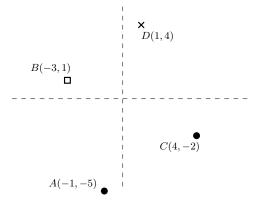
CMSC5724: Exercise List 7

Problem 1. Consider the training set P of points shown below:



where the two dots have label 1, the cross has label 2, and the box has label 3. Run multiclass Perceptron to find a generalized linear classifier to separate P.

Answer: At the beginning, $\vec{w_1} = \vec{w_2} = \vec{w_3} = [0, 0]$. Round 1: Violation point D, $\ell = 2, z = 1$. Hence, $\vec{w_1} = [-1, -4], \vec{w_2} = [1, 4], \vec{w_3} = [0, 0]$. Round 2: Violation point B, $\ell = 3, z = 2$. Hence, $\vec{w_1} = [-1, -4], \vec{w_2} = [4, 3], \vec{w_3} = [-3, 1]$. Round 3: Violation point C, $\ell = 1, z = 2$. Hence, $\vec{w_1} = [3, -6], \vec{w_2} = [0, 5], \vec{w_3} = [-3, 1]$. No more violations.

Problem 2. Calculate the margin of the classifier you obtained in the previous problem.

Answer: Let *W* be the set of weight vectors obtained. $margin(A \mid W) = \min\left(\frac{\vec{w_1} \cdot \vec{A} - \vec{w_2} \cdot \vec{A}}{\sqrt{2 \times \sum_1^3 |w_i|^2}}, \frac{\vec{w_1} \cdot \vec{A} - \vec{w_3} \cdot \vec{A}}{\sqrt{2 \times \sum_1^3 |w_i|^2}}\right) = \min\left(\frac{27 - (-25)}{\sqrt{2 \times 80}}, \frac{27 - (-2)}{\sqrt{2 \times 80}}\right) = \frac{29}{\sqrt{2 \times 80}}$

Similarly,

$$\begin{split} margin(B \mid W) &= \min\left(\frac{10 - (-15)}{\sqrt{2 \times 80}}, \frac{10 - 5}{\sqrt{2 \times 80}}\right) = \frac{5}{\sqrt{2 \times 80}}\\ margin(C \mid W) &= \min\left(\frac{24 - (-10)}{\sqrt{2 \times 80}}, \frac{24 - (-14)}{\sqrt{2 \times 80}}\right) = \frac{34}{\sqrt{2 \times 80}}\\ margin(D \mid W) &= \min\left(\frac{20 - (-21)}{\sqrt{2 \times 80}}, \frac{20 - 1}{\sqrt{2 \times 80}}\right) = \frac{19}{\sqrt{2 \times 80}}\\ \text{Therefore, the margin equals } \frac{5}{\sqrt{2 \times 80}}. \end{split}$$

Problem 3. Suppose we run multiclass Perceptron on k = 2. Let $\{\vec{w_1}, \vec{w_2}\}$ be the set of weight vectors returned. Prove: $\vec{w_1} = -\vec{w_2}$.

Answer: It suffices to prove that $\vec{w_1} + \vec{w_2} = \vec{0}$ after every round. This obviously holds at the beginning because $\vec{w_1} = \vec{w_2} = \vec{0}$. Suppose that $\vec{w_1} + \vec{w_2} = \vec{0}$ before the next round starts. Let p be the violation point used in the round to do adjustments. Since we always add \vec{p} to a weight vector but subtract \vec{p} from the other weight vector, $\vec{w_1} + \vec{w_2}$ is still $\vec{0}$ at the end of the round.

Problem 4. Continuing on Problem 3, prove: the "margin" of $W = \{\vec{w_1}, \vec{w_2}\}$ as defined in multiclass Perceptorn is precisely the "margin" as defined in (the traditional) Perceptorn (i.e., the smallest distance from a point in the training set P to the separation plane).

Answer: It suffices to prove: for each point p in the training set, margin(p | W) is precisely the distance from p to the separation plane.

Without loss of generality, assume that p is classified as class 1, i.e., $\vec{w_1} \cdot \vec{p} > \vec{w_2} \cdot \vec{p}$. We have:

$$margin(p \mid W) = \frac{\vec{w_1} \cdot \vec{p} - \vec{w_2} \cdot \vec{p}}{\sqrt{2(|\vec{w_1}|^2 + |\vec{w_2}|^2)}} \\ = \frac{2\vec{w_1} \cdot \vec{p}}{\sqrt{4|\vec{w_1}|^2}} \\ = \frac{\vec{w_1} \cdot \vec{p}}{|\vec{w_1}|}$$

which is the distance from p to the separation plane, as promised.