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Abstract. We discuss the relation between nonlinearity and separa-
tion capability in the information-theoretic ICA scheme. We propose
with justification that a ‘loose matching’ between the nonlinearity and
source distribution is needed. These results give further support to the
implementation technique by a learned mixture of parametric densities.

1 Introduction

Nonlinearity is an essential element in adaptive ICA algorithms since it picks
up and controls some high order statistics. This 1ssue was previously discused
in the maximum likelihood approach preoposed in [5]. In the information-
theoretic ICA approaches (e.g., MMI, INFORMAX)[4, 1, 2, 9, 11], the choice
of nonlinearity 1s also a critical issue. Actually, it determines on which class of
source distributions the ICA algorithm can work. In contrary to ‘strict match-
ing’ proposed in previous works [1, 2], we propose that only a ‘loose matching’
is needed between the nonlinearity and source distribution, justified by the the-
oretical and experimental analysis on several cases. Also, these results support
the use of technique of learning a flexible mixture of parametric densities in
implementation® [10, 11].

2 Problem and the information-theoretic ICA scheme

Suppose there are n unknown independent sources s = [s1,...,s,]7 with
Es = 0. The sources are mixed by an unknown static nonsingular mizring
matriz A as x = As. Given only the observed signals x, the ICA problem is
to determine the de-mizing matriz W which gives the recovered signals y =
Wx, such that y resembles s as far as possible. Theoretically s can only be

*This project was supported by the HK RGC Earmarked Grants CUHK250/94E and
CUHK484/95E and by Ho Sin-Hang Education Endowment Fund for Project HSH 95/02.

tOn one reviewing feedback of the present paper, it is mentioned that a paper in French
on SRETSI95 by Pham used mixture of densities via Parzen estimation for a block MMI ICA
algorithm. We are sorry to be unable to make clear comments here since we are not clear
the source SRETSI95 and also unfortunely can not read French, and thus are not sure what
kind of that algorithm exactly is. From that piece of message, seemly the densities in that
mixture are nonparametric estimations based on the observations and can not be changed
together with the change of the de-mixing matrix to optimize the MMI criterion. Differently,
the key point of our approach[11] is the used of a flexible mixture of parametric densities
with their parameters learned together with the learning of the de-mixing matrix to optimize

the MMI criterion.



determined up to an arbitrary permutation and scaling. That is, if we obtain
V = WA = PD, where D is a diagonal matrix and P is a permutation matrix,
separation 1s said to be achieved.

Recently, a general information-theoretic ICA scheme has been suggested
[9, 11] from the YING-YANG Learning Scheme [7, 8]. With {g;(r)} used to
model the scale families of pdf’s of the sources {p,(s;)}, the following cost
function is formulated:
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The natural gradient decent algorithm [1] is used to perform minyy J(W):
AW o [I+h(y)y"|W (2)

where h(y) = [hi(y1), -, ha(ya)]", hi(yi) = 9i(yi)/9i(yi) and gi(yi) = fi(v:)-
3 Nonlinearity and Separation Capability

The separation capability of the algorithm is determined by {h;(y;)}, which
follows from the choice of {g;(y)}. If {9i(ys)} models the scale families of
{ps,(s;)} appropriately, the system can perform separation. If g;(y;) is desig-
nated to be equal to py, (vi), J(W) will reduce to the mutual information[4, 1, 6]

1= py. (i)

The minimization of this J(W) can always yield a correct solution W because
J = 0 when py(y) = [1i_; py:(vi). Hence, theoretically g;(yi) = py,(yi) can
work on any source distribution but this choice bears some implementation
difficulty as py,(y;) is not known in advance.

On the other hand, it has been proposed recently that the use of a set of
pre-fized g;(y;) may also separate sources with a particular class of distribution
[3, 11]. We consider the following cases:

J(W) = /y py(y)log =22y (3)

(1) In [2], fi(y:) are chosen to be logsig(y;) = 1/[1 + exp(—y;)], etc, and are
shown to be able to separate sources with sharply peaked super-gaussian
pdf. In experiments it works on human speech signals [2] but fails on
uniformly or beta(0.5,0.5) distributed signals, which are sub-gaussian [11].

(i1) A more general choice for f;(y;) is fl(yNZ) = logsig(by;) = 1/[1+exp(—by;)]
where the steepness b is a positive real number. However, we can easily
prove:

Lemma Consider an information-theoretic ICA system A with fZ (g;) =
logsig(by;) and a system B with f;(y;) = logsig(y;). V = V/bis a solution



of the equilibrium equation V- J(W) = 0 for system A if and only if V
1s a solution of this same equilibrium equation for system B.

Which says that b 1s just an arbitrary scaling factor for the measuring

unit of y and cannot affect the properties of the nonlinearity.

In [3], ki (y;) is directly chosen as h;(y;) = c;y? with ¢; < 0. It has been
theoretically proved the system can separate two sub-gaussian sources
but cannot separate two super-gaussian sources.

THEOREM 1 Consider the case hi(y1) = c11y1 and ha(y2) = ca3ys
with ¢11 < 0 and ca3 < 0 acting on two channels of signals. If:
(a) One source is sub-gaussian and one source is super-gaussian, or
(b) One source is gaussian and one source is non-gaussian,

for any wnitial value, V will converge to and stay stably at one of the
following eight correct solutions for signal separation:

. o [ H(enB[s3)) 3 0
Solution A;: V= [ 0 :I:(—ngE[Sg])_% ] (4)
. v 0 +(—c11 E[s3]) 7%
Solution Ay: V= [ :I:(—cng[sﬂ)_% 0 ] (5)

such that the resulting ys recovers the channel of s that has a flatter pdf.

