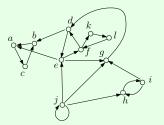
Further Insights into SCCs

Ru Wang

Department of Computer Science and Engineering Chinese University of Hong Kong

Given a directed graph G = (V, E), the goal of the strongly connected components problem is to divide V into disjoint subsets, each being an SCC.

Example:



We should output: $\{a, b, c\}$, $\{d, e, f, g, k, l\}$, $\{h, i\}$, and $\{j\}$.

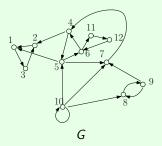
Algorithm

- **Step 1**: Run DFS on *G* and list the vertices by the order they turn black.
 - If a vertex is the *i*-th vertex turning black, define its **label** as *i*.
- **Step 2:** Obtain the **reverse graph** G^{rev} by flipping all the edge directions in G.
- **Step 3:** Perform DFS on G^{rev} subject to the following rules:
 - Rule 1: Start at the vertex with the largest label.
 - Rule 2: When a restart is needed, do so from the white vertex with the largest label.

Output the vertices in each DFS-tree as an SCC.

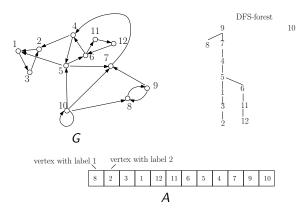
Next, we will show how to implement the SCC algorithm in O(|V| + |E|) time. You can assume that $V = \{1, 2, ..., n\}$.

Example:



Perform DFS on G and record the turn-black order in an array A.

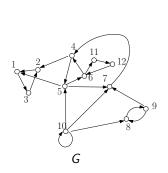
• A[i] stores the vertex with label i.

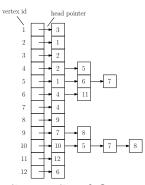


Time: O(|V| + |E|).

Obtain
$$G^{rev} = (V, \underline{E}^{rev})$$
 from G in $O(|V| + |E|)$ time.

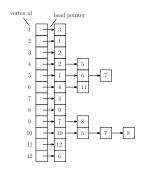
We will illustrate how to do so through an example.





adjacency list of G

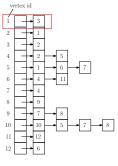
Initialize the head-pointer array for G^{rev} .



adj. list of G

adj. list of G^{rev}

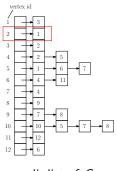
Scan the neighbor list of each $u \in V$ in G. For every out-neighbor v of u, add u to the neighbor list of v in G^{rev} .



adj. list of G

adj. list of G^{rev}

Scan the neighbor list of each $u \in V$ in G. For every out-neighbor v of u, add u to the neighbor list of v in G^{rev} .

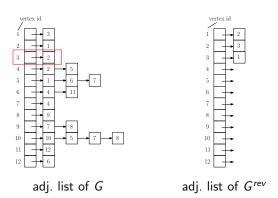


adj. list of G

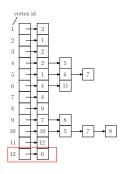


adj. list of G^{rev}

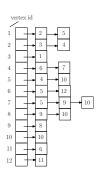
Scan the neighbor list of each $u \in V$ in G. For every out-neighbor v of u, add u to the neighbor list of v in G^{rev} .



Scan the neighbor list of each $u \in V$ in G. For every out-neighbor v of u, add u to the neighbor list of v in G^{rev} .

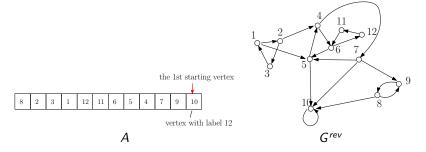


adj. list of G

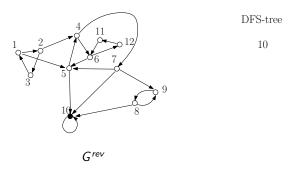


adj. list of G^{rev}

Perform DFS on G^{rev} and use A to select the vertex to start/restart from.



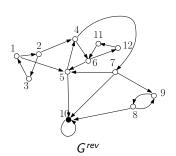
Start the 1st DFS on G^{rev} from vertex 10. Output $\{10\}$.



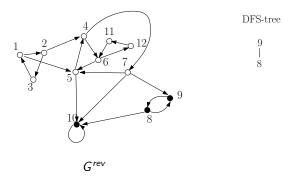
Vertex 10 is now black.

Scan A backwards from A[12] and find the first white vertex A[11] = 9.

Α

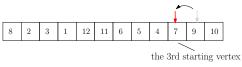


Start the 2rd DFS on G^{rev} from 9. Output $\{8,9\}$.

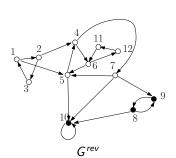


Vertices 8 and 9 are now black.

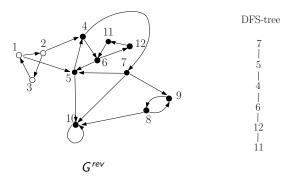
Scan A backwards from A[11] and find the first white vertex A[10] = 7.



Α



Start the 3rd DFS on G^{rev} from 7. Output $\{7, 5, 4, 6, 12, 11\}$.

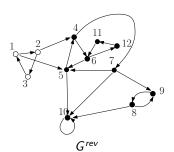


Vertices 7, 5, 4, 6, 12, and 11 are now black.

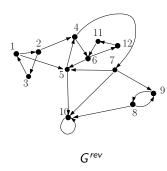
Scan A backwards from A[10] and find the first white vertex A[4] = 1.



Α



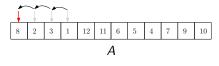
Start the 4th DFS on G^{rev} from 1. Output $\{1,2,3\}$.

