get
pz|xt = p(z|xt , θnew), for z ∈ Ctf ,

where p(z|xt , θ) = e
η+1
η π(xt ,y,z,θ)+ 1

2 ln |�z,y|x |
∑

y∈Ctf e
η+1
η π(xt ,y,z,θ)+ 1

2 ln |�z,y|x | ,

�new
z,y|x = �z,y|x(θnew), yz,t = y(z, xt , θnew), z ∈ Ctf ,

�z,y|x(θ) = η
1+η

(AT�−1A+�−1
z )−1,

y(z, xt , θ) = �z,y|xAT�−1(xt − μ + �−1
z νz),

νz =[ ν(1)
z(1) , . . . , ν

(k)
z(k) ]

T , �z =[ λ(1)
z(1) , . . . , λ

(k)
z(k) ] .

Remarks: (a) It returns to Algorithm 4 whenmi = 1, ν(i)
1 = 0,∀i.

(b) If mi = 2, ν(i)
1 = 0, ν(i)

2 = 1 for all i, it learns a noisy binary FA as λ
(i)
j , j = 1, 2 are

fixed at a small constant. It further degenerates to learning binary FA by letting λ
(i)
j = 0.

(c) Generally, we may set ν
(i)
1 = 0 to simplify computation.

(d) To save storage, �new
z,y|x and yz,t may be computed during Ying step.

Fixing p(y|x, θ), we further update θ via maximisingHL,S(θ). From Equations 30 and 52,
we have

HL,S(θ) = ∑N
t=1

∑
yt p(yt|xt) ln q(xt , yt|θ),

p(yt|xt) = p(yt|xt , θ)(η + 1 + γ δyt ,y∗t ), (53)

from which we modify Algorithm 3 into Algorithm 9, with the Ying step kept unchanged
while the Yang step modified into Algorithm 9.
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Algorithm 9 Semi-supervised BYY learning for Gaussian mixture
Require: & Repeat : same as in Algorithm 3.

Ying-Step: same as in Algorithm 3.
Yang-Step: for t = 1, · · · ,N and 	 = 1, · · · , k, get p	,t = (η + 1 + γ δ	,	∗

t )p	|xt (θnew),

p	|xt (θ) = [α	G(xt |μ	,�	)]
[γ δ

	,	∗t +1+η]/η

∑k
j=1[αjG(xt |μj ,�j)]

[γ δj,	∗t +1+η]/η .

Remarks:
(a) For each sample xt , δ	,	∗

t = 0 if it has no teaching label while δ	,	∗
t = 1 when 	 is equal

to a given teaching label 	∗
t .

(b) The bigger the γ > 0 is, the higher the supervision strength is. We may let γ > 0 to
start at a high value and gradually decrease towards a pre-specified value.

We can always assign a teaching label 	∗
t to each sample xt . If there is no teaching label,

we assign 	∗
t to be a number larger than k and thus always have δ	,	∗

t = 0. Otherwise, we
let 	∗

t to be its teaching label and have δ	,	∗
t = 1 when 	 = 	∗

t .
Similarly, we modify Algorithm 6 for learning binary FA into a semi-supervised version,

i.e. Algorithm 10. Whether or not there is a teaching sample y∗
t for xt , we may always

assign one y∗
t to each sample xt . If there is no teaching sample, we assign y∗

t to be out of Ctf
and thus have δy,y∗t = 0. Otherwise, we let y∗

t to be its teaching sample and have δy,y∗t = 1
when y = y∗

t .

Algorithm 10 Semi-supervised BYY for binary FA
Require: & Repeat : same as in Algorithm 6.

Ying-Step: same as Algorithm 6.
Yang-Step: for t = 1, · · · ,N , get Ctf by Equation 48 and then

pnewy|xt = (η + 1 + γ δy,y∗t )py|xt (θ
new),∀y ∈ Ctf , py|xt (θ) = exp[

γ δy,y∗t +1+η

η
π(xt ,y,θ)]∑

y∈Ctf exp[
γ δy,y∗t +1+η

η
π(xt ,y,θ)]

.

Remarks: For a sample xt , δy,y∗t = 0 if it has no teaching label and δy,y∗t = 1 when y is
equal to the teaching label y∗

t .

When y is real valued, teaching samples will not affect the Yang step, while updating θ

by the Ying step becomes maximising

HS(θ) =
N∑
t=1

[ (1 + η)π(xt , yt , θ) + γ Itπ(xt , y∗
t , θ)] , yt = argmax

y
π(xt , y, θ), (54)

where It is an indicator explained by the remark given in Algorithm 11. It follows from
Equation 54 that Algorithm 4 for learning FA can be modified into Algorithm 11 with
some changes in the Ying step.
Moreover, we may combine Equations 53 and 54 to modify Algorithm 8 for learning

NFA into Algorithm 12. Similar to Algorithm 10, wemay always assign one discrete vector
z∗t =[ z(1)∗t , · · · , z(m)∗

t ] to each sample xt . If there is no teaching information, we assign z∗t
to take a value that is out of our consideration, e.g. letting every z(i)∗t to be a big number,
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Algorithm 11 Semi-supervised BYY learning for FA
Require: & Repeat : same as in Algorithm 4.

Ying-Step: get yt = Woldxt + wold, then get et = xt−μ−A oldyt , e∗t = xt−μ−A oldy∗
t ,

eteTt is replaced by (η+1)eteTt +γ Ite∗t e∗Tt
η+1+γ It in updating �new.

ytyTt is replaced by (η+1)ytyTt +γ Ity∗t y∗Tt
η+1+γ It in updating �new.

etyTt is replaced by (η+1)etyTt +γ Ite∗t y∗Tt
η+1+γ It in updating Rxy.

the other parts of Yang step are same as in Algorithm 4.
Yang-Step: same as in Algorithm 4.

Remarks: It is an indicator with It = 1 when xt is associated with a teaching sample y∗
t

and with It = 0 when xt is not associated with a teaching sample.

we always have δz,z∗t = 0 for z ∈ Ctf . Otherwise, we let z∗t to be its teaching label about zt ,
and use δz,z∗t = 1 to indicate z = z∗t .
Similar to the Yang step of Algorithm 9 and of Algorithm 10, we get pz|xt (θ) with a

difference that pz|xt = pz|xt (θnew) is not globally rescaled by a factor. Instead, a rescaling is
distributed among each updating in the Ying step. Another difference from Algorithm 10
lies in that each zt is also associated with another real valued vector yt =[ y(1)

t , · · · , y(m)
t ].

Algorithm 12 Semi-supervised BYY for NFA
Require: & Repeat : same as in Algorithm 8.

Ying-Step: For j = 1, . . . , ki and i = 1, 2 . . . ,m, we get
n(i) = ∑mi

j=1
∑N

t=1
∑

z∈Ctf pz|xt [ (1 + η)δj,z(i) + γ δj,z(i)∗t
] ,

α
(i)new
j =

∑N
t=1

∑
z∈Ctf pz|xt [(1+η)δj,z(i)+γ δ

j,z(i)∗t
]

n(i) ,

ν
(i)new
j =

∑N
t=1

∑
z∈Ctf pz|xt [(1+η)δj,z(i)y

(i)
z,t+γ δ

j,z(i)∗t
y(i)∗z,t ]

n(i) ,
�λ

(i)
j = γ δj,z(i)∗t

(y(i)∗
z,t − ν

(i)new
j )2 + (1 + η)δj,z(i) [ ρ

(i)
z,xt + (y(i)

z,t − ν
(i)new
j )2] .

λ
(i)new
j =

∑N
t=1

∑
z∈Ctf pz|xt δj,z(i)�λ

(i)
j

n(i) .
where ρ

(i)
z,xt is the ith diagonal element of �old

z,y|x.
Np = ∑N

t=1
∑

z∈Ctf pz|xt (η + 1 + γ δz,z∗t ),
et = xt − μ − Aoldyz,t , e∗t = xt − μ − Aoldy∗

z,t , ��z = eteTt + Aold�old
z,y|xAold T ,

�new =
∑N

t=1
∑

z∈Ctf pz|xt [(η+1)��z+γ δz,z∗t e
∗
t e∗Tt ]

Np
,

�new =
∑N

t=1
∑

z∈Ctf pz|xt diag[λ
(1)new
z(1)

,...,λ(k)new
z(k)

]
Np

,

Rxy =
∑N

t=1
∑

z∈Ctf pz|xt [(η+1)etyTz,t+γ δz,z∗t e
∗
t y∗Tz,t ]

Np
,

Anew =
{
Rxy�new−1, without a priori,
by Equation 57 plus Equations 59 and 60, see Equation 61.

