Dynamic Programming: Finding Recursive Structures

Hao WU

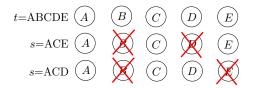
Department of Computer Science and Engineering Chinese University of Hong Kong

Dynamic Programming:Finding Recursive Structures

1/19

< ロ > < 同 > < 回 > < 回 >

A string s is a subsequence of another string t if either s = t or we can convert t to s by deleting characters.



2/19

- **A B b A**

A 10

The Longest Common Subsequence Problem

Given two strings x and y, find a common subsequence z of x and y with the maximum length.

• *z* is a **longest common subsequence** (LCS) of *x* and *y*.

Remark: If $x = \emptyset$ (empty string) or $y = \emptyset$, their (only) LCS is \emptyset .

Dynamic Programming:Finding Recursive Structures

3/19

・ロト ・ 一 マ ・ コ ト ・ 日 ト

The key to solving the problem is to identify its underlying **recursive structure**.

Specifically, how the original problem is related to subproblems.

4/19

イロト イボト イヨト イヨト

n = the length of x; m = the length of y

Theorem (LCS Theorm): Let z be any LCS of x and y, and k the length of z. Then:
If x[n] = y[m] then z[k] = x[n] (hence, also = y[m]) and z[1 : k - 1] is an LCS of x[1 : n - 1] and y[1 : m - 1].
If x[n] ≠ y[m], then at least one of the following holds:

z is an LCS of x[1 : n - 1] and y
z is an LCS of x and y[1 : m - 1].

Next, we will prove the theorem.

5/19

周 ト イ ヨ ト イ ヨ ト

Lemma 1: If $z[k] \neq x[n]$, then z is a subsequence of x[1: n-1].

Proof: As z is a subsequence of x, we can convert x to z by deleting characters repeatedly. The conversion must have deleted x[n]; otherwise, x[n] must be the last character of z, which contradicts $z[k] \neq x[n]$.

It thus follows that we can obtain z by repeatedly deleting characters from x[1:n-1] and, hence, z is a subsequence of x[1:n-1].

6/19

伺 ト イ ヨ ト イ ヨ ト

Proof of Statement 1 (in the LCS Theorem):

Claim: If x[n] = y[m], then z[k] = x[n].

Assume that x[n] = y[m] but $z[k] \neq x[n]$. By Lemma 1, z is a common subsequence of x[1:n-1] and y[1:m-1]. Now, we can obtain a common subsequence $z' = z \circ x[n]$ of x and y. However, z' will be a length-(k + 1) common subsequence of x and y, contradicting the fact that z is an LCS of x and y.

Remark: \circ means string concatenation. For example, ABC \circ DEF = ABCDEF.

Dynamic Programming:Finding Recursive Structures

7/19

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of Statement 1:

Claim: If x[n] = y[m], then z[1: k - 1] is an LCS of x[1: n - 1] and y[1: m - 1].

Assume that z[1: k-1] is not an LCS of x[1: n-1] and y[1: m-1]. Thus, x[1: n-1] and y[1: m-1] have an LCS z' with length at least k.

However, $z' \circ x[n]$ will be a length-(k + 1) common subsequence of x and y, contradicting the fact that z is an LCS of x and y.

8/19

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of Statement 2:

Because $x[n] \neq y[m]$, at least one of the following is false:

- z[k] = x[n]
- z[k] = y[m].

Consider first $z[k] \neq x[n]$.

We argue that z must be an LCS of x[1:n-1] and y.

- By Lemma 1, z is a subsequence of x[1 : n − 1]. Since z is also a subsequence of y, z is a common subsequence of x[1 : n − 1] and y.
- Suppose that z is not an LCS of x[1: n-1] and y. Thus, x[1: n-1] and y have an LCS z' of length at least k+1. This means that x and y have a common subsequence of length k+1, contradicting the fact that z is an LCS of x and y.

A symmetric argument proves the statement when $z[k] \neq y[m]$.

э.

9/19

イロト イポト イラト イラト

Matrix-Chain Multiplication

You are given an algorithm \mathcal{A} that, given an $a \times b$ matrix \mathbf{A} and a $b \times c$ matrix \mathbf{B} , can calculate \mathbf{AB} in O(abc) time. You need to use \mathcal{A} to calculate the product of $\mathbf{A}_1\mathbf{A}_2...\mathbf{A}_n$ where \mathbf{A}_i is an $a_i \times b_i$ matrix for $i \in [1, n]$. This implies that $b_{i-1} = a_i$ for $i \in [2, n]$, and the final result is an $a_1 \times b_n$ matrix.

A trivial strategy is to apply A to evaluate the product from left to right. However, we may be able to reduce the cost by following a different multiplication order.

10/19

Example

Consider $A_1A_2A_3$ where A_1 and A_2 are $m \times m$ matrices, but A_3 is $m \times 1$.

There are two multiplication orders:

- $(A_1A_2)A_3$. The cost of computing $B = A_1A_2$ is $O(m \cdot m \cdot m) = O(m^3)$ and B is an $m \times m$ matrix. The cost of BA_3 is $O(m \cdot m \cdot 1) = O(m^2)$. The total cost is $O(m^3)$.
- $A_1(A_2A_3)$. The cost of computing $B = A_2A_3$ is $O(m \cdot m \cdot 1) = O(m^2)$ and B is an $m \times 1$ matrix. The cost of A_1B is $O(m \cdot m \cdot 1) = O(m^2)$. The total cost is $O(m^2)$.

