Approximation Algorithms 4: k-Center

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Set Cover

1/15

(日)

Given 2D points p and q, we use dist(p,q) to represent their Euclidean distance.

(日)

э

P = a set of *n* points in 2D space.

Given a point $p \in P$, define its distance to a subset $C \subseteq P$ as

$$dist_C(p) = \min_{c \in C} dist(p, c).$$

The **penality** of *C* is

$$pen(C) = \max_{p \in P} dist_C(p).$$

The *k*-**Center Problem:** Find a subset $C \subseteq P$ with size |C| = k that has the smallest penalty.

→ Ξ →

(日)

3

The problem is NP-hard.

Yufei Tao

- No one has found an algorithm solving the problem in time polynomial in *n* and *k*.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

イロト イボト イヨト イヨト

э

A = an algorithm that, given any legal input P, returns a subset of P with size k.

Denote by OPT_P the smallest penalty of all subsets $C \subseteq P$ satisfying |C| = k.

 \mathcal{A} is a ρ -approximate algorithm for the *k*-center problem if, for any legal input *P*, \mathcal{A} can return a set *C* with penalty at most $\rho \cdot OPT_P$.

The value ρ is the **approximation ratio**.

Yufei Tao

We say that A achieves an approximation ratio of ρ .

- 4 戸 ト 4 三 ト 4

Consider the following algorithm:

Input: P

1. $C \leftarrow \emptyset$ 2. add to C an arbitrary point in P 3. for i = 2 to k do 4. $p \leftarrow a$ point in P with the maximum $dist_C(p)$ 5. add p to C 6. return C

The algorithm can be easily implemented in O(nk) time. Later, we will prove that the algorithm is 2-approximate.

7/15

▲□► ▲ □► ▲

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

<ロ> <部> < き> < き> <</p>

Theorem: The algorithm returns a set *C* with $pen(C) \leq 2 \cdot OPT_P$.

э

イロト イヨト イヨト

Proof: Let $C^* = \{c_1^*, c_2^*, ..., c_k^*\}$ be an optimal solution, i.e., $pen(C^*) = OPT_P$.

For each $i \in [1, k]$, define P_i^* as the set of points $p \in P$ satisfying

 $dist(p, c_i^*) \leq dist(p, c_i^*)$

for any $j \neq i$.

Observation: For any point $p \in P_i^*$, $dist(p, c_i^*) = dist_{C^*}(p) \le pen(C^*)$.

Let $C_{ours} = \{c_1, c_2, ..., c_k\}$ be the output of our algorithm, where c_i $(i \in [1, k])$ is the *i*-th point added to C_{ours} .

Tao Set Cover
Tao Set Cover

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Case 1: C_{ours} has a point in each of $P_1^*, P_2^*, ..., P_k^*$.

Consider any point $p \in P$. Suppose that $o \in P_i^*$ for some $i \in [1, k]$. Let *c* be a point in $C \cap P_i^*$. It holds that:

$$egin{aligned} dist_{\mathcal{C}_{ours}}(p) &\leq dist(c,p) \ &\leq dist(c,c^*) + dist(c^*,p) \ &\leq 2 \cdot pen(\mathcal{C}^*). \end{aligned}$$

Therefore:

$$pen(C_{ours}) = \max_{p \in P} dist_{C_{ours}}(p) \le 2 \cdot pen(C^*).$$

<ロト < 同ト < 三ト < 三ト

Case 2: C_{ours} has no point in at least one of $P_1^*, ..., P_k^*$. Hence, one of $P_1^*, ..., P_k^*$ must cover at least two points — say c_1 and c_2 — of C_{ours} . It thus follows that

$$dist(c_1, c_2) \leq dist(c_1, c_i^*) + dist(c_2, c_i^*) \leq 2 \cdot pen(C^*).$$

Next, we prove:

Lemma: For any point $p \in P$, $dist_{C_{ours}}(p) \leq dist(c_1, c_2)$.

The claim implies $pen(C_{ours}) \leq 2 \cdot pen(C^*)$.

< 回 > < 回 > <

Proof of the Lemma:

W.l.o.g., assume that c_2 was picked after c_1 by our algorithm. Consider the moment right before c_2 was picked. At that moment, the set *C* maintained by our algorithm was a proper subset of C_{ours} .

From the fact that c_2 was the next point picked, we know $dist_C(p) \leq dist_C(c_2)$.

Because $c_1 \in C$, it holds that $dist_C(c_2) \leq dist(c_1, c_2)$.

The lemma then follows because

$$dist_{C_{ours}}(p) \leq dist_C(p) \leq dist_C(c_2) \leq dist(c_1, c_2).$$