Trimming: same as in Algorithm 8.
Yang-Step: for t = 1, · · · ,N , get Ctf by Equation 48 and get

pz|xt = pz|xt (θnew),∀z ∈ Ctf , p(z|xt , θ) = e
γ δz,z∗t +η+1

η π(xt ,y,z,θ)+ 1
2 ln |�z,y|x |

∑
y∈Ctf e

γ δz,z∗t +η+1
η π(xt ,y,z,θ)+ 1

2 ln |�z,y|x |
,

yz,t = y(z, xt , θnew), y∗
z,t =

{
[ y(1)∗

z,t , · · · , y(m)∗
z,t ]T , given,

y(z∗t , xt , θnew), unknown and estimated.
the other parts of Yang step are same as in Algorithm 8.
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For each teaching label z∗t , we may have two situations. One is that the corresponding
teaching vector y∗

z,t =[ y(1)∗
z,t , · · · , y(m)∗

z,t ]T is given together with z∗t . The other is that we
have z∗t only and need to estimate y∗

z,t .
Also, the situation is different from getting yz,t = y(zt , xt , θnew) in Algorithm 8 where

we only have xt without knowing both z∗t and y∗
z,t . Here, we estimate y∗

z,t = y(z∗t , xt , θnew)

based on given the teaching signal z∗t .
Still, it relates to updating A,�,Rxy in Algorithm 11 in that δz,z∗t takes a role of It though

the situation becomes more complicated due to the role of z∗t and a scalar Gaussian
mixture of each component y(i)

t .

BYY harmony sparse learning : a dual view

In all the previous sections, the BYY harmony learning implements the maximisation
of H(θ) in Equation 11 without considering a priori q(θ). In this section, we show that
learning performance can be further improved by a priori aided learning from a dual
perspective.
We still consider the linear system in Figure 1, where the pair A,Y is observed from a

dual view, or called co-dimensional (shortly co-dim) perspective (see Sect.2 in Xu (2011)).
Considering a priori q(A|ρ) while ignoring priories on other parameters, we rewrite
H(p||q) by Equation 9 into

H(p||q) = H(θ ,φ, ρ) = ∫
p(A|X)[H(θ) + ln q(A|ρ)] dA (55)

= ∫
p(A|X)p(Y |X)pNh (X) ln[ q(X|AY ,ψ)q(Y |φ)q(A|ρ)] dAdY dX,

= ∫
p(Y |X)[Hd(θ) + ln q(Y |φ)] dY

from which we observe that p(A|X), p(Y |X) take a same position in the first line and the
last line, respectively, and thatHd(θ) is actually a dual counterpart ofH(θ) in Equation 11
as follows

H(θ) = ∫
p(Y |X)pNh (X) ln[ q(X|AY ,ψ)q(Y |φ)] dY dX,

Hd(θ) = ∫
p(A|X)pNh (X) ln[ q(X|AY ,ψ)q(A|ρ)] dAdX.

This dual view motivates to improve the learning via not only updating A aided with a
priori q(A|ρ) but also maximising Hd(θ).
First, it follows from the second line in Equation 55 with help of Equation 18 that

maximising H(p||q) is approximately turned into

{A∗, ρ∗} = argmaxA,ρH(A, ρ, θ−),

H(p||q) = H(A∗, ρ∗, θ−) − 1
2Tr[�

A
XN

�A
X] ,

�A
X = Covp(vec[A]|X)vec[A] , �A

X = − ∂2π(XN ,AY ,θ)

∂vec[A]∂vec[A]T ,

H(A, ρ, θ−) = H(θ) + ln q(A|ρ), θ−∗ = argmaxθ−∗ H(θ),

where θ− is resulted from removing A, ρ from θ . Anyone of the algorithms introduced in
the previous sections can implement the maximisation of the last line above.
Here, we consider the maximisation of the first line, for which we start at

H(A, ρ, θ−) = ∫
p(Y |XN )π(XN ,AY , θ)dY ,

π(XN ,AY , θ) = ln[ q(XN |AY , θ)q(A|ρ)q(Y |θ)] .
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Given XN = {xt}Nt=1 that consists of i.i.d. column vectors, we consider the settings

q(A|ρ) = ∏
j G(aj|0,�a

j )

ln q(A|ρ) = −0.5md ln (2π) − 0.5
∑

j ln |�a
j | − 0.5

∑
j aTj �a−1

j aj,

q(XN |AY , θ) = ∏
t G(xt|Ayt ,�), Ayt = ∑

i aiy
(i)
t , (56)

ln q(XN |AY , θ) = −0.5N[ d ln (2π) + ln |�|]−0.5
∑

t(xt − Ayt)T�−1(xt − Ayt),

from which we can get

∇ajH(A, ρ, θ−) = −�a−1
j aj + N�−1[ r(j)xy − ∑

i aiλij] ,

� =[ λij] , Rxy =[ r(1)xy , · · · , r(m)
xy ] ,

where θ− is obtained from implementing the maximisation of the last line in Equation 56,
which are available by the algorithms introduced in the previous sections.
From ∇ajH(A, ρ, θ−) = 0, j = 1, · · · ,m, A is solved by the following equation:

B vec(A) = vec(Rxy), B = Id×d ⊗ � + diag[��a−1
1 ,··· ,��a−1

m ]
N , (57)

where⊗ is the Kronecker product. This equation is equivalent to Eq. (51) in Xu (2011), i.e.
the problem of solving a Sylvester matrix equation (Bartels and Stewart 1972; Miyajima
2013).
From ∇ajH(A, ρ, θ−), we further get the second order derivative as follows

−∇2
ajaT	

H(A, ρ, θ−) = �a−1
j δj	 + N�−1λj	,

�A
X = N�−1 ⊗ � + diag[�a−1

1 , · · · ,�a−1
m ] . (58)

Putting it into H(A, ρ, θ−) and fixing �A
XN

, we get ∇ρH(A, ρ, θ−) and its root as follows

ρnew = diag[�a
1 , · · · ,�a

m]new = �A new
XN + vec(Anew)vec(Anew)T . (59)

Similar to Equation 33, it follows from HL(p||q) = (1 + η)H(p||q) + 0.5η ln |�y|x| that we
get

�A new
XN

= η
1+η

�A new
X , (60)

which is put in the above Equation 59 for updating ρnew.
Computations of B,�A

XN
,�A

X are rather simple since �a
j ,�,� are typically diagonal

matrices, and even � = σ 2I. Such uncorrelated structures facilitate learning featured
with the nature of automatic model selection, see Sect.2.2 of Xu (2012a) and Sect.2.2 of Xu
(2010a), that pushes redundant elements ofA towards zeros via pushing its corresponding
variances towards zeros. As a result, learning leads to a sparse matrix A.
Such a BYY harmony sparse learning comes from q(A|ρ) that takes a dual role of q(Y |φ).

Being different from the existing sparse learning studies (Shi et al. 2011a, 2014; Tu and
Xu 2011a; Xu 2012b) that consider either q(A|ρ) in a long tail distribution with extensive
computing cost or q(A|ρ) in Equation 56 with help of one additional q(ρ) (see Sect.III of
Xu (2012b)), here the updating by Equation 59 is made by q(A|ρ) in Equation 56 without
considering such a priori q(ρ).
Of course, we may progress to consider a priori q(ρ) and also some priories about

�,�, which will lead to another layer of integral about q(ρ),�,�. Readers are referred to
Sect.2.3 in Xu (2011) for the details of implementation.
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Wemay improve all the algorithms introduced in the previous sections, simply with its
counterpart of solving A replaced by

updating A by Equation 57 together with Equations 59 and 60. (61)

which has been already listed in Algorithm 4, Algorithm 5, Algorithm 6, Algorithm 7,
Algorithm 8 and Algorithm 12 as one alternative of Anew = Rxy�new−1 in the Ying step.
The implementation of maximising the first line in Equation 55 is featured by the order

of integrals
∫
[ ·] dYdA. In a dual view, we may also swap the order to consider maximising

the last line in Equation 55. The detailed implementation will be quite similar. Moreover,
we may alternatively conduct the two implementations.

