CSCI3160: Finding a Negative Cycle

Prepared by Yufei Tao

Suppose that G = (V, E) is a simple directed graph where each edge $(u, v) \in E$ has a weight w(u, v), which can be negative. It is known that G is strongly connected and contains at least one negative cycle. In the tutorial, we learned the following algorithm for finding a negative cycle:

algorithm negative-cycle-detection input: strongly connected G = (V, E) and weight function w

1. $s \leftarrow \text{arbitrary vertex in } V$ 2. $dist(s) \leftarrow 0$ and $dist(v) \leftarrow \infty$ for every vertex $v \in V \setminus \{s\}$ 3. $parent(v) \leftarrow nil$ for all $v \in V$ 4. for $i \leftarrow 1$ to |V| - 1 do 5. for each edge $(u, v) \in E$ do 6. if dist(v) > dist(u) + w(u, v) then 7. $dist(v) \leftarrow dist(u) + w(u, v); parent(v) \leftarrow u$ 8. for each edge $(u, v) \in E$ do 9. if dist(v) > dist(u) + w(u, v) then 10. $parent(v) \leftarrow u$ /* start tracing back the parent pointers until seeing a vertex twice */

- 11. initialize a vertex sequence S that contains only v
- 12. while $parent(v) \notin S$ do
- 13. append parent(v) to $S; v \leftarrow parent(v)$

14. report a negative cycle: output the appendix of S starting from v and add v in the end

Next, we prove that the algorithm is correct.

Lemma 1. During the algorithm, if u is a vertex in V with $parent(u) \neq nil$, then $dist(parent(u)) + w(parent(u), u) \leq dist(u)$.

Proof. Let z = parent(u). When z just becomes parent(u), dist(z) + w(z, u) = dist(u). After that, dist(z) can only decrease, while dist(u) stays the same until parent(u) is updated.

Lemma 2. Suppose that there is a sequence of $x \ge 2$ vertices $u_1, u_2, ..., u_x$ such that $parent(u_i) = u_{i+1}$ for every $i \in [1, x - 1]$ and $parent(u_x) = u_1$. Then, (u_1, u_x) , (u_2, u_1) , (u_3, u_2) , ..., (u_x, u_{x-1}) form a negative cycle.

Proof. Each of $parent(u_1)$, $parent(u_2)$, ..., $parent(u_x)$ was set by an edge relaxation. W.l.o.g., suppose that the edge relaxation for $parent(u_1)$ happened the latest. Consider the moment right before the relaxation. At this moment, we must have

$$dist(u_2) + w(u_2, u_1) < dist(u_1)$$

By Lemma 1, we have

$$\begin{aligned} dist(u_3) + w(u_3, u_2) &\leq dist(u_2) \\ dist(u_4) + w(u_4, u_3) &\leq dist(u_3) \\ & \dots \\ dist(u_x) + w(u_x, u_{x-1}) &\leq dist(u_{x-1}) \\ dist(u_1) + w(u_1, u_x) &\leq dist(u_1). \end{aligned}$$

The above inequalities imply $w(u_x, u_1) + \sum_{i=1}^x w(u_i, u_{i+1}) < 0.$

Lemma 3. Consider the moment when the algorithm has come to Line 11. At this moment, if we trace the parent pointers starting from v, we run into an infinite loop.

Proof. Suppose that this is not true. Then, the tracing must stop at s because every node — except possibly s, has a parent. This yields a simple path π from s to v. Denote by ℓ the number edges on π ; clearly, $\ell \leq |V| - 1$. Denote the vertices on π as $z_0, z_1, ..., z_\ell$, where $z_0 = s$ and $z_\ell = v$. Let d_i be the value of $dist(z_i)$ at this moment, for each $i \in [0, \ell]$. As parent(s) = nil, we know $d_0 = 0$.

By induction, we can prove that $dist(z_i)$ was at most d_i after the *i*-th round of edge relaxation, for each $i \in [0, \ell]$. This implies that the edge relaxation at Line 9 should not have happened. \Box

The algorithm's correctness follows from Lemmas 2 and 3.