Divide and Conquer

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Divide and Conquer

1/28

< □ > < 同 > < 回 >

In this lecture, we will discuss the **divide and conquer** technique for designing algorithms with strong performance guarantees. Our discussion will be based on the following problems:

- Sorting (a review of merge sort)
- Ounting inversions
- Opminance counting
- Matrix multiplication

Principle of divide and conquer:

Divide a problem into sub-problems, solve the sub-problems by recursion, and derive the final answer from the sub-problems' outputs.

3/28

(日)

Sorting

4/28

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Problem: Given an array A of n distinct integers, produce another array where the same integers have been arranged in ascending order.

- Divide: Let A₁ the array containing the first [n/2] elements of A, and A₂ be the array containing the other elements of A.
 Sort A₁ and A₂ recursively.
- **Conquer:** Merge the two sorted arrays A_1 and A_2 in ascending order. This can be done in O(n) time.

This is the merge sort algorithm.

Running Time: Let f(n) denote the worst-case cost of the algorithm on an array of size n. Then:

$$f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n)$$

which gives $f(n) = O(n \log n)$.

э

6/28

イロト イボト イヨト イヨト

Ξ.

(日)

Let: A = an array of *n* distinct integers.

An **inversion** is a pair of (i, j) such that

- $1 \le i < j \le n$, and
- A[i] > A[j].

Example: Consider A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6). Then (1, 2) is an inversion because A[1] = 10 > A[2] = 3. So are (1, 3), (3, 4), (4, 5), and so on. There are in total 29 inversions.

Think: How many inversions can there be in the worst case? **Answer:** $\binom{n}{2} = \Theta(n^2)$.

ロト イポト イラト イラト

Problem: Given an array A of n distinct integers, count the number of inversions.

We will do in the class: $O(n \log^2 n)$ time. You will do as an exercise: $O(n \log n)$ time.

9/28

Image: A = A

Divide: Let A₁ the array containing the first [n/2] elements of A, and A₂ be the array containing the other elements of A.
 Solve the "counting inversions" problem recursively on A₁ and A₂, respectively. By doing so, we have already obtained the number m₁ of inversions in A₁, and similarly, the number m₂ for A₂.

• Conquer:

It remains to count the number of **crossing inversions** (i, j) where $i \in A_1$ and $j \in A_2$.

10/28

(4月) (1日) (1日)

 A_1 = the array containing the first $\lceil n/2 \rceil$ elements of A_2 = the array containing the other elements of A.

Sort A_1 and A_2 . For each element $e \in A_1$, count how many crossing inversions e produces using **binary search**.

Example (cont.): A = (10, 3, 9, 8, 2, 5, 4, 1, 7, 6). $A_1 = (2, 3, 8, 9, 10), A_2 = (1, 4, 5, 6, 7)$

Element 2 produces 1 crossing inversion Element 3 produces 1, too. Elements 8, 9, and 10 each produce 5 crossing inversions.

• Think: How to obtain each count with binary search?

In total, n/2 binary searches are performed, which takes $O(n \log n)$ time.

11/28

Running Time: Let f(n) denote the worst-case cost of the algorithm on an array of size n. Then:

$$f(n) \leq 2 \cdot f(\lceil n/2 \rceil) + O(n \log n)$$

which gives $f(n) = O(n \log^2 n)$.

12/28

▲□→ < □→</p>

Yufei Tao

Denote by \mathbb{Z} the set of integers. Given a point p in two-dimensional space \mathbb{Z}^2 , denote by p[1] and p[2] its x- and y-coordinate, respectively.

Given two distinct points p and q, we say that q **dominates** p if $p[1] \le q[1]$ and $p[2] \le q[2]$; see the figure below:

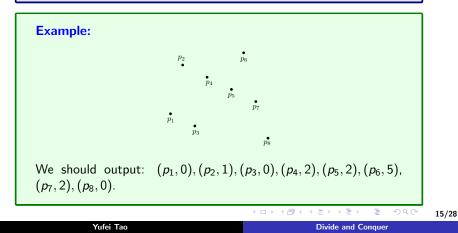
p

Divide and Conquer	
--------------------	--

伺 ト イヨ ト イヨ ト

-

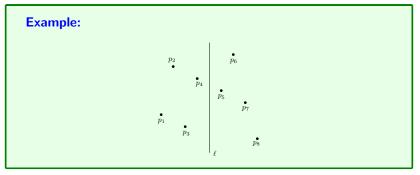
Let *P* be a set of *n* points in \mathbb{Z}^2 with distinct x-coordinates. Find, for each point $p \in P$, the number of points in *P* that are dominated by *p*.



Let P be a set of n points in \mathbb{Z}^2 with distinct x-coordinates. Find, for each point $p \in P$, the number of points in P that are dominated by p.

We will do in the class: $O(n \log^2 n)$ time. You will do as an exercise: $O(n \log n)$ time.

