Zhihan Jiang

CSE, CUHK

1

Outline

• Kruskal's algorithm for solving the MST problem.

• Correctness proof.

Review: the MST Problem

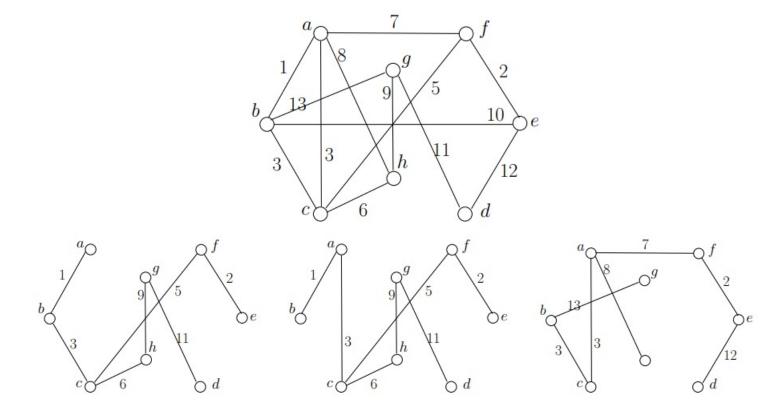
Let G = (V, E) be a connected undirected graph. Let w be a function that maps each edge e of G to a positive integer w(e) called the weight of e.

A spanning tree *T* is a tree satisfying the following conditions:

- The vertex set of *T* is *V*.
- Every edge of T is an edge in G.

The cost of T is the sum of the weights of all the edges in T.

The goal of the minimum spanning tree (MST) problem is to find a spanning tree of the smallest cost.



Cost 37

Cost 37

Cost 48

The algorithm maintains a forest F where each vertex belongs to exactly one tree in F.

Define t as the number of trees in the current F.

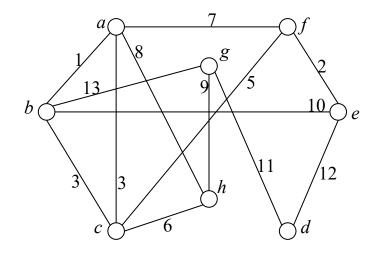
At the beginning, t = |V|: *F* has |V| trees each containing a single vertex. At the end, t = 1: *F* becomes our final MST.

Cross edge: An edge $\{u, v\}$ where u and v belong to different trees in F.

Greedy: The algorithm works by repeatedly taking the lightest cross edge.

At the beginning, |V| = 8 trees: each tree has only one vertex.

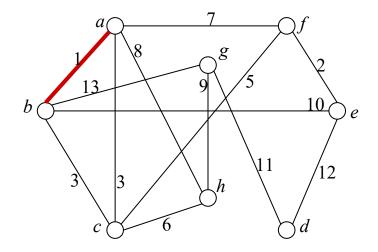
Every edge is a cross edge at the moment. Edge $\{a, b\}$ is the lightest cross edge.



Trees	Vertices
T_1	а
<i>T</i> ₂	b
<i>T</i> ₃	С
T_4	d
T_5	е
T_6	f
T_7	g
T_8	h

We pick $\{a, b\}$, marked red in the figure, and merge the trees of a and b.

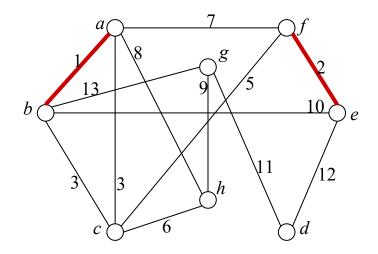
Cross edges are shown in black. $\{e, f\}$ is the lightest cross edge.



Trees	Vertices
T_1	a, b
$\frac{T_{\pm}}{T_{\pm}}$	þ
T_3	С
T_4	d
T_5	е
T_6	f
<i>T</i> ₇	g
T_8	h

We pick $\{e, f\}$, merging the trees of e and f into one.

Cross edges are shown in black solid segments. $\{a, c\}$ and $\{b, c\}$ are both the lightest cross edges.

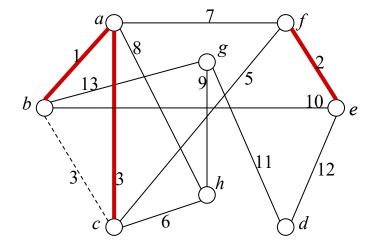


Trees	Vertices
T_1	a, b
$\frac{T_{\pm}}{T_{\pm}}$	þ
T_3	С
T_4	d
T_5	e, f
$\frac{T_{a}}{T_{a}}$	ŧ
T_7	g
T_8	h

We pick $\{a, c\}$ (you could also pick $\{b, c\}$), merging the trees of a and c into one.

Cross edges are shown in black solid segments. \Box {*b*, *c*} is no longer a cross edge.

 $\{c, f\}$ is the lightest cross edge.

