
CSCI3160: Finding a Negative Cycle

Prepared by Yufei Tao

Suppose that G = (V,E) is a simple directed graph where each edge (u, v) ∈ E has a weight
w(u, v), which can be negative. It is known that G is strongly connected and contains at least one
negative cycle. In the tutorial, we learned the following algorithm for finding a negative cycle:

algorithm negative-cycle-detection
input: strongly connected G = (V,E) and weight function w

1. s← arbitrary vertex in V
2. dist(s)← 0 and dist(v)←∞ for every vertex v ∈ V \ {s}
3. parent(v)← nil for all v ∈ V
4. for i← 1 to |V | − 1 do
5. for each edge (u, v) ∈ E do
6. if dist(v) > dist(u) + w(u, v) then
7. dist(v)← dist(u) + w(u, v); parent(v)← u
8. for each edge (u, v) ∈ E do
9. if dist(v) > dist(u) + w(u, v) then
10. parent(v)← u

/* start tracing back the parent pointers until seeing a vertex twice */
11. initialize a vertex sequence S that contains only v
12. while parent(v) /∈ S do
13. append parent(v) to S; v ← parent(v)
14. report a negative cycle: output the appendix of S starting from v and add v in the end

Next, we prove that the algorithm is correct.

Lemma 1. During the algorithm, if u is a vertex in V with parent(u) ̸= nil, then dist(parent(u)) +
w(parent(u), u) <= dist(u).

Proof. Let z = parent(u). When z just becomes parent(u), dist(z) + w(z, u) = dist(u). After that,
dist(z) can only decrease, while dist(u) stays the same until parent(u) is updated.

Lemma 2. Suppose that there is a sequence of x ≥ 2 vertices u1, u2, ..., ux such that parent(ui) =
ui+1 for every i ∈ [1, x− 1] and parent(ux) = u1. Then, (u1, ux), (u2, u1), (u3, u2), ..., (ux, ux−1)
form a negative cycle.

Proof. Each of parent(u1), parent(u2), ..., parent(ux) was set by an edge relaxation. W.l.o.g.,
suppose that the edge relaxation for parent(u1) happened the latest. Consider the moment right
before the relaxation. At this moment, we must have

dist(u2) + w(u2, u1) < dist(u1)

By Lemma 1, we have

dist(u3) + w(u3, u2) ≤ dist(u2)

dist(u4) + w(u4, u3) ≤ dist(u3)

...

dist(ux) + w(ux, ux−1) ≤ dist(ux−1)

dist(u1) + w(u1, ux) ≤ dist(u1).

1

The above inequalities imply w(ux, u1) +
∑x

i=1w(ui, ui+1) < 0.

Lemma 3. Consider the moment when the algorithm has come to Line 11. At this moment, if we
trace the parent pointers starting from v, we run into an infinite loop.

Proof. Suppose that this is not true. Then, the tracing must stop at s because every node — except
possibly s, has a parent. This yields a simple path π from s to v. Denote by ℓ the number edges on
π; clearly, ℓ ≤ |V | − 1. Denote the vertices on π as z0, z1, ..., zℓ, where z0 = s and zℓ = v. Let di be
the value of dist(zi) at this moment, for each i ∈ [0, ℓ]. As parent(s) = nil, we know d0 = 0.

By induction, we can prove that dist(zi) was at most di after the i-th round of edge relaxation,
for each i ∈ [0, ℓ]. This implies that the edge relaxation at Line 9 should not have happened.

The algorithm’s correctness follows from Lemmas 2 and 3.

2