Dynamic Programming:Finding Recursive Structures

11/19

周 ト イ ヨ ト イ ヨ ト

Parenthesizing $A_1A_2...A_n$ at A_k for some $k \in [1, n - 1]$ converts the expression to $(A_1...A_k)(A_{k+1}...A_n)$, after which you can parenthesize each of $A_1...A_i$ and $A_{i+1}...A_n$ recursively.

A fully parenthesized product is

- either a single matrix or
- the product of two fully parenthesized products.

For example, if n = 4, then $(A_1A_2)(A_3A_4)$ and $((A_1A_2)A_3)A_4$ are fully parenthesized, but $A_1(A_2A_3A_4)$ is not.

A fully parenthesized product determines a multiplication order that, in turn, determines the computation cost.

Goal: Design an algorithm to find in $O(n^3)$ time a fully parenthesized product with the smallest cost.

12/19

Recursive Structure

By parenthesizing at A_k , we obtain

$$(\underbrace{\boldsymbol{A}_1...\boldsymbol{A}_k}_{\boldsymbol{B}_1})$$
 $(\underbrace{\boldsymbol{A}_{k+1}...\boldsymbol{A}_n}_{\boldsymbol{B}_2})$

where \boldsymbol{B}_1 is an $a_1 \times b_k$ matrix and \boldsymbol{B}_2 is an $a_{k+1} \times b_n$ matrix.

The total cost is

cost of computing B_1 + cost of computing B_2 + $O(a_1b_kb_n)$.

Dynamic Programming:Finding Recursive Structures

13/19

イロト イボト イヨト イヨト

We define cost(i, j), where $1 \le i \le j \le n$, to be the smallest achievable cost for calculating $A_{i}...A_{j}$. Our objective is to calculate cost(1, n).

If we parenthesize $A_i...A_j$ at A_k , we obtain

$$\underbrace{(\mathbf{A}_{i}...\mathbf{A}_{k})}_{cost(i,k)}\underbrace{(\mathbf{A}_{k+1}...\mathbf{A}_{j})}_{cost(k+1,j)}.$$

The total cost is

$$cost(i,k) + cost(k+1,j) + O(a_ib_kb_j).$$

Dynamic Programming:Finding Recursive Structures

14/19

To attain cost(i, j), we should try all possible parenthesizations of $A_i...A_j$. This implies:

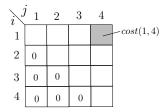
$$cost(i,j) = \begin{cases} O(1) & \text{if } i = j \\ \min_{k=i}^{j-1} (cost(i,k) + cost(k+1,j) + O(a_ib_kb_j)) & \text{if } i < j \end{cases}$$

By dyn. programming, we can compute cost(1, n) in $O(n^3)$ time.

15/19

イロト イヨト イヨト

Consider $A_1A_2A_3A_4$ where A_1 and A_2 are $m \times m$ matrices, A_3 is $m \times 1$, and A_4 is $1 \times m$.



э.

16/19

・ 同 ト ・ ヨ ト ・ ヨ ト

After solving all subproblems, we obtain:

\sum_{i}^{j}	1	2	3	4
1	O(1)	$O(m^3)$	$O(m^2)$	$O(m^2)$
2	0	O(1)	$O(m^2)$	$O(m^2)$
3	0	0	O(1)	$O(m^2)$
4	0	0	0	O(1)

Next, we apply the "piggyback technique" to generate an optimal parenthesization.

Dynamic Programming:Finding Recursive Structures

= nar

17/19

ヘロン 不得 とくほど 不良とう

Define bestSub(i, j) =

• nil, if i = j;

• k, if the best parenthesization for $\mathbf{A}_i \mathbf{A}_{i+1} \dots \mathbf{A}_j$ is $(\mathbf{A}_i \dots \mathbf{A}_k)(\mathbf{A}_{k+1} \dots \mathbf{A}_j)$.

\sum_{i}^{j}	1	2	3	4
1	O(1)	$O(m^3)$	$O(m^2)$	$O(m^2)$
2	0	O(1)	$O(m^2)$	$O(m^2)$
3	0	0	O(1)	$O(m^2)$
4	0	0	0	O(1)

After cost(i,j) is ready for all i, j, we can compute all bestSub(i,j) in $O(n^3)$ time.

Dynamic Programming:Finding Recursive Structures

- E

18/19

イロト イヨト イヨト

\sum_{i}^{j}	1	2	3	4
1	O(1)	$O(m^3)$	$O(m^2)$	$O(m^2)$
2	0	O(1)	$O(m^2)$	$O(m^2)$
3	0	0	O(1)	$O(m^2)$
4	0	0	0	O(1)

Example:

bestSub(1,4)=3, i.e., the best way to calculate $\pmb{A}_1 \pmb{A}_2 \pmb{A}_3 \pmb{A}_4$ is $(\pmb{A}_1 \pmb{A}_2 \pmb{A}_3) \pmb{A}_4.$

Similarly, bestSub(1,3) = 1, i.e., the best way to calculate $A_1A_2A_3$ is $A_1(A_2A_3)$.

Therefore, an optimal fully parenthesized product of $A_1A_2A_3A_4$ is $(A_1(A_2A_3))A_4$.

19/19