De-noise Gaussian mixture

The Gaussian mixture by Equation 28 may also be viewed from a perspective of one
specific linear system in Figure 1, with xt ∈ Rd generated as follows

x = Ay + e, y =[ y(1), · · · , y(k)]T , y(j) = 0 or 1,
∑k

j=1 y(j) = 1, (62)

q(y|φ) = ∏k
	=1 α

y(	)
	 , φ = {α	}, ∑k

	=1 α	 = 1, with α	 ≥ 0.

q(e|ψ) = G(e|0, σ 2
e I), q(A|ρ) = ∏

j G(aj|μj,�j),

as proposed in Sect.3.1 of Xu (2011). We have

q(x|θ) = ∑
y
∫
q(x|Ay,ψ)q(y|φ)q(A|ρ)dA

= ∑
j αj

∫
G(x|aj, σ 2

e I)G(aj|μj,�j)daj = ∑
j αjG(x|μj, σ 2

e I + �j).

That is, we get a Gaussian mixture with each covariance matrix added with the variance
of a common noise e. Given y(j) = 1, we see that x̂ = x − e = aj comes from G(aj|μj,�j)

and provides a de-noised version of observed sample x. Since y(j) takes 1 by a probability
αj, the de-noised x̂ actually comes from a mixture

∑
j αjG(x|μj,�j). Thus, this study is

called, in Sect.3.1 of Xu (2011), learning de-noised Gaussian mixture or shortly de-noised
GM.
Somewhat similar to Equation 43, we can rewrite HL(θ) in Equation 23 into

HL(θ) = ∑N
t=1

∑k
	=1 p(	|xt , θ)[ (1 + η)HL(θ |	, xt) − η ln p(	|xt , θ)] ,

HL(θ |	, xt , η) = H(θ |	, xt) + η
1+η

Ea	|xt ,Ea	|xt = − ∫
p(a	|xt , θ) ln p(a	|xt , θ)da	,

H(θ |	, xt) = ∫
p(a	|xt , θ)π(xt , a	, θ)da	,

π(x, a	, θ) = ln [G(x|a	, σ 2
e I)G(a	|μ	,�	)α	]. (63)

Similar to Equation 44, we further get

H(θ |	, xt) = π(xt , a	, θ) − 1
2Tr[�a	|x�a	|x] , Ha	|xt = 0.5[ ln |�a	|x| + d ln (2πe)] ,

at,	 = argmaxa	
π(xt , a	, θ) = W	xt + w	, at,	 =[ σ 2

e I + �	]−1 (�	xt + σ 2
e μ	),

W	 =[ σ 2
e I + �	]−1 �	, w	 =[ σ 2

e I + �	]−1 σ 2
e μ	,

�a	|x = (σ 2
e )−1I + �−1

	 , �new
a	|x = η

η+1�
old−1
a	|x = η

η+1 [ σ
2
e I + �	]−1 σ 2

e �	,

HL(θ |	, xt , η) = π(xt , a	, θ) + 0.5η
1+η

ln |σ 2
e �	|

|σ 2
e I+�	| + cη, (64)

where cη is a constant that does not relate to θ , 	.
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Maximising HL(θ) with respect to p(	|xt , θ) yields

p(	|xt , θ) = e
[ η+1

η
π(xt ,a	,θ)+0.5 ln |σ2e �	|

|σ2e I+�	| ]

∑k
j=1 e

[ η+1
η

π(xt ,aj ,θ)+0.5 ln
|σ2e �j |

|σ2e I+�j |
]
. (65)

Then, we maximise
∑N

t=1
∑k

	=1 p(	|xt , θ)H(θ |	, xt) to get θnew, resulting in

σ 2new
e = Tr[�old

a	|x]
d +

∑k
	=1

∑
t p(	|xt ,θ)(xt−at,	)T (xt−at,	)

Nd , (66)

αnew
	 =

∑
t p(	|xt ,θ)

N , μnew
	 =

∑
t p(	|xt ,θ)at,	∑
t p(	|xt ,θ)

.

�new
	 = �old

a	|x +
∑

t p(	|xt ,θ)(at,	−μnew
	 )(at,	−μnew

	 )T∑
t p(	|xt ,θ)

.

Putting the above Equations 66, 65 and 64 into Algorithm 13, we get a new Ying-
Yang alternating algorithm for learning de-noise GM, which improves its counterpart
in Sect.3.1 of Xu (2011) in that the Lagrange technique used in Algorithm 3 is used to
help the Ying-Yang alternative implementation. Also, p(	|xt , θ) in Equation 65 has been
extended to cover semi-supervised learning in the same way as in Algorithm 9.

Algorithm 13 BYY learning for de-noise GM
Require: initialise θ , η, let p	,t = 1/k,�a	|x = 0, at,	 = xt .

Repeat the following two steps until converged:
Ying-Step: get αnew

	 ,μnew
	 ,�new

	 by Equation 66 as follows:,

σ 2 new
e = Tr[�old

a	|x]
d +

∑k
	=1

∑
t p(	|xt ,θ)(xt−at,	)T (xt−at,	)

Nd ,
n	 = ∑N

t=1 p	,t , αnew
	 = n	∑k

j=1 nj
, μnew

	 = 1
n	

∑N
t=1 p	,tat,	,

�new
	 = �old

a	|x + 1
n	

∑N
t=1 p	,t(at,	 − μnew

	 )(at,	 − μnew
	 )T .

trimming:
if αnew

i → 0 or αnew
i Tr[�new

i ]→ 0, discard the ith Gaussian, let k=k-1.
Yang-Step: for t=1, · · · ,N and 	=1, · · · , k, get p	,t = (η + 1 + γ δ	,	∗

t )p	|xt (θnew)with

p(	|xt , θ) = e
[
γ δ

	,	∗t +1+η

η π(xt ,a	 ,θ)+0.5 ln |σ2e �	|
|σ2e I+�	| ]

∑k
j=1 e

[
γ δj,	∗t +1+η

η π(xt ,aj ,θ)+0.5 ln
|σ2e �j |

|σ2e I+�j |
]
,

π(x, a	, θ) = ln [G(x|a	, σ 2
e I)G(a	|μ	,�	)α	].

Also, getat,	 =[ σ 2 new
e I + �new

	 ]−1 (�new
	 xt + σ 2 new

e μnew
	 ),

�new
a	|x = η

η+1 [ σ
2 new
e I + �new

	 ]−1 σ 2 new
e �new

	 .

Remarks:
(a) When σ 2

e = 0, this algorithm degenerates to become the same as Algorithm 9 and
further to Algorithm 3 if also γ = 0.
(b) For each sample xt , δ	,	∗

t = 0 if it has no teaching label and δ	,	∗
t = 1 when 	 is equal

to a given teaching label 	∗
t .

(c) at,	 outcomes the de-noised samples for each cluster. Also, classification of a sample
xt can be made by 	∗ = argmax	 p	,t and thus at,	∗ is treated as the de-noised sample of
xt .
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Conventionally, noises are filtered by a preprocess (if needed) with help of a standard
noise filteringmethod. Inmany applications, however, the problems of filtering noises and
making clustering or density estimation are actually two coupled tasks. Instead, the de-
noise GM provides a model to consider both in a same learning process, while Algorithm
13 provides a useful tool that implements both the tasks. Moreover, we can include some
knowledge (e.g. teaching labels) in an easy way. One example is its potential application to
image segmentation. Applying to a noisy image, at,	 outcomes de-noised pixels for each
segmented region, while pixel classification can be made by 	∗ = argmax	 p	,t . For a
sharpen image, we may merely use at,	∗ as the de-noised pixels of each segmented region.

