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Review: Classification

Let A1, ...,Ad be d attributes.

Instance space: X = dom(A1)× dom(A2)× ...× dom(Ad) where
dom(Ai ) represents the set of possible values on Ai .

Label space: Y = {−1, 1} (where −1 and 1 are class labels).

Instance-label pair (a.k.a. object): a pair (x , y) in X × Y.

x is a vector; we use x [Ai ] to represent the vector’s value on Ai

(1 ≤ i ≤ d).

Denote by D a probabilistic distribution over X × Y.
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Review: Classification

Goal: Given an object (x , y) drawn from D, we want to predict its
label y from its attribute values x [A1], ..., x [Ad ].

Classifier (hypothesis): A function h : X → Y.

Error of h on D: errD(h) = Pr (x,y)∼D[h(x) ̸= y ].
namely, if we draw an object (x , y) according to D, what is the
probability that h mis-predicts the label?

We would like to learn a classifier h with small errD(h) from a training
set S where each object is drawn independently from D.
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The Ideal Classifier

Fix a point p in the instance space. Think: given a class label c ∈ Y,
how would you interpret the conditional probability

Pr (x,y)∼D[y = c | x = p]?

Design a classifier hopt as follows:

hopt(p) = −1 if Pr (x,y)∼D[y = −1 | x = p] ≥ 0.5;

hopt(p) = 1 otherwise.

This is the best classifier possible.

Its error on D, namely, errD(hopt), is the bayesian error.
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We will introduce the Bayesian method, which aims to follow the
decisions of hopt by approximating the value of Pr (x,y)∼D[y = c |
x = p].

Henceforth, we will abbreviate Pr (x,y)∼D[y = c | x = p] simply as

Pr [y = c | p].

Y Tao Bayesian Classification



6/29

Example: Suppose that we have the following traning set:

age education occupation loan default
28 high school self-employed yes
32 master programmer no
33 undergrad programmer yes
37 undergrad programmer no
38 undergrad self-employed yes
45 master self-employed no
48 high school programmer no
50 master lawyer no
52 master programmer no
55 high school self-employed no
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Bayesian classification works most effectively when each attribute
has a small domain, namely, the attribute has only a small number
of possible values. When an attribute has a large domain, we may
reduce its domain size through discretization.

For example, we may discretize the “age” attribute into a smaller

domain: {20+, 30+, 40+, 50+}, where “20+” corresponds to the interval

[20, 29], “30+” to [30, 39], and so on. See the next slide for the training

set after the conversion.
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Example: The training set after discretizing “age”:

age education occupation loan default
20+ high school self-employed yes
30+ master programmer no
30+ undergrad programmer yes
30+ undergrad programmer no
30+ undergrad self-employed yes
40+ master self-employed no
40+ high school programmer no
50+ master lawyer no
50+ master programmer no
50+ high school self-employed no
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Bayes’ Theorem:

Pr [X | Y ] =
Pr [Y | X ] · Pr [X ]

Pr [Y ]
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Given an instance x , (as in hopt) we predict its label as −1 if and only if

Pr [y = −1 | x ] ≥ Pr [y = 1 | x ].

Applying Bayes’ theorem, we get:

Pr [y = 1 | x ] = Pr [x | y = 1] · Pr [y = 1]

Pr [x ]
.

Similarly:

Pr [y = −1 | x ] = Pr [x | y = −1] · Pr [y = −1]

Pr [x ]
.

It suffices to decide which of the following is larger:

Pr [x | y = 1] · Pr [y = 1], or

Pr [x | y = −1] · Pr [y = −1].
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Bayesian classification estimates Pr [x | y = 1] · Pr [y = 1] and
Pr [x | y = −1] · Pr [y = −1] using the training set. Next, we will explain
only the former, because the estimate of the latter is similar.

The objective, obviously, is to estimate two terms:

Pr [y = 1]

Pr [x | y = 1]

We will discuss each term in turn.
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Pr [y = 1]

This is the probability for an object drawn from D to have label 1.

