
CSCI2100: Regular Exercise Set 5

Prepared by Yufei Tao

Problems marked with an asterisk may be difficult.

Problem 1. Let S be a set of 9 integers {75, 23, 12, 87, 90, 44, 8, 32, 89}, stored in an array of length
9. Let us use quicksort to sort S. Recall that the algorithm randomly picks a pivot element, and
then, recursively sorts two sets S1 and S2, respectively. Suppose that the pivot is 89. What are the
contents of S1 and S2, respectively? The ordering of the elements in S1 and S2 does not matter.

Solution. S1 = {75, 23, 12, 87, 44, 8, 32} and S2 = {90}.

Problem 2 (Sorting a Multi-Set). Let A be an array of n integers. Note that some of the
integers may be identical. Design an algorithm to arrange these integers in non-descending order.
For example, if A stores the sequence of integers (35, 12, 28, 12, 35, 7, 63, 35), you should output an
array (7, 12, 12, 28, 35, 35, 35, 63).

Solution. We will apply merge sort as a black box, namely, we do not need to change how the
algorithm works at all. Let S be a set of n elements defined as follows: the i-th (1 ≤ i ≤ n) element
of S equals (i, v) where v = A[i]. Create an array B of length n, where B[i] equals the i-th element
in S. B can be generated easily from A in O(n) time.

We apply merge sort to sort B, but compare two elements e1 = (i1, v1) and e2 = (i2, v2) in the
following way:

• If v1 < v2, then rule e1 < e2

• If v1 > v2, then rule e1 > e2

• If v1 = v2:

– If i1 < i2, then rule e1 < e2;

– Otherwise, rule e1 > e2.

After B has been sorted, we can easily generate the output array from B in O(n) time.

Problem 3. Let S1 be a set of n integers, and S2 another set of n integers. Each of S1 and S2

is stored in an array of length n. The arrays are not necessarily sorted. Design an algorithm to
determine whether S1 ∩ S2 is empty. Your algorithm must terminate in O(n log n) time.

Solution. Sort S1 and S2 together as a multi-set (using the algorithm of Problem 2) in O(n log n)
time. Then, scan the sorted list, and check whether there are two identical integers coming from
different sets; this can be done in O(n) time.

Problem 4* (Inversions). Consider a set S of n integers that are stored in an array A (not
necessarily sorted). Let e and e′ be two integers in S such that e is positioned before e′ in A.
We call the pair (e, e′) an inversion in S if e > e′. Design an algorithm to count the number of
inversions in S. Your algorithm must terminate in O(n log n) time.

1

For example, if the array stores the sequence (10, 15, 7, 12), then your algorithm should return
3, because there are 3 inversions: (10, 7), (15, 7), and (15, 12).

Solution. If n = 1, simply return 0. If n ≥ 2, we divide A into two halves: (i) the first half includes
the first dn/2e elements, and (ii) the second includes the rest. Let A1 be the array corresponding
to the first half, and A2 be the array corresponding to the second. We count the number c1 of
inversions in A1 recursively, and then count the number c2 of inversions in A2 recursively. We
ensure that (i) when the execution returns from A1, the array A1 has been sorted, and (ii) the
same is true for A2.

We now count the number c3 of such inversions (e, e′) that e ∈ A1 and e′ ∈ A2. This can be
achieved in O(n) time utilizing the fact that both A1 and A2 have been sorted. Initially, set i and
j to 1, and c3 to 0. Next, repeat the following until either i > |A1| or j > |A2|:

• If A1[i] < A2[j], then increase c3 by j − 1, and increase i by 1;

• Otherwise (i.e., A1[i] > A2[j]), increase j by 1.

If at this moment j = |A2| + 1, increase c3 by (|A1| − i + 1)|A2|. The total number of inversions
equals c1 + c2 + c3.

Before returning to the upper level of recursion, we merge A1 and A2 into one sorted list A′,
and copy the elements of A′ into A (which thus becomes sorted). This takes O(n) time.

Let f(n) be the worst-case running time of our algorithm. It holds that f(1) = O(1), and
f(n) = 2 · f(dn/2e) + O(n). By the master theorem, we have f(n) = O(n log n).

Problem 5* (Maxima). In two-dimensional space, a point (x, y) dominates another point (x′, y′)
if x > x′ and y > y′. Let S be a set of n points in two-dimensional space, such that no two points
share the same x- or y-coordinate. A point p ∈ S is a maximal point of S if no point in S dominates
p. For example, suppose that S = {(1, 1), (5, 2), (3, 5)}; then S has two maximal points: (5, 2) and
(3, 5).

Suppose that S is given in an array of length n, where the i-th (1 ≤ i ≤ n) element stores the x-
and y-coordinates of the i-th point in S (i.e., each element of the array occupies 2 memory cells).
For example, S = {(1, 1), (5, 2), (3, 5)} is given as the sequence of integers: (1, 1, 5, 2, 3, 5). Design
an algorithm to find all the maximal points of S in O(n log n) time.

Solution. First, sort all the points of S by x-coordinate in O(n log n) time. Then, process the
points in descending order of x-coordinate as follows. Initially, set ymax to ∞. For each i ∈ [1, n],
let pi = (xi, yi) be the i-th point in the (descending) sorted order. If yi < ymax, ignore pi and move
on to the next i. Otherwise, report pi as a maximal point, and set ymax to yi. The processing
obviously takes only O(n) time, rendering the overall time complexity O(n log n).

2