Sparse linear and logistic regression

When we are given a set of paired samples {xt , y∗
t }, the FA model by Equation 31 actually

performs a multiple linear regression for the following mapping y → x:

x = Ay + μ + e, y =[ y(1), · · · , y(k)]T , q(y|φ) = G(y|0,�), q(e) = G(e|0, σ 2I). (67)

Though we may directly use Algorithm 11 for learning, it is difficult to trim off the redun-
dant elements of y via checking whether λi → 0 in the Ying step of Algorithm 4. In this
case, the contribution of {y∗

t } will make none λi in � in Equation 34 tend to zero. In con-
trast, learning by Algorithm 4 and Algorithm 11 is still able to push redundant elements
of A towards zero when updating A is made by Equation 57 together with Equations 59
and 60.
For clarity, we simplify Algorithm 4 and Algorithm 11 into Algorithm 14. Its Yang step

is directly Equation 60. The Ying step is a simplification of Equation 57 together with
Equation 59 at � = σ 2I, plus a new equation for updating σ 2. All the updating aims to
maximise H(p||q) of Equation 56 in a simplification as follows

H(p||q) = ln[ q(XN |AY , θ)q(A)]−1
2
Tr[�A

XN�A
X] ,

with q(A) = q(A|ρ) given by Equation 56. Also, from Equation 67 we have q(XN |AY , θ) =∏
t G(xt|Ayt + μ,�).
To get a further insight, we observe a special case that xt is simply univariate, i.e. d = 1,

at which A becomes a vector aT and Equation 67 actually becomes the widely studied lin-
ear regression problem, for which Algorithm 14 is simplified into Algorithm 15. It differs
from the ordinary linear regression in that � is corrected by a term σ 2

N �a−1 for solving a.

Algorithm 14 BYY harmony sparse learning for multi-dimensional regression

Require: get {xt , y∗
t } with ν =

∑
t y∗t
N , let � =

∑
t
(y∗t −ν)(y∗t −ν)T

N . Initialise A = 0,� = 0.
Repeat the following two steps until converged:
Ying-Step: get

et = xt − Aoldyt , μnew = 1
N

∑
t
et , σ 2 new = Tr[�old(I⊗�)]

d +
∑
t
(et−μnew)(et−μnew)T

Nd ,

Rxy = 1
N

∑
t
(et − μnew)(yt − ν)T , diag[�a

1 , · · · ,�a
m]= �old + vec(Aold)vec(Aold)T ,

�A new
X = Nσ−2 newI ⊗ � + diag[�a

1 , · · · ,�a
m]−1 ,

get Anew by solving B vec(A) = vec(Rxy), B = Id×d ⊗ � + σ 2 new diag[�a
1 ,··· ,�a

m]−1

N .
Yang-Step: �new = η

1+η
(�A new

X )−1.
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Algorithm 15 BYY harmony sparse learning for linear regression x = yTa + μ + e

Require: get {xt , y∗
t } with ν =

∑
t y∗t
N , let � =

∑
t
(y∗t −ν)(y∗t −ν)T

N . Initialise a = 0,� = 0.
Repeat the following two steps until converged:
Ying-Step: get
et = xt − yTt aold, μnew = 1

N
∑
t
et , �a = �old + aoldaold T ,

σ 2 = Tr[�old�]
d +

∑
t
(et−μnew)(et−μnew)T

Nd , Ryx =
∑
t
(yt−ν)(et−μnew)T

N ,
anew =[� + σ 2

N �a−1]−1 Ryx.
Yang-Step: �new = η

1+η
(N�

σ 2 + �a−1)−1.

Also, we may maximise H(p||q) to make sparse learning for a multiple logistic regres-
sion by

ln q(XN |AY , θ) = ∑
t ln q(xt|Âyt + μ), (68)

ln q(xt|Ayt + μ) = ∑d
i=1[ x

(i)
t ln s(x̂(i)

t ) + (1 − x(i)
t ) ln (1 − s(x̂(i)

t ))] , x̂t = Ayt + μ,
q(A|ρ) = ∏

j G(aj|0,�a
j ), q(μ) = G(μ|0,�μ),

where 0 ≤ s(r) ≤ 1 is a sigmoid function, e.g. simply

s(r) = 1/(1 + e−r). (69)

We further get

∇aj ln q(A) = −�a−1
j aj, ∇μ ln q(μ) = −�μ −1,

δaj = ∇aj ln q(XN |AY , θ) = ∑
t ξ

(j)
t s′(x̂(j)

t )yt , (70)

where s′(r) = ds(r)
dr , ξ

(i)
t = x(i)

t
s(x̂(i)

t )
− 1−x(i)

t
1−s(x̂(i)

t )
,

δμ = ∇μ ln q(XN |AY , θ) =[
∑

t ξ
(1)
t s′(x̂(1)

t ), · · · ,∑t ξ
(d)
t s′(x̂(d)

t )]T ,

�aj = −∇ajaTj
ln q(XN |AY , θ) = ∑

t w
(j)
t ytyTt ,

�μ = −∇μμT ln q(XN |AY , θ) = diag[
∑

t w
(1)
t , · · · ,∑t w

(d)
t ] ,

w(i)
t = ξ

(i)
t s′′(x̂(i)

t ) + x(i)
t s′2(x̂(i)

t )

s2(x̂(i)
t )

+ (1−x(i)
t )s′2(x̂(i)

t )

(1−s(x̂(i)
t ))2

, with s′′(r) = d2s(r)
d2r ,

from which we get Algorithm 16 to make the BYY sparse learning for logistic regression.
Similar to Equation 60, we get its Yang step. Similar to Equations 58 and 59, we have

�
aj
X = �aj + �a−1

j , �
μ
X = �μ + �μ −1,

�a
j = �

aj new
XN

+ ajaTj , �μ = �
μ new
XN

+ μμT , (71)

which is put into the Ying step of Algorithm 16. Being different from Algorithm 14, there
is no need to consider� = σ 2I, while updatingA,μ is made by gradient ascending instead
of solving nonlinear equation.
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Algorithm 16 Sparse learning for logistic regression

Require: get {xt , y∗
t } with ν =

∑
t y∗t
N ,� =

∑
t
(y∗t −ν)(y∗t −ν)T

N . Initialise A = 0,�aj
XN

=
0,�μ

XN
= 0.

Repeat the following two steps until converged:

Ying-Step: for j = 1, · · · ,m, get

�a
j = �

aj old
XN

+ aoldj aold T
j , �

aj
X = �aj + �a−1

j , anewj = aoldj + ζ(δanewj − �a−1
j aoldj ),

�μ = �
μ old
XN

+μoldμold T , �
μ
X = �μ +�μ −1, μnew = μold + ζ(δμnew −�μ −1μold),

with �
aj
X ,�

μ
X in Equation 71 and δaj, δμ in Equation 70, where ζ > is a small stepsize.

Yang-Step: for j = 1, · · · ,m, get �
aj new
XN

= η
1+η

(�
aj new
X )−1, �

μ new
XN

= η
1+η

(�
μ new
X )−1.

Temporal FA and temporal binary FA

The FA model by Equation 31 has been extended to modelling temporal dependence in
(Xu 1999a,2001b,2004a) by adding the following vector based auto-regression

yt = Byt−1 + εt , q(εt|φ) = G(εt|0,�). (72)

The joint modelling by Equations 31 and 72 is called temporal factor analysis, shortly
temporal FA or TFA.
Learning TFA can be implemented by maximising H(p||q) as follows:

H(p||q) = H1(p||q) + H2(p||q) − ∑
t lnG(yt|Byt−1,�) (73)

H1(p||q) = ∑
t π1(xt ,Ayt , θ) − 1

2Tr[�
A
XN

�A
X]− 1

2Tr[�y|x�Y |X] ,
H2(p||q) = ∑

t π2(yt ,Byt−1,ψ) − 1
2Tr[�

B
XN

�BX ] ,

π1(xt ,Ayt , θ) = ln[ q(xt|Ayt ,�)G(yt|Byt−1,�)]+ 1
N ln q(A|ρA),

π2(yt ,Byt−1,ψ) = ln[G(yt|Byt−1,�)G(yt−1|0,�t−1)]+ 1
N ln q(B|ρB).

Given ν = Byt−1 fixed, maximising H1(p||q) is decoupled from H2(p||q) −∑
t lnG(yt|Byt−1,�) and thus is handled exactly by learning FA, as summarised in Part-

A of Algorithm 17. With � fixed, maximising H2(p||q) is decoupled from H1(p||q) −∑
t lnG(yt|Byt−1,�) too. Also, samples of {yt , yt−1} are available from implementing Part-

A. The problem of maximising H2(p||q) is equivalent to the special case of a multiple
linear regression at μ = 0, ν = 0 and d = m, and thus B can be learned by Algorithm 14,
as summarised in Part-B of Algorithm 17.
One additional issue needs to be handled. The implementation of Part-A needs to know

the covariance matrix �t−1 of yt−1, which takes the position of � in Algorithm 14. It
follows from yt = Byt−1 + εt that we have the following equation as a constraint:

�t = B�t−1BT + �, (74)

which may be recursively updated from �0 after � updated in Part-A and B updated in
Part-B.
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Algorithm 17 BYY harmony sparse learning for TFA
Require: consider xt = Ayt + et , yt = Byt−1 + εt . Initialise A = 0,B = 0,�0 = I.