Naturally, we estimate Pr [y = 1] as the percentage of yes objects in the
training set S .

Example: In Slide 8, Pr [y = 1] = 0.3.
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Pr [x | y = 1]

This is the probability for a “yes”-object drawn from D to carry exactly
the attribute values x [A1], ..., x [Ad ].

We could estimate Pr [x | y = 1] as the percentage of objects having
attribute values x [A1], ..., x [Ad ] among all the yes objects in S . But this
is a bad idea because S may have very few (even none) such objects,
rendering the estimate unreliable (losing statistical significance).

This situation forces us to introduce assumptions which — if satisfied —

would allow us to obtain a more reliable estimate of Pr [x | y = 1].
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Pr [x | y = 1] (cont.)

Bayesian classification makes an assumption here:

Pr [x | y = 1] =
d∏

i=1

Pr [x [Ai ] | y = 1].

For each i ∈ [1, d ], we estimate Pr [x [Ai ] | y = 1] as the percentage of
objects with attribute value x [Ai ] among all the yes objects in S .

Example: In Slide 8, Pr [30+,high-school,programmer | y = 1]
is assumed to be the product of

Pr [30+ | y = 1], which is estimated as 2/3

Pr [high-school | y = 1], which is estimated as 1/3

Pr [programmer | y = 1], which is estimated as 1/3.

The product equals 2/27.
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Pr [x | y = 1] (cont.)

The estimate of Pr [x [Ai ] | y = 1] would be 0 if S does not have any
yes-object with attribute value x [Ai ]. But that would force our estimate
of Pr [x | y = 1] to be 0. Instead, we replace the 0 estimate with a very
small value, for example, 0.000001.

Example: In Slide 8, Pr [lawyer | y = 1] is estimated as 0.000001.

Think: At the beginning, we said that Bayesian classification works
better on small domains. Why?
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The effectiveness of Bayesian classification relies on the accuracy of the
assumption:

Pr [x | y = 1] =
d∏

i=1

Pr [x [Ai ] | y = 1].

This assumption is called the conditional independence assumption.
When this assumption is seriously violated, the accuracy of the method
drops significantly.
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The approach we have discussed so far is known as naive Bayes
classification.

The approach can be integrated with alternative (less stringent)
conditional independence assumption. Consider the evaluation of

Pr [30+,undergrad,programmer | y = −1]

in the context of Slide 8. Suppose that “age” and “education” are
independent after fixing “occupation” and the class label. Then:

Pr [30+,undergrad,programmer | y = −1]

= Pr [30+,undergrad | programmer, y = −1] ·
Pr [programmer | y = −1]

= Pr [30+ | programmer, y = −1]

·Pr [undergrad | programmer, y = −1]

·Pr [programmer | y = −1]

=
2

4
· 1
4
· 4
7
= 1/14.
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Next, we will provide an alternative way to describe the Bayes
method (using naive Bayes as an example). Our description will
clarify what is actually the set H of classifiers to be learned from.
This allows you to apply the generalization theorem (discussed in
the previous lecture) to bound the generalization error of the clas-
sifier obtained.
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Recall that we have attributes A1, ...,Ad .
We assume that each Ai (i ∈ [1, d ]) has a finite domain dom(Ai ).

For each Ai , we introduce 2|dom(Ai )| parameters. Specifically, for each
value a ∈ dom(Ai ), there are two parameters:

pi (a | −1), which is our estimate of Pr [x [Ai ] = a | y = −1];

pi (a | 1), which is our estimate of Pr [x [Ai ] = a | y = 1].

Furthermore, we also introduce:

p(−1), which is our estimate of Pr [y = −1];

p(1), which is our estimate of Pr [y = 1].

In total, we have 2 + 2
∑d

i=1 |dom(Ai )| parameters.

Y Tao Bayesian Classification



20/29

Once the values of the 2 + 2
∑d

i=1 |dom(Ai )| parameters have been fixed,
the conditional independence assumption (of naive Bayes) gives rise to
the following classifier h(x):

h(x) = −1 if

p(−1) ·
d∏

i=1

pi (x [Ai ] | −1) ≥ p(1) ·
d∏

i=1

pi (x [Ai ] | 1)

h(x) = 1 otherwise.