Proof The equilibrium equation for the algorithm is Vy J(W) = [VVJ(V)]A_1
0, which implies (provided that det V # 0):

E[I+h(Vs)(Vs)']=0 (6)

The equations for the non-diagonal elements can be written as:

“? “g :| |: V11021 :| -0 (7)
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where p? = E[s?]. Denote the left matrix in eq. (7) as M, then detM =
2 2/ 4 272 2 2/ 4 212 ‘L

vio 7 (p5 — 3[p3]°) — va ps (T — 3[pT]”). Under the stated condition, we have

det M # 0, and hence [v11v21 vi2 U22]T = 0. Coping it with the equations for the

diagonal elements of eq. (6), we get solution groups Ar and A exhaustively.

For Solution group Ap, the Hessian matrix V3, J(V) is negative definite (stable)
if s is sub-gaussian, negative semi-definite (stability not determined) if so 1s
gaussian and neither negative/positive definite/semi-definite (saddle point) if
s2 18 super-gaussian. Similarly, for Solution group A, V%/J(V) is negative
definite if s; is sub-gaussian, negative semi-definite if $; is gaussian and neither
negative /positive definite/semi-definite if s1 is super-gaussian. It can be shown
that there is no local maxima in J(V) and that on singular subspace det V =0,
J(V) — 400 as there is deterministic linear dependancy between channels.



1+exp(-r))? , corresp. to f(r) = logsig(r) in case (i).

Figure 1: Solid: g(r)=exp(-r)/(
*/4), corresp. to h(r) = —r? in case (iii).

Dash: g(r)=(v/7(3/4)) exp(-r

Thus, J(V) is monotonic increasing around the local minima, as vi; — oo,
J(V) = 4oo.

Hence, we have global convergence to the stable solutions as follows:

S1 S2 Stable Solution | y1 | y2
super-gaussian sub-gaussian Ay s1 | so
sub-gaussian super-gaussian Aqr so | s1
gaussian sub-gaussian Ay s1 | so
sub-gaussian gaussian Aqr so | s1
super-gaussian gaussian Ay s1 | so
gaussian super-gaussian Aqr so | s1

In all cases, the pdf of g2 is flatter than that of y;. O

In figure 1, the ¢;(y;) in case (i) is more sharply peaked (have greater
kurtosis) and the g;(y;) in case (iii) is flatter. The fact that the g¢;(y;) in case
(i) cannot separate signals with flat pdf and the g;(y;) in case (iii) cannot
separate super-gaussian signals suggests that some matching of {g;(y;)} to the
scale families of {p;,(s;)} is needed. However, the fact that one fixed g;(y;)
can work on a broad class of source distribution suggests that the matching
needed is not so strict. Hence, these results suggest that only a ‘loose matching’
between {g;(y;)} and the scale families of {p;,(s;)} is needed. In case (iv), the
cubic nonlinearity in channel 2 selects the s; with flatter pdf to recover. This
fact further supports the suggestion of ‘loose matching’.

4 Implementation with mixture of densities
A flexible mixture of parametric densities is suggested to achieve the loose

matching [10, 11]:

eXp(’yij ) (8)
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with ?’:1 a;; = 1 and 9(-) being some density function in the form of ¥ (u;;) =
bij¢'(ui;) and ¢(u;;) = logsig(u;;). Thus, we have:

hiy:) = ﬁ Z aijbij (uif) (9)



which is substituted into eq. (2) as the algorithm for W. Together with eq.
(2), the parameters {~,a,b} of g;(y;) are also learned to minimize the J(W)
given by eq.(3) via the following descending algorithm :

| &
Avyiy o —— g bind (wir)ain Ok — aij), (10)
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5 Experiment

As shown in Figure 2, three channels of signals are used: samples from
bimodal beta distribution beta(0.5,0.5) in [-0.5,0.5], uniformly distribution in
[-1,1] and a permuted speech signal. They are mixed with the mixing matrix:

1 06 02
A=|08 1 03 (12)
04 09 1

In the simulation with the learned mixture of parametric densities with p; =
5, all sources are successfully separated, where all 4;; and a;; are initialized as
1/5 and 0 respectively. b1, - -, b;5 are initialized in the interval [107%3 10%2].
The histograms of y; and z;, and the shape of g;(y;) and fi(y;) are plotted in
Figure 2. The simulation with f;(y;) = logsig(y;) can only separate the speech
signal but failed on the other two sub-gaussian signals as did in [11].

6 Conclusion

The relation between the nonlinearity and separation capability is discussed
and a ‘loose matching’ requirement is proposed. Cases on different situation
have been presented to support this proposal. This justification can support
the the technique of learning a flexible mixture of parametric densities for
implementation.
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Figure 2: Result of the experiment. Row 1: histograms of y;. Row 2 & 3: gi(y:) and
fi(y:) respectively. (— adapted mixture of densities, —-— initial, — — f;(-) = logsig(+)
for comparison.) Row 4: histograms of z;.
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