Repeat the following three parts until converged:
Part-A: update A by Equation 57 together with Equations 59 and 60; update �,�, ρA
and get Y = {yt} by Algorithms 4 and 11.
Part-B: with Y = {yt} and � obtained from the above,

get �t−1 from Part-C below, update B, ρB by Algorithm 14 with the following
substitutions:

yt in the place of xt , and yt−1 in the place of yt ,
� in the place of �, and B in the place of A,
�t−1 in the place of �, and ρB in the place of ρA.

Part-C: get � in Part-A and B in Part-B, update � by using Equation 74 or solving
Equation 75.

When {yt} is a stationary process with �t−1 → � as t → ∞, Equation 74 becomes
� = B�BT + � or

[ I − (B ⊗ B)] vec(�) = vec(�), (75)

from which we may get � by solving this equation.
In a similar way, wemay also extend the binary FA by Equation 46 tomodelling temporal

dependence by the following modification

q(xt|yt ,ψ) = G(x|Ay + μ,�), q(yt|yt−1,φ) = ∏
i α

y(i)t
i (1 − αi)1−y(i)t ,

αi = s(ŷ(i)
t ), [ ŷ(1)

t , · · · , ŷ(m)
t ]T = ŷt = Byt−1 + ν,

where y(i)
t takes either 0 or 1, and s(r) is a sigmoid function, e.g. by Equation 69. This

model is called temporal binary factor analysis, shortly temporal BFA.
Similar to Equation 73, learning temporal BFA can be implemented by maximising

H(p||q) with help of maximising H1(p||q) by Algorithm 6 for learning BFA with αi fixed,
as summarised in Part-A of Algorithm 18, and with help of maximising H2(p||q) by
Algorithm 16 to learn B, ν for logistic regression yt−1 → yt , as summarised in Part-A of
Algorithm 18.

Algorithm 18 BYY sparse learning for TBFA
Require: consider x = Ay + μ + e, yt = Byt−1 + εt . Initialise A = 0,B = 0,�0 = I.

Repeat the following two parts until converged:
Part-A: update A by Equation 57 together with Equations 59 and 60;
update �,�, ρA and get Y = {yt} by Algorithm 6.

Part-B: with Y = {yt} above, update B, ν, ρB by Algorithm 16 with the following
substitutions:
yt in the place of xt and yt−1 in the place of yt ,
B in the place of A and ρB in the place of ρA, μ in the place of μ.

Bi-linear matrix system andmanifold learning

Putting samples xt , et , yt = 1, · · · ,N into their corresponding matrix formats X,E ∈
Rd×N ,Y ∈ Rk×N , respectively, we extend the FAmodel x = Ay+ e in Equation 31 into the
following generalised bi-linear matrix system (BMS)
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X = μ(AY ) + E, E =
[
e(i)t

]
, q(X|Y , θ) = q(X − μ(AY )) = q(E|Y ), (76)

q(E|Y ) =
N∏
t=1

d∏
i=1

q(e(i)t |Y ),

where μ(AY ) is an inverse link function of AY that is linear to either one of A,Y with the
other fixed, and μ(�) =[μ(ωi,j)] for a matrix � =[ωi,j].
It can be used as a general formulation for existing typical linear models, classified by

whether one or more of the following three natures are possessed.

Additive noise E The BMS is called additive or non-additive based on whether or not
q(E|Y ) = q(E). One typical additive family is that elements of E are independent Gaussian
noises, i.e.

q
(
e(i)t |Y

)
= G

(
e(i)t |0, σ (i) 2

t

)
. (77)

Independent factors Y We get a BMS, featured by whether we have

q(Y |θ) =
N∏
t=1

k∏
j=1

q
(
y(j)
t

)
. (78)

Link function μ The BMS is called bi-linear according to whether

μ(ξ) = ξ . (79)

The special cases of the BMS featured with Equations 77, 78 and 79 all satisfied include
FA, BFA, NFA and others. Also, their corresponding implementations of BYY harmony
learning are previously introduced by Algorithms 4 to 16. The special cases with only
Equations 78 and 79 satisfied were addressed in Sect. 2 of Xu (2011).
Beyond Equation 78, the generalised BMS models with Equations 77 and 79 held were

also previously addressed in Sect.II of Xu (2012b) and Sect.5 of Xu (2012a). One type is
temporal learning featured by autoregression across columns of Y , e.g. by Equation 72,
rather extensively studied since 2000 (Xu 2000b, 2001b, 2004a). A recent summary about
TFA studies is referred to Sect.5.2 of Xu (2012a).
The other type is manifold learning featured by that Y comes from the following matrix

normal distribution (MND) (Dutilleul 1999; Gupta and Nagar 1999; Xu 2012b):

N(U|C,�,�) = e−0.5Tr[�−1(U−C)T�−1(U−C)]

(2π)0.5kN |�|0.5k|�|0.5N ,

where a matrix � describes the cross-column dependence of the matrix variate U , and a
matrix� describes the cross-row dependence ofU . This matrix distribution is equivalent
to a multivariate Gaussian distribution G(vec(U)|vec(C),� ⊗ �).
One example is q(Y |θ) = N(Y |0, L−1, I) with L given by the graph Laplacian, which

was firstly considered by Eq.(27) in Xu (2012b) and led to a BYY harmony based manifold
learning. Such an insight may be observed from Equation 19. Maximisation of H(θ) sub-
ject to Equation 21 consists of maximising π(X,Y , θ) = ln q(X|Y , θ) − 0.5(kNln(2π) −
ln |L|) − 0.5Tn that includes to minimise

Tn = Tr[YLYT ] , (80)

which is a key term in the Laplacian eigenmaps for preserving topologically the neigh-
bourhood relation in manifold learning (Belkin and Niyogi 2003). Differently, the BYY
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harmony learning obtains Y∗ = argmaxY π(XN ,Y , θ) in place of learning an approximate
linear mapping Y ≈ WX.
The other example is q(Y |θ) = N(Y |0, L−1,�) that was firstly given by Eq.(107) in Xu

(2012a), which is featured by a diagonal matrix � that is added in as free parameters to be
adjusted. Accordingly, Equation 80 is modified into

Tn = ln |�| + Tr[�−1YLYT ] . (81)

This � takes a role similar to the one in Algorithm 4. Actually, this situation can be
regarded as an extended counterpart of FA-b while the situation with Tn by Equation 80
can be regarded as an extended counterpart of FA-a. The BYY harmony learning helps
to learn � for determining an appropriate manifold dimension k, i.e. the row dimension
of Y . Following the schematic Algorithm 2, we can develop one detailed BYY harmony
learning algorithm for implementing the BMS by Equation 76.
Conceptually, there are also other choices beyond Equation 78, which can be very diver-

sified. The next subsection further examines a family of choices featured with certain
decoupled parts of Y .

Decoupled BMS, regulatory networks and LMMmodel

We may narrow our consideration on the dependence among the parts of Y by con-
sidering linear dependence within Y by a linear product of a matrix B for describing
dependence and a matrix with mutually independent elements, that is, we consider

X = μ(AYBT ) + E, with Equation 78 satisfied. (82)

This formulation extends those previous models for independent factor analyses into
their counterparts in a BMS formulation.
From the perspective of making the maximum likelihood learning on the parametric

distribution of X, the formulation by Equation 82 includes the ones by both Equations 80
and 81 as its special cases with

η(r) = r and q(Y |θ) = N(Y |0,�c,�r), (83)

where both �c,�r are diagonal matrices.
It follows from Theorem 2.3.10 in (Gupta and Nagar 1999) that we have

N(YB|0,B�cBT ,�r) with YBT = YB. Let L−1 = BBT and E by Equation 76, we are led
to Equation 80 when �r = I and to Equation 81 when �r �= I. Generally, we may also
consider Equation 78 with elements from other Gaussian and nonGaussian distributions.
The above relations do not hold for the BYY harmony learning even when Equation 79

holds. Instead, the formulation by Equation 82 is more preferred than its counterpart in
Equation 76. During the implementation of the BYY harmony learning, either q(Y |θ) =
N(Y |0, L−1, I) or q(Y |θ) = N(Y |0, L−1,�) takes a role of to controlling the compleixty of
Y , i.e. the row dimension and also the matrix sparsity.
Usually, B is not learned but provided from or designed based on a sample set X, e.g.

