CMSC5724: Quiz 1

Name:

Student ID:

Problem 1 (50%). Consider the set of training data shown below. Here, A, B, C are attributes, and D is the class label.

A	B	C	Y
1	1	1	у
1	0	1	y y
0	0	1	y y
1	1	0	y y
0	1	1	n
1	1	1	n
0	0	0	n
0	1	0	n

Suppose that we consider only decision trees in the form described in Figure 1: there are 3 nodes (i.e., a root and two leaves) where X is an attribute (A, B, or C) and v is an integer chosen from $\{0, 1\}$. Give a decision tree conforming to the template whose empirical error is the smallest (you do not need to explain how the tree is found).

Figure 1

Solution. X = B and v = 0.

Problem 2 (50%). Consider the same training data again, repeated here for your convenience.

A	В	C	Y
1	1	1	У
1	0	1	y
0	0	1	y
1	1	0	y
0	1	1	n
1	1	1	n
0	0	0	n
0	1	0	n

Apply naive Bayes classification to predict the label of an unseen record with A = 1, B = 0, C = 0. You must show the details of your reasoning.

Solution. We need to compare the values of $\mathbf{Pr}[(1,0,0) | Y = y] \cdot \mathbf{Pr}[Y = y]$ and $\mathbf{Pr}[(1,0,0) | Y = n] \cdot \mathbf{Pr}[Y = n]$. The estimation for both $\mathbf{Pr}[Y = y]$ and $\mathbf{Pr}[Y = n]$ is 1/2. So it remains to compare $\mathbf{Pr}[(1,0,0) | Y = y]$ and $\mathbf{Pr}[(1,0,0) | Y = n]$. Following the assumption of naive Bayes classification,

we estimate the two terms as follows:

$$\mathbf{Pr}[(1,0,0) \mid Y=y] = \mathbf{Pr}[A=1 \mid Y=y] \cdot \mathbf{Pr}[B=0 \mid Y=y] \cdot \mathbf{Pr}[C=0 \mid Y=y] = \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{3}{32}$$
$$\mathbf{Pr}[(1,0,0) \mid Y=n] = \mathbf{Pr}[A=1 \mid Y=n] \cdot \mathbf{Pr}[B=0 \mid Y=n] \cdot \mathbf{Pr}[C=0 \mid Y=n] = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{32}$$

Based on the above estimation, we predict the label to be y.