
1/15

Approximation Algorithms 4: k-Center

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Yufei Tao Set Cover

2/15

Given 2D points p and q, we use dist(p, q) to represent their Euclidean
distance.

p

q

dist(p, q)

Yufei Tao Set Cover

3/15

P = a set of n points in 2D space.

Given a point p ∈ P, define its distance to a subset C ⊆ P as

distC (p) = min
c∈C

dist(p, c).

The penality of C is

pen(C) = max
p∈P

distC (p).

The k-Center Problem: Find a subset C ⊆ P with size |C | = k
that has the smallest penalty.

Yufei Tao Set Cover

4/15

Example:
P = the set of black points
k = 3
C = {c1, c2, c3}

c1
c2

c3

p1

distC(p1)

p2

pen(C)

Yufei Tao Set Cover

5/15

The problem is NP-hard.

No one has found an algorithm solving the problem in time
polynomial in n and k .

Such algorithms cannot exist if P ̸= NP.

Yufei Tao Set Cover

6/15

A = an algorithm that, given any legal input P, returns a subset of P
with size k .

Denote by OPTP the smallest penalty of all subsets C ⊆ P satisfying
|C | = k.

A is a ρ-approximate algorithm for the k-center problem if, for
any legal input P, A can return a set C with penalty at most
ρ · OPTP .

The value ρ is the approximation ratio.

We say that A achieves an approximation ratio of ρ.

Yufei Tao Set Cover

7/15

Consider the following algorithm:

Input: P

1. C ← ∅
2. add to C an arbitrary point in P
3. for i = 2 to k do
4. p ← a point in P with the maximum distC (p)
5. add p to C
6. return C

The algorithm can be easily implemented in O(nk) time.

Later, we will prove that the algorithm is 2-approximate.

Yufei Tao Set Cover

8/15

Example: k = 3

c1

Initially, C = {c1}

Yufei Tao Set Cover

9/15

Example: k = 3

c1
c2

After a round, C = {c1, c2}

Yufei Tao Set Cover

10/15

Example: k = 3

c1
c2

c3

After another round, C = {c1, c2, c3}

Yufei Tao Set Cover

11/15

Theorem: The algorithm returns a set C with pen(C) ≤ 2·OPTP .

Yufei Tao Set Cover

12/15

Proof: Let C∗ = {c∗1 , c∗2 , ..., c∗k } be an optimal solution, i.e.,
pen(C∗) = OPTP .

For each i ∈ [1, k], define P∗
i as the set of points p ∈ P satisfying

dist(p, c∗i) ≤ dist(p, c∗j)

for any j ̸= i .

Observation:
For any point p ∈ P∗

i , dist(p, c
∗
i) = distC∗(p) ≤ pen(C∗).

Let Cours = {c1, c2, ..., ck} be the output of our algorithm, where ci
(i ∈ [1, k]) is the i-th point added to Cours .

Yufei Tao Set Cover

13/15

Case 1: Cours has a point in each of P∗
1 ,P

∗
2 , ...,P

∗
k .

Consider any point p ∈ P. Suppose that o ∈ P∗
i for some i ∈ [1, k].

Let c be a point in C ∩ P∗
i . It holds that:

distCours (p) ≤ dist(c , p)

≤ dist(c , c∗) + dist(c∗, p)

≤ 2 · pen(C∗).

Therefore:

pen(Cours) = max
p∈P

distCours (p) ≤ 2 · pen(C∗).

Yufei Tao Set Cover

14/15

Case 2: Cours has no point in at least one of P∗
1 , ...,P

∗
k . Hence, one of

P∗
1 , ...,P

∗
k must cover at least two points — say c1 and c2 — of Cours . It

thus follows that

dist(c1, c2) ≤ dist(c1, c
∗
i) + dist(c2, c

∗
i) ≤ 2 · pen(C∗).

Next, we prove:

Lemma: For any point p ∈ P, distCours (p) ≤ dist(c1, c2).

The claim implies pen(Cours) ≤ 2 · pen(C∗).

Yufei Tao Set Cover

15/15

Proof of the Lemma:

W.l.o.g., assume that c2 was picked after c1 by our algorithm. Consider
the moment right before c2 was picked. At that moment, the set C
maintained by our algorithm was a proper subset of Cours .

From the fact that c2 was the next point picked, we know
distC (p) ≤ distC (c2).

Because c1 ∈ C , it holds that distC (c2) ≤ dist(c1, c2).

The lemma then follows because

distCours (p) ≤ distC (p) ≤ distC (c2) ≤ dist(c1, c2).

Yufei Tao Set Cover