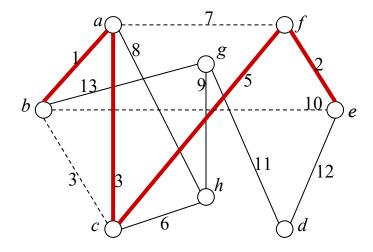


Trees	Vertices
T_1	a, b, c
$\frac{T_{\pm}}{T_{\pm}}$	þ
$\frac{T_{\pm}}{T_{\pm}}$	e
T_4	d
T_5	e, f
$\frac{T_{\pm}}{2}$	ŧ
T_7	g
T_8	h

We pick $\{c, f\}$, merging the trees of c and f into one.

Cross edges are shown in black solid segments. \Box {*a*, *f*}, {*b*, *e*} are no longer cross edges.

 $\{c, h\}$ is the lightest cross edge.



Trees	Vertices
T_1	a, b, c, e, f
$\frac{T_{\pm}}{T_{\pm}}$	þ
Ŧz	e
T_4	d
T _E	e, f
$T_{\overline{\Delta}}$	ŧ
T_7	g
T_8	h

We pick $\{c, h\}$, merging the trees of c and h into one.

Cross edges are shown in black solid segments. \Box {*a*, *h*} is no longer a cross edge.

 $\{g, h\}$ is the lightest cross edge.

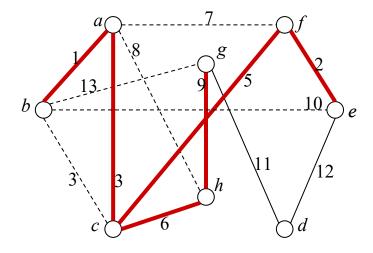


Trees	Vertices
T_1	a, b, c, e, f, h
$\frac{T_{\pm}}{T_{\pm}}$	þ
Ŧ±	e
T_4	d
T _E	e, f
$T_{\overline{\Delta}}$	ŧ
T_7	g
$\frac{T_{\Xi}}{2}$	ŧ

We pick $\{g, h\}$, merging the trees of g and h into one.

Cross edges are shown in black solid segments. □ {*b*, *g*} is no longer a cross edge.

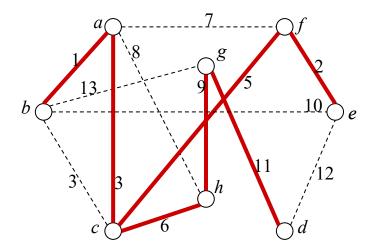
 $\{d, g\}$ is the lightest cross edge.



Trees	Vertices
T_1	a, b, c, e, f, g, h
$\frac{T_{\pm}}{T_{\pm}}$	þ
$\frac{T_{\pm}}{T_{\pm}}$	e
T_4	d
T _E	e, f
$\frac{T_{\pm}}{2}$	ŧ
T_{\pm}	9
$\frac{T_{\Xi}}{T_{\Xi}}$	ħ

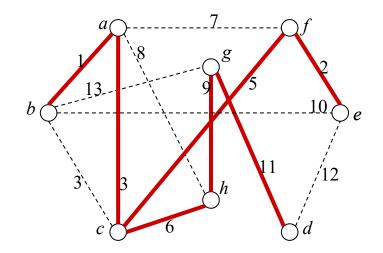
We pick $\{d, g\}$, merging the trees of d and g into one.

Cross edges are shown in black solid segments. □ {*d*, *e*} is no longer a cross edge.



Trees	Vertices
T_1	a, b, c, d, e, f, g, h
$\frac{T_{\pm}}{T_{\pm}}$	þ
$\frac{T_{\pm}}{T_{\pm}}$	e
$\frac{T_{\pm}}{T_{\pm}}$	ŧ
T _E	e, f
$\frac{T_{\pm}}{2}$	ŧ
T_{\pm}	9
$\frac{T_{\Xi}}{T_{\Xi}}$	ħ

Now, there is only one tree T_1 in forest F, which is our final MST.



Trees	Vertices
T_1	a, b, c, d, e, f, g, h
T	þ
$\frac{T_{\pm}}{T_{\pm}}$	e
T_{\pm}	e
$\frac{T_{\Xi}}{T_{\Xi}}$	e, f
T _E	ŧ
$\frac{T_{\pm}}{2}$	9
$\frac{T_{\Xi}}{2}$	ħ

Next, we will prove that Kruskal's algorithm returns an MST.

Let e_i $(i \in [1, |V| - 1])$ be the *i*-th edge picked, that is, the algorithm picks edges in this order: $e_1, e_2, \dots, e_{|V|-1}$.

Claim: For any $k \in [1, |V| - 1]$, there is an MST containing e_1, e_2, \dots, e_k .

We will prove the claim by induction.

Base Case: k = 1. We have proved this in class.

Claim: For any $k \in [1, |V| - 1]$, there is an MST containing e_1, e_2, \dots, e_k .

Inductive Case: Assuming the claim's correctness for k = i - 1 ($i \ge 2$), we will prove it for k = i.

