
CSCI2100: Regular Exercise Set 13

Prepared by Yufei Tao

Problem 1. Let S be a set of integer pairs of the form (id , v). We will refer to the first field as
the id of the pair, and the second as the key of the pair. Design a data structure that supports the
following operations:

• Insert: add a new pair (id , v) to S (you can assume that S does not already have a pair with
the same id).

• Delete: given an integer t, delete the pair (id , v) from S where t = id , if such a pair exists.

• DeleteMin: remove from S the pair with the smallest key, and return it. .

Your structure must consume O(n) space, and support all operations in O(log n) time where n = |S|.

Solution. Maintain S in two binary search trees T1 and T2, where the pairs are indexed on ids in
T1, and on keys in T2. We support the three operations as follows:

• Insert: simply insert the new pair (id , v) into both T1 and T2.

• Delete: first find the pair with id t in T1, from which we know the key v of the pair. Now,
delete the pair (t, v) from both T1 and T2.

• DeleteMin: find the pair with the smallest key v from T2 (which can be found by continuously
descending into left child nodes). Now we have its id t as well. Remove (t, v) from T1 and T2.

Problem 2. Describe how to implement the Dijkstra’s algorithm on a graph G = (V,E) in
O((|V |+ |E|) · log |V |) time.

Solution. Recall that the algorithm maintains (i) a set S of vertices at all times, and (ii) an integer
value dist(v) for each vertex v ∈ S. Define P to be the set of (v, dist(v)) pairs (one for each v ∈ S).
We need the following operations on P :

• Insert: add a pair (v, dist(v)) to P .

• DecreaseKey: given a vertex v ∈ S and an integer x < dist(v), update the pair (v, dist(v)) to
(v, x) (and thereby, setting dist(v) = x in P ).

• DeleteMin: Remove from P the pair (v, dist(v)) with the smalelst dist(v).

We can store P in a data structure of Problem 2 which supports all operations in O(log |V |) time
(note: DecreaseKey can be implemented as a Delete followed by an Insert).

In addition to the above structure, we store all the dist(v) values in an array A of length |V |, so
that using the id of a vertex v, we can find its dist(v) in constant time.

Now we can implement the algorithm as follows. Initially, insert only (s, 0) into P , where s is
the source vertex. Also, in A, set all the values to ∞, except the cell of s which equals 0.

Then, we repeat the following until P is empty:

• Perform a DeleteMin to obtain a pair (v, dist(v)).
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• For every edge (v, u), compare dist(u) to dist(v) + w(u, v). If the latter is smaller, perform a
DecreaseKey on vertex u to set dist(u) = dist(v) +w(u, v), and update the cell of u in A with
this value as well.

Problem 3*. In the lecture, we proved the correctness of Dijkstra’s algorithm in the scenario
where all the edges have positive weights. Prove: the algorithm is still correct if we allow edges to
take non-negative weights (i.e., zero weights are allowed).

Solution. We argue that, every time a vertex v is removed from S, we must have dist(v) = spdist(v).
We will do so by induction on the order that the vertices are removed. The base step, which
corresponds to removing the source vertex s, is obviously correct. Next, assuming correctness on all
the vertices already removed, we will prove the statement on the vertex v removed next.

Let π be an arbitrary shortest path from s to v. Identify the last vertex u on π such that
spdist(u) = spdist(v). In other words, all the edges on π between u and v have weight 0. Let π′ be
the prefix of π that ends at u. Note that π′ must be a shortest path from s to u.

s v

u

π′

0 length

Claim 1: When v is to be removed from S, all the vertices on π′ — except possibly u —
must have been removed from S.

Proof of Claim 1: Suppose that the claim is not true. Define vbad as the first vertex on π′

that is still in S when v is to be removed from S. Let vgood be the vertex right before vbad on
π; note that vgood definitely exists because vbad cannot be s. By how u is defined, we must have
spdist(vbad) < spdist(u) = spdist(v).
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By our inductive assumption, when vgood was removed from S, we had dist(vgood) = spdist(vgood).
We must have relaxed the edge (vgood, vbad), after which we must have

dist(vbad) = dist(vgood) + w(vgood, vbad)

= spdist(vgood) + w(vgood, vbad) = spdist(vbad).

The value dist(vbad) never increases during the algorithm. Hence, when v is to be removed from S,
we must have dist(vbad) = spdist(vbad) < spdist(u) = spdist(v) ≤ dist(v) . But this contradicts the
fact that v has the smallest dist-value among all the vertices still in S.

Consider the moment when v is to be removed from S; define z as the first vertex on π that has
not been removed from S. Note that z is well defined because v itself is still in S at this moment.
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Claim 2: When v is to be removed from S, dist(z) = spdist(z).

Proof of Claim 2: Let z′ be the vertex right before z on π. Note that z′ is well defined because
z cannot be earlier than u on π (Claim 1) and z cannot be s.

By our inductive assumption, when z′ was removed from S, we had dist(z′) = spdist(z′). We
must have relaxed the edge (z′, z), after which we must have

dist(z) = dist(z′) + w(z′, z) = spdist(z′) = spdist(z).

It now follows that, when v is to be removed from S, we have dist(v) ≤ dist(z) = spdist(z) =
spdist(v). As dist(v) cannot be larger than spdist(v), we must have dist(v) = spdist(v).
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