Approximation Algorithms 3: Set Cover and Hitting Set

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Set Cover and Hitting Set

1/21

A (1) < A (1) </p>

Set Cover

Let U be a finite set called the **universe**.

We are given a family 8 where

- each member of S is a set $S \subseteq U$;
- $\bigcup_{S\in\mathbb{S}}S=U.$

A sub-family $\mathcal{C} \subseteq S$ is a **universe cover** if every element of U appears in at least one set in \mathcal{C} .

• Define the **cost** of \mathcal{C} as $|\mathcal{C}|$.

Yufei Tao

The set cover problem: Find a universe cover with the smallest cost.

Example: $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $S = \{S_1, S_2, ..., S_5\}$ where $S_1 = \{1, 2, 3, 4\}$ $S_2 = \{2, 5, 7\}$ $S_3 = \{6, 7\}$ $S_4 = \{1, 8\}$ $S_5 = \{1, 2, 3, 8\}.$ An optimal solution is $C = \{S_1, S_2, S_3, S_4\}.$

≡ nar

3/21

くロ と く 同 と く ヨ と 一

The input size of the set cover problem is $n = \sum_{S \in S} |S|$.

The problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in *n*.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

4/21

イロト イボト イヨト イヨト

 \mathcal{A} = an algorithm that, given any legal input S with universe U, returns a universe cover C.

Denote by OPT_8 the smallest cost of all universe covers when the input family is S.

 \mathcal{A} is a ρ -approximate algorithm for the set cover problem if, for any legal input \mathcal{S} , \mathcal{A} can return a universe cover with cost at most $\rho \cdot OPT_{\mathcal{S}}$.

The value ρ is the **approximation ratio**. We say that A achieves an approximation ratio of ρ .

5/21

Consider the following algorithm.

Input: A family S

1. $\mathcal{C} = \emptyset$

- 2. while U still has elements not covered by any set in $\mathcal C$
- 3. $F \leftarrow$ the set of elements in U not covered by any set in \mathcal{C} /* for each set $S \in S$, define its **benefit** to be $|S \cap F|$ */
- 4. add to \mathcal{C} a set in \mathcal{S} with the largest benefit

5. return \mathcal{C}

It is easy to show:

- The C returned is a universe cover;
- The algorithm runs in time polynomial to *n*.

We will prove later that the algorithm is $(1 + \ln |U|)$ -approximate.

6/21

< ロ > < 同 > < 回 > < 回 >

Example: $S_1 = \{1, 2, 3, 4\}$, $S_2 = \{2, 5, 7\}$, $S_3 = \{6, 7\}$, $S_4 = \{1, 8\}$, $S_5 = \{1, 2, 3, 8\}$

- In the beginning, $C = \emptyset$ and $F = \{1, 2, 3, 4, 5, 6, 7, 8\}$.
- Next, we can add S₁ or S₅ to C (benefit 4). The choice is arbitrary; suppose we add S₁. Now, F = {5,6,7,8}.
- Next, we can add S₂ or S₃ (benefit 2). The choice is arbitrary; suppose we add S₂. Now, F = {6,8}.
- Next, we can add S₃, S₄, or S₅ (benefit 1). The choice is arbitrary; suppose we add S₃. Now, F = {8}.
- Next, we cab add S₄ or S₅ (benefit 1). The choice is arbitrary; suppose we add S₄. Now, F = Ø.

The algorithm terminates with $C = \{S_1, S_2, S_3, S_4\}$.

イロト イポト イラト イラト

Theorem 1: The algorithm returns a universe cover with cost at most $1 + (\ln |U|) \cdot OPT_{\mathcal{S}} \leq (1 + \ln |U|) \cdot OPT_{\mathcal{S}}$.

э

8/21

イロト イボト イヨト イヨト

C = the universe cover returned. t = |C|.

Denote the sets in C as $S_1, S_2, ..., S_t$, picked in the order shown.

For each $i \in [1, t]$, define z_i as the size of F after S_i is picked. Specially, define $z_0 = |U|$.

 $z_t = 0$ and $z_{t-1} \ge 1$. Think: why?

Denote by \mathcal{C}^* an optimal universe cover, namely, $OPT_{\mathcal{S}} = |\mathcal{C}^*|$.

Set Cover and Hitting Set

-

9/21

イロト イポト イラト イラト

We will prove later:

Lemma 1: For $i \in [1, t]$, it holds that

$$z_i \leq z_{i-1} \cdot \left(1 - \frac{1}{OPT_S}\right)$$

э

10/21

From Lemma 1, we get:

$$\begin{array}{lcl} z_{t-1} & \leq & z_{t-2} \cdot \left(1 - \frac{1}{OPT_{\mathcal{S}}}\right) \\ & \leq & z_{t-3} \cdot \left(1 - \frac{1}{OPT_{\mathcal{S}}}\right)^2 \\ & \cdots \\ & \leq & z_0 \cdot \left(1 - \frac{1}{OPT_{\mathcal{S}}}\right)^{t-1} = |U| \cdot \left(1 - \frac{1}{OPT_{\mathcal{S}}}\right)^{t-1} \\ & \leq & |U| \cdot e^{-\frac{t-1}{OPT_{\mathcal{S}}}} \end{array}$$

where the last inequality used the fact $1 + x \le e^x$ for any real value x.