L−1 = BBT . Sometimes, B is learned subject to the following constraint

B = BoDB,DB is diagonal,BT
o Bo = I with elements being either 0 or 1. (84)

Gene regulatory networks (TRN) takes an important role in biology networks and
modelling TRN based on gene expression data is one of major topics in the studies of
computational genomics (Bar-Joseph et al. 2012; Karlebach and Shamir 2008; Morris and
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Mattick 2014). In the previous efforts (Tu et al. 2011, 2012a,b), the BFA and NFA have
been applied to model gene transcriptional regulation, which leads to improvements of
networks component analysis (NCA) (Liao et al. 2003). Still, Equations 82 and 83 with
μ(r) = r jointly also provide a new TRNmodel. Instead of pre-specifying the topology of
A according to some priori knowledge (Liao et al. 2003), we get the topological informa-
tion underlying the samples of X by the graph Laplacian L and then get B by L−1 = BBT ,
while A is obtained via learning with or without pre-specifying its topology. Also, we may
consider a priori of A with help of Equation 56. During the implementation of the BYY
harmony learning, an appropriate number of transcription factors may be determined via
learning the diagonal matrix �r .
We may further partition Y =[Ys, F] and correspondingly B =[Bs,Z], with elements of

Ys being stochastic variables and elements of F being unknown constants, where F and
Z could be empty when all the elements of Y are stochastic variables. By this partition,
we get AYBT = AYsBT

s + AFZT . For simplicity, we drop the subscript s and still use F
to denote the unknown constant matrix product AF instead of further decomposing it
into two parts. Similarly, we also partition Z and get a constant offset term C. As a result,
Equation 82 is rewritten into

X = μ(AYBT + FZT + C) + E, together with Equation 78, (85)

which returns back to Equation 82 simply with F = 0.
Let AY = YA, we have E(YAYT

A ) = AE(YYT )AT . When the columns of Y are i.i.d. from
a Gaussian with a zero mean and a diagonal covariance matrix �r , Equation 85 becomes
X = YABT + FZT + E with YA denoting random effects and F denoting fixed effects; that
is, we are led to the linear mixture model (LMM) when μ(r) = r and generalised LMM
(GLMM) when μ(r) �= r.
Unknowns in LMM or GLMM may be estimated by one of the algorithms developed

in the literature of statistics under the principle of the least square error or maximum
likelihood (Demidenko 2013). Both LMM and GLMM have been applied for modeling
various associations in the studies of biology and recently in the studies of computational
genomics (Yang et al. 2014; Zhou and Stephens 2014; Zou et al. 2014). The BYY har-
mony learning provides one alternative method for estimating the unknowns in LMM
or GLMM, with one advantage of determining an appropriate row dimension of Y and a
sparsematrixA. Conventionally,B andZ are designmatrices that are usually pre-specified
based on given samples and priori knowledge. Also, either or both of B and Z may con-
sist of partially given elements and partially unknowns to be estimated via learning. One
example is shown in Figure four in Xu (2011).
Following the schematic Algorithm 2, we can further develop the detailed BYY harmony

learning algorithm for learning Equation 85. Here, we consider the special case μ(r) = r
to learn � that consists of all the unknowns (i.e. A,C,�c,�r and the rest unknowns).
Noticing that vec(AYBT +FZT +C) = vec(AYBT )+vec(FZT )+vec(C), vec(AYBT ) = (B⊗
A)vec(Y ) = (BYT ⊗ I)vec(A) and vec(FZT ) = (Z⊗ I)vec(F), it follows from Equations 19
and 21 that we learn � by

max
� ,Y ,F

π(� ,Y , F), where
π(� ,Y , F) = ln [N(E|0,�c,�r)N(Y |0,�c,�r)N(A|0,Dc,Dr)N(F|0,Kc,Kr)],
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E = X − μ(AYBT + FZT + C), �E = �c ⊗ �r ,

subject to (86)

vec(Y∗) = argmax
Y

π(� ,Y , F) = �Y
X (B ⊗ A)T�−1

E vec(X − FZT − C),

vec(A∗) = argmax
A

π(� ,Y , F) = �A
X(YBT ⊗ I)T�−1

E vec(X − FZT − C),

vec(F∗) = argmax
F

π(� ,Y , F) = �F
X(Z ⊗ I)T�−1

E vec(X − AYBT − C),

�Y
X = η

η + 1
�Y −1

X , �A
X = η

η + 1
�A −1

X , �F
X = η

η + 1
�F −1

X ,

�Y
X = − ∂2π(� ,Y , F)

∂vec(Y )∂vec(Y )T
= (B ⊗ A)T�−1

E (B ⊗ A) + (�c ⊗ �r)
−1.

�A
X = − ∂2π(� ,Y , F)

∂vec(A)∂vec(A)T
= (YBT ⊗ I)T�−1

E (YBT ⊗ I) + (Dc ⊗ Dr)
−1.

�F
X = − ∂2π(� ,Y , F)

∂vec(F)∂vec(F)T
= (Z ⊗ I)T�−1

E (Z ⊗ I) + (Kc ⊗ Kr)
−1.

A preservation principle of multiple convex combination

We observe the following estimators for the sample mean and sample covariance:

μ = 1
N

N∑
t=1

xt , � = 1
N

N∑
t=1

(xt − μ)(xt − μ)T ,

each of which is featured by a convex combination of a number of individual statistics xt
or (xt − μ)(xt − μ)T . Also, we observe the Ying step of Algorithm 3 and find that μ	,�	

are such convex combinations too. Actually, such convex combinations can be found in
also the algorithms introduced in the previous sections.
Moreover, the harmony functionalH(p||q) by Equation 9 is an estimation function that

comes from a convex combination of an infinite many of individual estimation function
featured by the Ying machine q(X|R)q(R) at an infinite many individuals of R, weighted
by the Yang machine p(R|X)p(X).
The above examples are all the explicit combinations of explicit individual statistics or

estimation functions. Even generally, such a convex combination applies to many implicit
functions. For example, we examine the following convex combination

f (μ) =
∑
t

atft(μ), ft(μ) = ‖xt − μ‖2,
∑
t

at = 1, at ≥ 0, (87)

from which we observe the following natures:

(a) The gradient field ∇μ f (μ) is a convex combination of the gradient fields
{∇μ ft(μ)}Nt=1.
(b) The root of ∇μf (μ) = 0 is also a convex combination of the roots of

{∇μ ft(μ) = 0}Nt=1.
(c) The minimum of f (μ) is a convex combination of the minimums of {ft(μ)}Nt=1 too.

These natures are closely related to the first order derivative or the gradient field of
estimation functions. The nature (a) describes a global feature of the gradient fields of
estimation functions, and the nature (b) describes features within some important local
areas (e.g. around the sinks) of these gradient fields. While the nature (c) is equivalent to
the nature (b) if {ft(μ)}Nt=1 have gradient fields. Generally, the nature (c) may even apply
to those individual estimation functions that do not have gradient fields.
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In Equation 87, a convex combination of individual convex functions implies or
induces all the above three natures. Given a convex combination of individual convex
functions, if it also preserves at least one of the three natures above, we say that it
preserves a nature of multiple convex combination (MCC). The classic maximum likeli-
hood learning preserves such a MCC nature too, because both (1/N)

∑N
t=1 ln q(xt|θ) and

(1/N)
∑N

t=1 ∇θ ln q(xt|θ) are convex combinations.
Such a nature is not implied everywhere. One example is the BYY harmony learning

subject to Equation 12 as follows

H(θ) = ∫
p(Y |θ ,XN )π(XN ,Y , θ)dY , s.t. p(Y |θ ,XN ) = q(Y |θ ,XN ),

which is a special case of Equation 9 and thus is still a convex combination of an infi-
nite many of individual estimators π(XN ,Y , θ) at an infinite many individual values of
Y , weighted by the Yang machine p(Y |θ ,XN ). But, considering the gradient field directly
may not preserve the MCC nature.
As shown in Eq.(25) of Xu (2010a), we get such a gradient field as follows:

∇ϕH(θ) = ∫
pδ(Y |θ ,XN )∇ϕπ(XN ,Y , θ)dY ,

pδ(Y |θ ,XN ) = p(Y |θ ,XN )[ 1 + �π(XN ,Y , θ)] ,

�π(XN ,Y , θ) = π(XN ,Y , θ) − ∫
p(Y |θ ,XN )π(XN ,Y , θ)dY , (88)

based on which we may develop a gradient based local search algorithm.
However, it suffers a problem of pre-specifying an appropriate learning stepsize. One

alternative considers combining the roots of ∇ϕπ(XN ,Y , θ) = 0 at individual values of Y
to approximate the root of ∇ϕH(θ) = 0. One example is given by Eq. (11) in Xu (2010a)
for learning Gaussian mixture, that is, letting pnew	|xt in Algorithm 3 to be replaced by

pnew	|xt = p	t(θ
new)[ 1 + δ

(i)
t (θnew)] . (89)

Similarly, one other example can be found in Algorithm 2 and Eq. (10a) in Xu (2009) for
learning radial basis functions (RBF) and extensions.
Still, this type of implementation may cause learning instability because the resulted

pnew	|xt may break the constraint 0 ≤ pnew	|xt ≤ 1.
The above observation motivates another preservation principle of multiple con-

vex combinations. We consider an estimator via making maxθ f (θ), f (θ) =∑
t atft(θ), s.t.