Divide: Find a vertical line ℓ such that *P* has $\lceil n/2 \rceil$ points on each side of the line.



Think: How to find such ℓ in $O(n \log n)$ time? How about O(n) time?

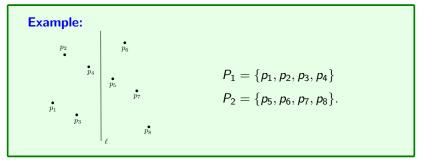
	・ロト・局・・ヨ・・ヨ・・ロト	17/28
Yufei Tao	Divide and Conquer	

Dominance Counting

Divide:

 P_1 = the set of points of P on the left of ℓ

 P_2 = the set of points of P on the right of ℓ

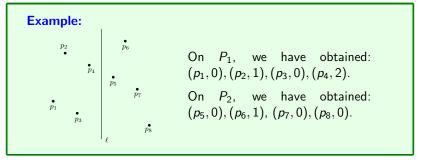


▲ (目) ▶ (●) ▶

-

Divide:

Solve the dominance counting problem on P_1 and P_2 separately.



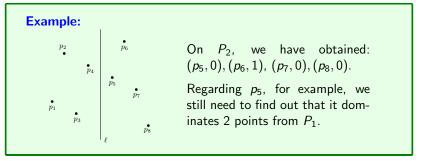
The counts obtained for the points in P_1 are final (think: why?).

19/28

・ 同 ト ・ ヨ ト ・ ヨ ト

Conquer:

It remains to count, for each point $p_2 \in P_2$, how many points in P_1 it dominates.



The x-coordinates do not matter any more!

Yufei Tao

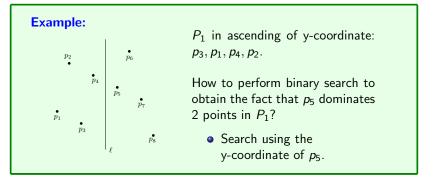
・ 同 ト ・ ヨ ト ・ ヨ ト

Conquer:

Sort P_1 by **y-coordinate**.

Yuf

Then, for each point $p_2 \in P_2$, we can obtain the number points in P_1 dominated by p_2 using binary search.



fei Tao Divide and Conquer	
----------------------------	--

Analysis:

Let f(n) be the worst-case running time of the algorithm on n points. Then:

$$f(n) \leq 2f(\lceil n/2 \rceil) + O(n \log n)$$

which solves to $f(n) = O(n \log^2 n)$.

22/28

(日)

æ

<ロ> <部> <部> <き> <き><

Problem: Given two $n \times n$ matrices *A* and *B*, compute their product *AB*.

We store an $n \times n$ matrix with an array of length n^2 in "row-major" order.

Example:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 is stored as $(1, 2, 3, 4)$.

Note that any A[i, j] — the element of A at the *i*-th row and *j*-th column — can be accessed in O(1) time.

Trivial: $O(n^3)$ time We will do in the class: $O(n^{2.81})$ time for *n* being a power of 2 You will do as an exercise: $O(n^{2.81})$ time for any *n*.

24/28

< 冊 > < 글 > < 글 >

Warm Up: Suppose we want to compute $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix}$. How many multiplication operations do we need to perform? **Trivial:** 8. **Non-trivial:** 7.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

where

$$p_{1} = a(f - h)$$

$$p_{2} = (a + b)h$$

$$p_{3} = (c + d)e$$

$$p_{4} = d(g - e)$$

$$p_{5} = (a + d)(e + h)$$

$$p_{6} = (b - d)(g + h)$$

$$p_{7} = (a - c)(e + f)$$

Yufei Tao

■ ▶ < ■ ▶ ■</p>
Divide and Conquer

Matrix Multiplication (Strassen's Algorithm)

Recall that the input A and B are order-n (i.e., $n \times n$) matrices. Assume for simplicity that n is a power of 2. Divide each of A and B into 4 submatrices of order n/2:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

It is easy to verify:

Yufei Tao

$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

How many order-(n/2) matrix multiplications do we need? Trivial: 8. Non-trivial: 7 — see the next slide.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

$$p_{1} = A_{11}(B_{12} - B_{22})$$

$$p_{2} = (A_{11} + A_{12})B_{22}$$

$$p_{3} = (A_{21} + A_{22})B_{11}$$

$$p_{4} = A_{22}(B_{21} - B_{11})$$

$$p_{5} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$p_{6} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$p_{7} = (A_{11} - A_{21})(B_{11} + B_{12})$$

If f(n) is the worst-case time of computing the product of two order-n matrices, then each of p_i $(1 \le i \le 7)$ can be computed in $f(n/2) + O(n^2)$ time.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Therefore:

$$f(n) = 7f(n/2) + O(n^2)$$

which solves to $f(n) = O(n^{\log_2 7}) = O(n^{2.81})$.

э

28/28

<ロト < 同ト < 三ト < 三ト