As $z_{t-1} \geq 1$, we have

$$1 \le |U| \cdot e^{-\frac{t-1}{OPT_{\mathcal{S}}}} \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

11/21

which resolves to $t \leq 1 + (\ln |U|) \cdot OPT_{S}$. This proves Theorem 1.

Yufei Tao	Set Cover and Hitting Set
-----------	---------------------------

Proof of Lemma 1

Before z_i is chosen, F has z_{i-1} elements.

At this moment, at least one set in \mathbb{C}^* has a benefit at least $\frac{z_{i-1}}{|\mathbb{C}^*|} = \frac{z_{i-1}}{OPT_s}$ (every element of F must appear in some set in \mathbb{C}^*).

Hence, S_i must have a benefit at least $\frac{z_{i-1}}{OPT_s}$ (greedy). Therefore:

$$z_{i} = |F \setminus S_{i}| = |F| - |F \cap S_{i}|$$

$$\leq z_{i-1} - \frac{z_{i-1}}{OPT_{S}}$$

$$= z_{i-1} \left(1 - \frac{1}{OPT_{S}}\right)$$

Yufei Tao

Set Cover and Hitting Set

Next, we will introduce a closely related problem called the **hitting set problem**.

13/21

< □ > < 同 > < 三 >

Let U be a finite set called the **universe**.

We are given a family \$ where

• each member of S is a set $S \subseteq U$;

•
$$\bigcup_{S\in\mathbb{S}}S=U.$$

A subset $H \subseteq U$ hits a set $S \in S$ if $H \cap S \neq \emptyset$. A subset $H \subseteq U$ is a hitting set if it hits all the sets in S.

The hitting set problem: Find a hitting set *H* of the minimize size.

Example: $U = \{1, 2, 3, 4, 5\}$ and $S = \{S_1, S_2, ..., S_8\}$ where $S_1 = \{1, 4, 5\}$ $S_2 = \{1, 2, 5\}$ $S_3 = \{1, 5\}$ $S_4 = \{1\}$ $S_5 = \{2\}$ $S_6 = \{3\}$ $S_7 = \{2,3\}$ $S_8 = \{4, 5\}$ An optimal solution is $H = \{1, 2, 3, 4\}$.

15/21

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

The input size of the set cover problem is $n = \sum_{S \in S} |S|$.

The problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in *n*.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

16/21

化口下 化同下 化原下 化原下

 \mathcal{A} = an algorithm that, given any legal input S with universe U, returns a hitting set.

Denote by OPT_{S} the smallest size of all hitting sets.

 \mathcal{A} is a ρ -approximate algorithm for the hitting set problem if, for any legal input \mathcal{S} , \mathcal{A} can return a hitting set with size at most $\rho \cdot OPT_{\mathcal{S}}$.

The value ρ is the **approximation ratio**. We say that A achieves an approximation ratio of ρ .

Set Cover and Hitting Set

We can convert the hitting set problem to set cover.

Let (U_{hs}, S_{hs}) be the input to the hitting set problem. W.l.o.g., assume that $S_{hs} = \{S_1, S_2, ..., S_t\}$.

We create an instance of the set cover problem as follows:

- $U_{sc} = \{1, 2, ..., t\}.$
- For each element $e \in U_{hs}$, define $OriginS_e = \{i \mid 1 \le i \le t \text{ and } e \in S_i\}.$
- Then, create $S_{sc} = \{ OriginS_e \mid e \in U_{hs} \}.$

18/21

化口下 化同下 化原下 化原下

Theorem 2: (U_{hs}, S_{hs}) has a hitting set of size *s* if and only if (U_{sc}, S_{sc}) has a universe cover of size *s*.

We therefore have a polynomial-time algorithm solving the hitting set problem with approximation ratio $1 + \ln U_{sc} = 1 + \ln t \le 1 + \ln n$.

Next we will prove the theorem.

Proof of the \Rightarrow **Direction:** Namely, if (U_{hs}, S_{hs}) has a hitting set of size *s*, then (U_{sc}, S_{sc}) has a universe cover of size *s*.

Let H be any hitting set. Construct

$$\mathcal{C}_{H} = \{ OriginS_{e} \mid e \in H \}.$$

We argue that C_H is a universe cover for (U_{sc}, S_{sc}) .

Suppose that this is not true. Then, there is an integer $i \in [1, t]$ that does not belong to \mathcal{C}_{H} . This means that $i \notin OriginS_e$ for any $e \in H$. Hence, S_i does not contain any element in H. This contradicts H being a hitting set.

20/21

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of the \leftarrow **Direction:** Namely, if (U_{sc}, S_{sc}) has a universe cover of size *s*, then (U_{hs}, S_{hs}) has a hitting set of size *s*.

Let C be any universe cover. Construct

$$H_{\mathfrak{C}} = \{ e \mid OriginS_e \in \mathfrak{C} \}.$$

We argue that $H_{\mathbb{C}}$ is a hitting set for (U_{hs}, S_{hs}) .

Suppose that this is not true. Then, S_{hs} has an S_i — for some integer $i \in [1, t]$ — that contains no elements in $H_{\mathbb{C}}$. This means that $i \notin OriginS_e$ for any $e \in H_{\mathbb{C}}$. Because $\mathcal{C} = \{OriginS_e \mid e \in H_{\mathbb{C}}\}$, we conclude that i does not appear in any set of \mathcal{C} . This contradicts \mathcal{C} being a universe cover.