∑
t at = 1, at ≥ 0, where each individual ft(θ) possesses more than one of

the natures ξ (j)(ft), j = 1, . . . , c, with, c ≥ 1. The problem can be further modified into
the following one:

maxθ f (θ), f (θ) = ∑
t at ft(θ), (90)

subject to not only
∑

t at = 1, at ≥ 0, but also
each corresponding nature ξ (j)(f ) is a convex combination

∑
t b

(j)
t ξ (j)(ft),

where the weights
∑

t b
(j)
t = 1, b(j)

t ≥ 0 may be different for a different j and also may not
be necessarily same as the weights

∑
t at = 1, at ≥ 0.



Xu Applied Informatics  (2015) 2:5 Page 39 of 45

As an example, we modify Equation 9 to explicitly satisfy the principle of preserving
one MCC nature as follows:

maxθ H(θ), H(θ) = ∫
p(Y |θ ,XN )π(XN ,Y , θ)dY ,

subject to p(Y |θ ,XN ) = q(Y |θ ,XN ), ∇ϕH(θ) = ∫
pY∇ϕπ(XN ,Y , θ)dY , (91)

pY ∈ Cp = {pY : 0 ≤ pY ≤ 1,
∫
pYdY = 1},

where ϕ ⊆ θ is a subset of parameters to be estimated in our consideration. It can be the
entire set of θ or a part of θ . Under this setting, we get the root of∇ϕH(θ) = 0 by a convex
combination of the roots of ∇ϕπ(XN ,Y , θ) = 0.
Actually, Algorithm 1, Algorithm 3, Algorithm 5, Algorithm 6 and Algorithm 8, as well

as their corresponding EM algorithms, are all the examples that pursuit along this direc-
tion. The Yang step or the E step actually gets such a pY ∈ Cp while the Ying step or
the M step estimates the root of ∇ϕH(θ) = 0 by a convex combination of the roots of
∇ϕπ(XN ,Y , θ) = 0.
Comparing ∇ϕH(θ) in Equation 88 and ∇ϕH(θ) in Equation 91, we get an alternative

implementation that consists of two steps as follows:

(1) Get Pδ that consists of pδ(Y |θ ,XN ) by Equation 88 at all the possible values of Y .
(2) Project the set Pδ to the convex set Cp under a nearest principle.

There are two key issues to be handled as follows:

• One is to be the nearest in what a sense? in a square or L1 distance?
• The other is an effective algorithm to find such a projection.

Another important issue is a theoretical guarantee on whether H(θ) keeps increasing or
nondecreasing such that learning convergence is guaranteed.

Results and discussion
The results of BYY harmony learning implementations are summarized in Tables 3 & 4
for those made before 2010 and in Table 1 for those made after 2010. Most of the funda-
mentals and major implementing techniques of the BYY harmony learning are developed
in the period of 1995 to 2001, for which we provide an outline chronologically in Table 3
featured by the time points at which the major innovative studies started at. In particular,
the threads of 1995(c), 1997(a), 1999(a) and 2000(a) reach the present formulationH(p||q)
in Equation 9 though these were considered on merely R = {Y } in ∫

[ ·] dR. Subsequent
developments in the next decade are then further outlined in Table 4. Also, further details
are referred to the following recent overviews:

• Theoretical aspects and relations to other methods see Sect.4.1, Appendix A and B in
Xu (2010a), and Sects.4.1 and 4.2 in Xu (2012a).

• Algorithms and applications see the roadmaps in Figure three and Figure eleven of
Xu (2010a), also in Figure one of Xu (2011) and Sect.5 of Xu (2012a), plus recent
applications in (Pang et al. 2013; Shi et al. 2011a,b,c, 2014; Tu and Xu 2011a; Tu et al.
2011, 2012a,b; Tu and Xu 2014; Wang et al. 2011).

• Outlines on major topics in Xu (2012a) see Sect.7 for 3 topics on statistical learning
in general, 8 topics on BYY system, 13 topics on best harmony learning and 4 topics
on implementation, as well as 15 topics on exemplar learning tasks and algorithms.
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Table 3 A foundation period of BYY studies (1995 to 2001)

Year Outcomes

1995 The following fundamental points of BYY harmony learning were firstly proposed in Xu
(1995):

(a) The BYY system is proposed as a unified perspective for statistical learning.

(b) Under the name of BKYY learning, the Ying-Yang best matching by the minimisation of
KL(p(Y|X)p(X)‖q(Y|R)q(Y)) has been proposed for learning parameters θ .

(c) One simplified version of H(θ) is proposed to get a hard-cut version of EM algorithm, see
its Eqs. (19) and (20) and a criterion for selecting the number of components in Gaussian
mixture (i.e. the cluster number), see Eqs. (22) and (24) in Xu (1995).

(d) One preliminary version of the BYY harmony learning based automatic model selection
was presented, see its Sect. 5.2.

(e) The relationship H(p||q) = HR|X − KL(p||q) by Equation 10 was also firstly identified, see
Eqs. (8), (11) and (12) in Xu (1995).

1996 Points (c)(d) were verified experimentally in Xu (1996).

1997 Four progresses are made as follows:

(a) Beyond 1995(d), suggested H(θ) in a general expression as model selection criterion,
see Eq. (12) in Xu (1997a) and Eq. (3.8) in Xu (1997b). Also, addressed its special cases on
Gaussian mixture.

(b) Proposed to use pNh (X) by Equation 8 and learn h for regularisation, see Eq. (3.10) in Xu
(1997b). A smoothed EM is proposed for Gaussian mixture, see Eq. (18) in Xu (1997c).

(c) Proposed semi-supervised EM algorithm for Gaussian mixture, see Eq.(7.14) in XU (1997b).

(d) Extended BKYY to BCYY by replacing Kullback divergence with its convex counterpart, see
Sect.5 in Xu (1997a) and Eqs.(19)-(23) in Xu (1997c).

1998 The following progresses are made:

(a) Proposed equation (A) in Table 2 as a criterion for model complexity, e.g. see Eq. (49) in Xu
(1998a) and Eq. (22) in Xu (1998b).

(b) As an exemplar of 1997(a), derived model selection criteria for three-layer net and RBF net
(see Eq. (56) and Eqs (61)-(64) in Xu (1998a)) and also for FA (see Eqs. (37)(43) in Xu (1998b)).

(c) Beyond 1995(c), developed adaptive EM algorithms for learning RBF net (see Sect.3.2) and
FA (see Sect.4.2.4) in Xu (1998b) and Sect.3.2 in Xu (1998c).

1999 Further efforts are made, among which major ones are as follows:

(a) Beyond 1997(a), proposed a general form for parameter learning andmodel selection, see
Sect.2 in Xu (1999b), Sect.2.2 in Xu (1999a), and Sect.2.2 in Xu (1999c).

(b) Beyond 1997(b), systematically studied data smoothing regularisation in Xu (1999d), with
an approximation technique in Equation 18 and estimating techniques for h.

(c) Proposed Taylor expansion approximation by Equation 18 to remove the integral in BYY
implementation, see Eq. (90) and Eq. (91) in Xu (1999e), later in the journal papers (Xu
2000c, 2001b).

2000 In Xu (2000d,2000a), H(θ) based harmony learning has been elaborated into its present
formulation, supported bymathematical analysis on Ying-Yang best harmony versus Ying-
Yang best matching, and featured with three innovative points:

(a) Beyond 1999(a), proposed a general form of maxθ H(θ) with automatic model selection,
see Eq. (29) in Xu (2000d) and Sect.4 in Xu (2000a).