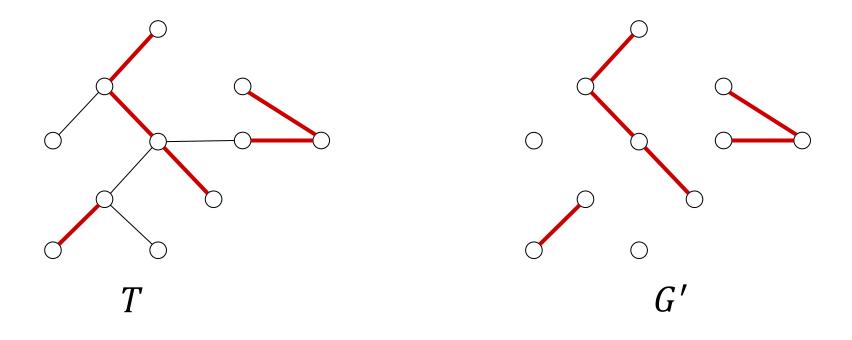
By the inductive assumption, there is an MST *T* that includes e_1, \ldots, e_{i-1} .

If *T* includes e_i , the claim already holds and we are done. Next, we will focus on the case where *T* does not include e_i .

By the inductive assumption, there is an MST *T* that includes e_1, \ldots, e_{i-1} .

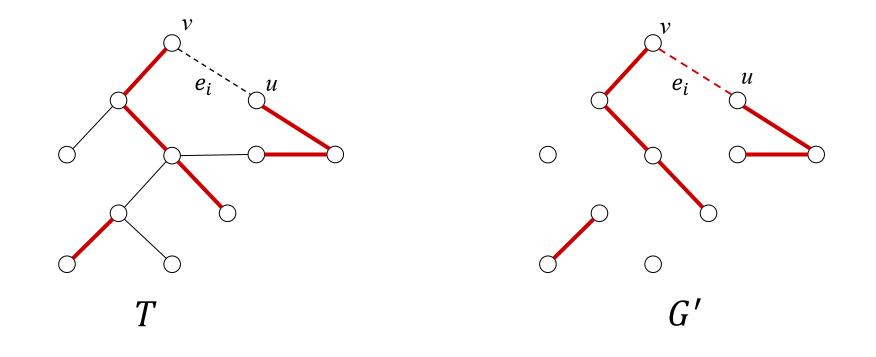
Consider the graph $G' = (V, \{e_1, \dots, e_{i-1}\})$; this is the forest maintained by the algorithm after picking e_{i-1} .

Here is an example of *T* and *G*' where i = 7, and e_1, \dots, e_{i-1} are shown in red.



By how the algorithm runs, the edge $e_i = \{u, v\}$ must be a cross edge in G', i.e., u and v are in different trees.

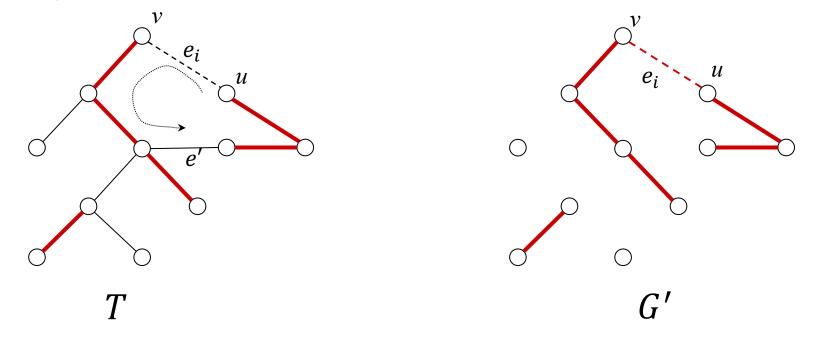
Since T does not include e_i , adding e_i to T creates a cycle.



Walk on this cycle in the following manner:

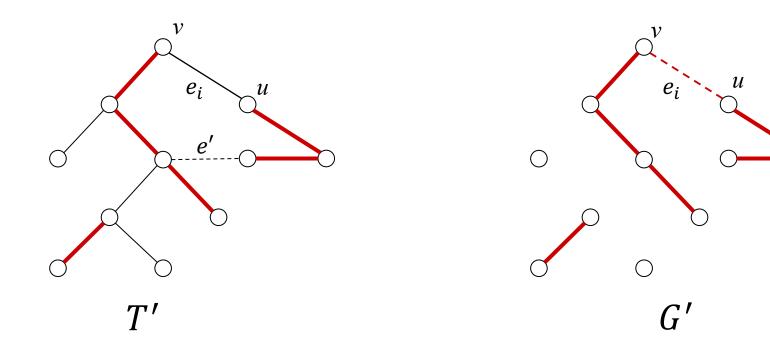
- start from u;
- cross e_i to reach v and continue in this direction;
- stop right after having crossed an edge e' that takes us back to the tree of u.

Both e_i and e' are cross edges before the algorithm picks the *i*-th edge. Hence e_i cannot be heavier than e'.



Remove e' from T and add e_i . This yields another MST T', which contains e_1, \ldots, e_i .

We thus have proved the claim for k = i.



Kruskal's algorithm can be implemented in $O(|E| \cdot \log |E|)$ time.

□ This is not trivial

(but you have learned all the data structures required in the implementation).