Approximation Algorithms 2: Traveling Salesman

Yufei Tao

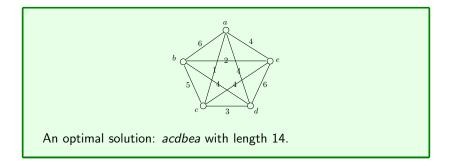
Department of Computer Science and Engineering Chinese University of Hong Kong

Approximation Algorithms 2: Traveling Salesman

1/12

G = (V, E) is a complete undirected graph. Each edge $e \in E$ carries a non-negative weight w(e). A Hamiltonian cycle of G is a cycle passing all the vertices in V. G satisfies triangle inequality: for any $x, y, z \in V$, it holds that $w(x, z) \le w(x, y) + w(y, z)$.

The traveling salesman problem: Find a Hamiltonian cycle with the shortest length.



Approximation Algorithms 2: Traveling Salesman

2/12

- 4 周 ト 4 ヨ ト 4 ヨ ト

The problem is NP-hard.

- No one has found an algorithm solving the problem in time polynomial in |V|.
- Such algorithms cannot exist if $\mathcal{P} \neq \mathcal{NP}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

3/12

 \mathcal{A} = an algorithm that, given any legal input (G, w), returns a Hamiltonian cycle of G.

Denote by $OPT_{G,w}$ the shortest length of all Hamiltonian cycles of G under the weight function w.

 \mathcal{A} is a ρ -approximate algorithm for the traveling salesman problem if, for any legal input (G, w), \mathcal{A} can return a Hamiltonian cycle with length at most $\rho \cdot OPT_{G,w}$.

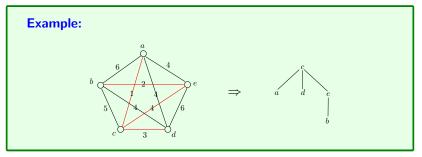
The value ρ is the **approximation ratio**. We say that A achieves an approximation ratio of ρ .

4/12

・ 同 ト ・ ヨ ト ・ ヨ ト

Next, we will describe a 2-approximate algorithm.

Step 1: Obtain an MST (minimum spanning tree) *T* of *G*.

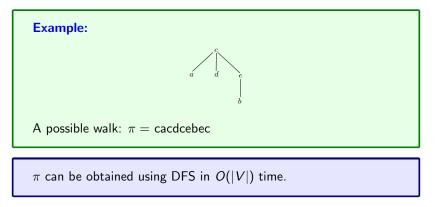


5/12

- 4 同 ト 4 ヨ ト

Step 2: Obtain a walk of T: this is a path π where

- the start and end vertices of π are the same;
- every edge of T appears on π exactly twice.



6/12

- 4 周 ト 4 ヨ ト 4 ヨ ト

Algorithm

Step 3: Construct a sequence σ of vertices as follows. First, add the first vertex of π to σ . Then, go through π ; when crossing an edge (u, v):

- If v has not been seen before, append v to σ .
- Otherwise, do nothing.

Finally, add the last vertex of π to σ .

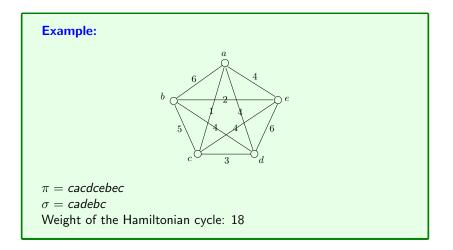
The sequence σ now gives a Hamiltonian cycle.

Return this cycle.

Approximation Algorithms 2: Traveling Salesman

7/12

周 ト イ ヨ ト イ ヨ ト



Approximation Algorithms 2: Traveling Salesman

< ロ > < 同 > < 回 > < 回 > < 回 > <

Ξ.

8/12

Theorem 1: Our algorithm returns a Hamiltonian cycle with length at most $2 \cdot OPT_{G,w}$.

Next, we will prove the theorem.

9/12

・ロト ・同ト ・ヨト ・ヨト

Let w(T) be the weight of (the MST) T:

$$w(T) = \sum_{\text{edge } e \text{ in } T} w(e)$$

Lemma 1:
$$OPT_{G,w} \ge w(T)$$
.

Proof: Given any Hamiltonian cycle, we can remove an (arbitrary) edge to obtain a spanning tree of G. The lemma follows from the fact that T is an MST.

Next, we will show that our Hamiltonian cycle σ has length at most $2 \cdot w(T)$, which will complete the proof of Theorem 1.

Approximation Algorithms 2: Traveling Salesman

10/12

Lemma 2: The walk π has length $2 \cdot w(T)$.

Proof: Every edge of T appears twice in π .

Lemma 3: The length of our Hamiltonian cycle σ is at most the length of π .

Proof: Let the vertex sequence in π be $u_1 u_2 ... u_t$ for some $t \ge 1$. Let σ be the vertex sequence $u_{i_1} u_{i_2} ... u_{i_{|V|+1}}$ where

$$i_1 = 1 < i_2 < \ldots < i_{|V|} < i_{|V|+1} = t.$$

By triangle inequality, we have for each $j \in [1, |V|]$:

$$w(u_{i_j}, u_{i_{j+1}}) \leq \sum_{k=i_j}^{i_{j+1}-1} w(u_k, u_{k+1})$$

Hence:

$$\text{length of } \sigma = \sum_{j=1}^{|V|} w(u_{i_j}, u_{i_{j+1}}) \leq \sum_{k=1}^{t-1} w(u_k, w_{k+1}) = \text{length of } \pi.$$

Approximation Algorithms 2: Traveling Salesman

12/12