(b) Proposed Eq (23) in Xu (2000a) to implement equation (A) in Table 2 by learning θ with
automatic model selection.

(c) Also proposed normalisation regularisation in parallel to data smoothing regularisation in
the above 1998(b), see Sect. 2 and Sect.3 in Xu (2000a) and Eq. (21) in Xu (2000d).

2001 Further progresses are made as follows:

(a) Used p(Y|θ , XN) = q(Y|θ , XN) in Equation 12 to get Yang structure for maxθ H(θ), see
Eq. (40) in Xu (2001a), Eqs. (24)(27) in Xu (2001c).

(b) Developed a BYY harmony learning algorithm for Kernel regression and support vectors,
see Sec.4.5 and Table seven in Xu (2001a).

(c) UnderstoodH(θ) in its general form from an information transferring aspect via three layer
encoding, see Sect.4.3 in Xu (2001c).

(d) Beyond 1998(b), derived model selection criteria for local PCA, see Eq. (23) in Xu (2001c),
and local ICA, see Eq. (33) in Xu (2001d).
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Table 4 Further advances of BYY studies (2002 to 2013)

Year BYY harmony learning formulation

2004 (a) H(p||q) in Equation 9 with R = {Y , θ} is proposed in Sect.II(B) of Xu (2004b), not only integrating
the thread of data smoothing regularisation via 1997(b) and 1999(b) and of normalisation regular-
isation via 2000(c) into a specific formulation of a priori; but also covering a usual priori q(θ) as a
component.

(b) Subsequent elaborations are referred to Sect.3.4 in Xu (2007a), Sect.3.4 in Xu (2007b), Sect.2 in Xu
(2008), Eq. (8) in Xu (2009), especially to Sect.4 in Xu (2010a) and Sect.4 in Xu (2012a) for recent
surveys.

2007 Beyond 2001(a), efforts on designing the structure of p(R|X) based on q(X|R) and q(R) progress
from the early concept of bi-directional architecture further towards.

(a) Either a preservation principle p(Y|θ , XN) = q(Y|θ , XN), e.g. by Eq. (40) in Xu (2001a), Eq. (24), and
Eq. (27) in Xu (2001c);

(b) Or that p(Y|θ , XN) preserves certain statistics of q(Y|θ , XN), e.g. equal covariance by Eqs. (72)(73) in
Xu (2007a), which are elaborated under the name of uncertainty conversation or variety preserva-
tion between Ying and Yang, see pp69-72 in Xu (2009), with details referred to Sect.4.2 in Xu (2010a)
and Sect.3.2.2 in Xu (2012a).

2008 Learning tasks are summarised into three levels of inverse problems and integrated into a unified
representation of BYY system, see Xu (2008, 2009), and an introduction in Sect.1 of Xu (2010a).

(a) Radon-Nikodym derivative based formulation of Ying-Yang harmony information was proposed,
with degenerated cases covering Shannon information and Kullback Leibler information. Details
are referred to Sect.4.1 in Xu (2010a) and an overview in Figure five of Xu (2012a).

(b) Hierarchical temporal BYY harmony learning was developed in Sect. 5 of Xu (2010a), see Figures
twelve and fourteen in Xu (2010a) and Figure eleven in Xu (2012a).

(c) BYY system provides an all-in-one formulation for unsupervised, supervised and semi- supervised
learning , see Sect.4.4 in Xu (2010a) and Table two in Xu (2012a).

2011 Co-dim matrix pair formulation and a hierarchy of co-dim matrix pairs for BYY harmony learning
have been proposed, with details referred to Sect.2.2, Sect.4 and Figure three in Xu (2011). Its special
cases cover not only several typical learningmodels but also de-noised Gaussianmixture (see Algo-
rithm 13), manifold learning as previously discussed about Equation 80, and the dual formulation
as previously introduced in Equations 55 and 56.

Type BYY system design

3-A Started from the very beginning in 1995 Xu (1995), BYY system was classified into three archi-
tectures (3-A), i.e. forward architecture with q(X|R) in a free structure, backward architecture with
p(R|X) in a free structure, and bi-directional architecture with both q(X|R) and p(R|X) in parametric
structures, rather thoroughly examined before the mid of 2000th (Xu 2000c, 2001a,e, 2002, 2003a,
2004a,c).

3-P Focuses are turned to three principles (3-P) for designing the structures of each component in a
BYY system, i.e. the principle of least redundancy for q(Y), the principle of divid-and-conquer for
q(X|R), and the principle of uncertainty conversation or variety preservation for p(Y|X), as stated
above by the item 2007(a) and (b). An overview is referred to Figure three in Xu (2012a).

Readers are also referred to Sect.3.2 and Sect.3.4 on topics and demanding issues
about BYY system design, to Sect.4.2.3 on novelty and features of best harmony
theory.

Before closing this paper, we continue the previous discussion made on Figure 4. As
illustrated in Figure 5 and also referred to Appendix B(2) of Xu (2010a), learning is
featured by a dynamic process of implementing learning theory to learn from what it
observes and to adapt its environment, which may also be understood from a famous
ancient Chinese TCM WuXing theory. A learning process is featured by repeatedly cir-
cling of five actions or states. For each circling, the first action A-1 gathers samples and
information as the system’s input; A-2 transfers the input into inner candidate assump-
tions or suggestions; A-3 integrates or regulates evidences about candidates that comes
from A-2; A-4 selects good candidates or trims off bad ones; and A-5 interprets or
manages the environment.



Xu Applied Informatics  (2015) 2:5 Page 42 of 45

Figure 5 Negative feedback stabilises dynamics.

The harmonising dynamics discussed previously in Figure 3 and the corresponding
subsection may also be observed from this perspective. At the centre of Figure 5, the
bottom of the Yin-Yang logo has a black centre, which is usually called fish eye. This indi-
cates the output of A-5, while its surrounding white ring indicates the Yang domain. The
starting part of the Yang arrow indicates A-1 for picking samples in the Yang domain to
get pNh (X), and the arrow ends at the white fish eye on the top, implementing A-2 by
p(Y , θ |X). On the other hand, the surrounding black ring of the white fish eye indicates
the Ying domain that collects all the candidates as well as the associated evidences. The
starting part of the Ying arrow indicates A-4 for choosing good candidates probabilisti-
cally via q(X|Y , θ), and the arrow ends at the bottom black fish eye and completes one
circling.
As addressed by Equation 27 and the discussions thereafter, the signal η is measured at

two fish eyes and also modulated by the inner attention of the system. A small η reflects
either a bad Ying-Yang mutual agreement (a big mismatch to the desire) in the top fish
eye or a bad fitting in the bottom fish eye.
A poor performance incurred from a poor selection of Y at A-4, resulting in a small

value η that is feedback to A-2 to harmonise the attempts of updating θ . In such a
negative feedback mechanism, the dynamics of information harmonising is stabilised.
Interestingly, such a mechanism is executed in a pattern ‘A-2/Huo modulates A-4/Jin’,
which complies with the classic ‘XiangKe’ principle of the Chinese TCMWuXing theory.
In other word, the ‘XiangKe’ principle can be regarded as an ancient negative feedback
principle.
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Conclusions
Based on Lagrange variety preservation of Yang structure, this paper proposes a generic
framework of dynamic BYY harmony learning, which not only unifies attention, detec-
tion, problem-solving, adaptation, learning and model selection from an information
harmonising perspective but also provides a new type of Ying-Yang alternative non-
local search to overcome a dilemma of suboptimal solution versus learning instability
typically suffered by the existing Ying-Yang alternative nonlocal search. Algorithms are
developed for learning Gaussian mixture, factor analysis (FA), mixture of local FA, binary
FA, nonGaussian FA, de-noised Gaussian mixture, sparse multivariate regression, tem-
poral FA and temporal binary FA, as well as a generalised bilinear matrix system that
covers not only these linear models but also manifold learning, gene regulatory networks
and the generalised linear mixed model. These algorithms are featured with not only a
favourable nature of automatic model selection but also a unified formulation in per-
forming unsupervised learning and semi-supervised learning. Moreover, a principle of
preserving multiple convex combinations is also proposed to improve the BYY harmony
learning, which leads another type of Ying-Yang alternative nonlocal search.
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