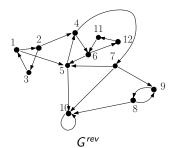


DFS-tree

1 | 2 | 3

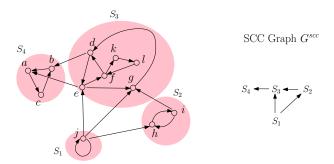
Scan $\cal A$ backwards from 1 and find no other white vertices. The algorithm finishes.





Next, we will unveil a mathematical structure of the SCC problem that suggests a generic algorithmic paradigm.

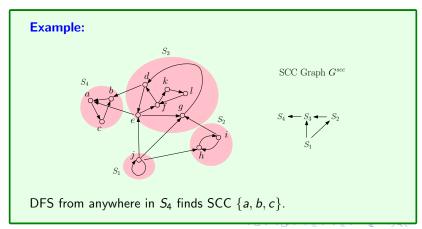
Sink SCC



An SCC is a **sink SCC** if it has no outgoing edge in G^{scc} .

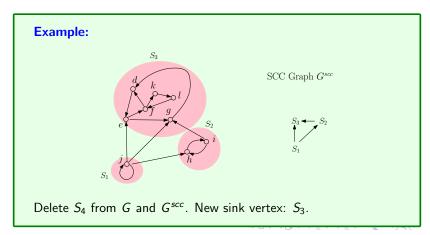
 S_4 is the only sink SCC in the above example.

- 1. **while** G^{scc} not empty **do**
- 2. $S \leftarrow a sink SCC$
- 3. run DFS from any vertex in S
- remove all the vertices in S from G; delete vertex S from G^{scc}



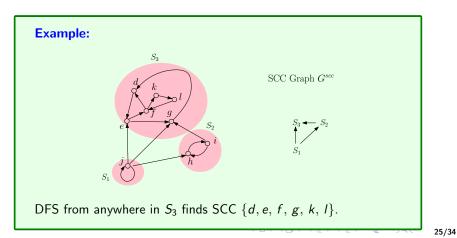
Further Insights into SCCs

- 1. **while** G^{scc} not empty **do**
- 2. $S \leftarrow a \operatorname{sink} SCC$
- 3. run DFS from any vertex in S
- remove all the vertices in S from G; delete vertex S from G^{scc}



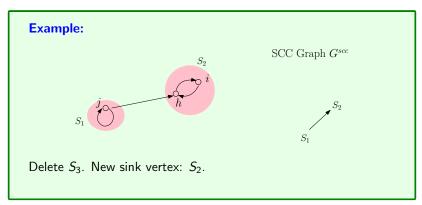
Ru Wang Further Insights into SCCs

- 1. **while** G^{scc} not empty **do**
- 2. $S \leftarrow a sink SCC$
- 3. run DFS from any vertex in S
- 4. remove all the vertices in *S* from *G*; delete vertex *S* from *G*^{scc}

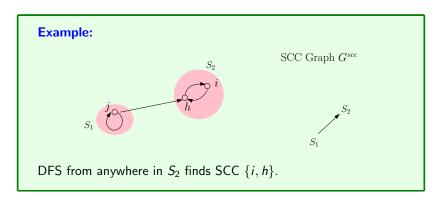


Ru Wang Further Insights into SCCs

- 1. **while** G^{scc} not empty **do**
- 2. $S \leftarrow a \text{ sink SCC}$
- 3. run DFS from any vertex in *S*
- 4. remove all the vertices in *S* from *G*; delete vertex *S* from *G*^{scc}



- 1. **while** G^{scc} not empty **do**
- 2. $S \leftarrow a \text{ sink SCC}$
- 3. run DFS from any vertex in S
- remove all the vertices in S from G;
 delete vertex S from G^{scc}



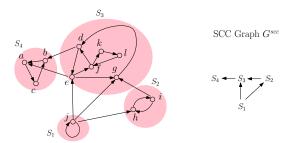
- 1. **while** G^{scc} not empty **do**
- 2. $S \leftarrow a \operatorname{sink} SCC$
- 3. run DFS from any vertex in S
- remove all the vertices in S from G; delete vertex S from G^{scc}

- 1. while G^{scc} not empty do
- 2. $S \leftarrow a sink SCC$
- 3. run DFS from any vertex in S
- 4. remove all the vertices in S from G; delete vertex S from G^{scc}

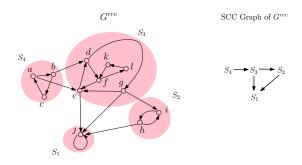
Question:

Why does our SCC algorithm work on the **reverse** graph, as opposed to the **original** one?

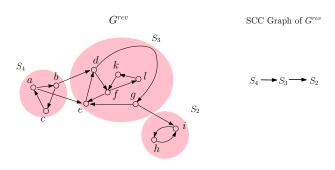
Answer: Non-trivial to find the next sink SCC.



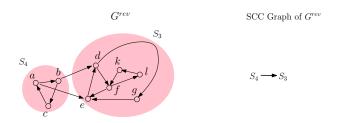
Not easy: You need to find a vertex in S_4 first, then a vertex in S_3 , then one in S_2 , and finally in S_1 .



Sink SCC = S_1 . DFS from j finds SCC $\{j\}$



Sink SCC = S_2 . DFS from anywhere in S_2 finds SCC $\{h, i\}$



Sink SCC = S_3 . DFS from anywhere in S_3 finds SCC $\{d, e, f, g, k, l\}$.

$$G^{rev}$$
 SCC Graph of G^{rev} S_4 S_4

Sink SCC = S_4 . The last DFS finds SCC $\{a, b, c\}$.

This is exactly how our SCC algorithm finds the SCCs.