The set H contains all such classifiers.

Remark: The Bayes method we explained earlier gives an efficient
way for choosing a reasonably good classifier h ∈ H.
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The rest of the slides will not be tested.
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Next, we introduce the Bayesian network which is a popular way
to describe sophisticated conditional independence assumptions.

Let us review some concepts on acyclic directed graphs (DAG):

A DAG G is a directed graph with no cycles.

A node in G with 0 in-degree is a root. Note that G may have
multiple roots.

If a node u has an edge to another node v , then u is a parent of v .
Note that a node can have multiple parents.

We will use parents(v) to represent the set of parents of a node v .
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We define a Bayesian network as an acyclic directed graph (DAG) G
satisfying:

1 G has d + 1 nodes, including a node for the class label and a node
for each attribute;

2 G has a single root node, which must be the class label;

3 if attribute u has no path to any of the attributes v1, ..., vx (where
x ≥ 1 can be any integer), then u and (v1, ..., vx) are independent
conditioned on parents(u).

Example: The following is a Bayesian network with d = 5.

A1

y

A2

A3 A4 A5

A1 and A2 independent conditioned on y ;

A4 and A5 independent conditioned on
A1,A2;

A3 and A5 independent conditioned on A1;

A3 and (y ,A5) independent conditioned on
A1.
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Theorem 1: Given the conditional independence assumptions de-
scribed by a Bayesian network G , we have

Pr [A1, ...,Ad | y ] =
d∏

i=1

Pr [Ai | parents(Ai )].

Before proving the theorem, let us first see an example.

Example: Given the Bayesian network on the previous slide, we
have:

Pr [A1,A2, ...,A5 | y ] =
Pr [A1 | y ] · Pr [A2 | y ] · Pr [A3 | A1] · Pr [A4 | A1,A2] · Pr [A5 | A1,A2].
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We will now proceed to prove the theorem. The following facts about
conditional independence will be useful:

Lemma 1: If A and B are independent conditioned on C , then:

Pr [A,B | C ] = Pr [A | C ] · Pr [B | C ];

Pr [A | C ,B] = Pr [A | C ].

Proof: The first bullet is the definition of conditional independence,
whereas the second bullet holds because

Pr [A | C ,B] =
Pr [A,B | C ]

Pr [B | C ]

=
Pr [A | C ]Pr [B | C ]

Pr [B | C ]
= Pr [A | C ].
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Proof of Theorem 1: Without loss of generality, suppose that y , A1, ...,
Ad is a topological order of G (namely, no path exists from a vertex u to
any vertex before u).

Pr [A1, ...,Ad | y ] = Pr [A2, ...,Ad | y ,A1] · Pr [A1 | y ]
= Pr [A3, ...,Ad | y ,A1,A2] · Pr [A2 | y ,A1] · Pr [A1 | y ]
...

=
d∏

i=1

Pr [Ai | y ,A1, ...,Ai−1]

(by Lemma 1) =
d∏

i=1

Pr [Ai | parents(Ai )]

where the last equality used the conditional-independence properties

implied by G and the fact that parents(Ai ) ⊆ {y ,A1, ...,Ai−1}.
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Example: Consider the training set on Slide 8. If we are given the
Bayesian network

occ

y

age edu

then Pr [30+,undergrad,programmer | y = −1] is calculated as
shown on Slide 17.
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Example (cont.): If the Bayesian network is

occ

y

age edu

then Pr [30+,undergrad,programmer | y = −1]

= Pr [30+,undergrad | programmer, y = −1] ·
Pr [programmer | y = −1]

= Pr [30+ | programmer] · Pr [undergrad | programmer]

·Pr [programmer | y = −1]

=
3

5
· 2
5
· 4
7
= 24/175.
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Think: What is the set H of classifiers to be learned from if we
are given the Bayesian network on the previous slide?
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